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ABSTRACT

An overview of the ICON project for the development of a nonhydrostatic GCM based on the icosahedral grid is pre-
sented. The main motivations, targets and features of the new model are outlined, with special attention to the expected
improvements in simulating the stratosphere and the tropopause. The horizontal discretization approach is introduced,
in the context of the shallow water model developed during the preliminary phase of the project. Numerical results ob-
tained with the shallow water model are presented, showing that the proposed approach allows for accurate simulation
of the main features of large scale atmospheric flows. The main open issues regarding the future model development are
reviewed.

1 Outline of the ICON model development project

ICON (acronym for ICOsahedral Nonhydrostatic) is a joint project of the Max Planck Institute of Meteorology
Hamburg (MPIfM) and the German Weather Forecasting Service (Deutscher Wetterdienst - DWD) for the
development of a new general circulation model. The project target is a unified model for global and regional
climate simulation and weather forecasting. The new model will be based on finite volume discretizations of the
fully elastic, nonhydrostatic Navier-Stokes equations on geodesic, icosahedral, locally refinable grids. Various
research institutes in Germany and elsewhere are also contributing to the project, among which PIK Potsdam,
Freie Universität Berlin, AWI Bremerhaven, the Max Planck Institut for Computer Science in Saarbrücken and
Colorado State University.

A number of reasons have lead to the choice of reshaping thoroughly the presently available models. Recent
investigations (see e.g. [39]) have shown the problems arising when the spectral transform method is coupled to
conservative, monotonic advection of tracers by finite volume schemes, among which some major inaccuracies
in the simulation of troposphere - stratosphere tracer exchange. These problems are related to the lack of
consistency with the discrete continuity equation, a concept whose relevance was already noticed in [1] and that
has also been discussed in various recent studies on conservative advection schemes (see e.g. [30], [31]). It is
easy to show that the discrepancy between the discretization of the divergence term in the continuity equation
and in the tracer equations leads to an effective violation of mass conservation and monotonicity of tracer
concentrations, even when flux form monotonic schemes are employed. Various idealized tests and a theorical
analysis in the context of a simple shallow water model are reported in [21]. Possible fixes either do not solve
the problem effectively or increase significantly the computational cost, if e.g. consistent velocity fields have to
be computed on a finite difference grid by an a posteriori least squares fit. This problem cannot be reduced by
simple means such as increasing the resolution and is a serious obstacle to accurate, conservative discretization
of transport of chemical and moist species across the tropopause.

Another key issue is regionalization of climate and NWP models. All the nesting approaches currently imple-
mented (at MPIfM, DWD or elsewhere) require strong smoothing at the boundaries of refined areas, because
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of unappropriate treatment of the internal grid boundaries. The resulting models are not mass conservative and
often display unphysical vertical velocities and precipitation patterns at the boundaries. Some approaches (con-
formal mappings, stretched lat-lon grids) allow to achieve locally higher resolutions, but their scope is limited
to a small number of refined regions of special shape. Such approaches cannot be used for generalized grid
refinement, e.g. over complex orographic features or over areas of special interest because of large tracer emis-
sions. This contrasts with the great accuracy in the treatment of internal grid interfaces that has been achieved
by fully conservative local grid refinement approaches developed over the last 20 years in the CFD commu-
nity, along with efficient solvers to handle elliptic problems on locally refined grids and efficient dynamically
adaptive algorithms (see e.g., among many others, [2], [4], [9], [10], [11], [17], [28], [30]). Although accurate
models for geophysical flows that incorporate these features do not yet exist, their development appears rather
attractive because of the potential gain in accuracy, efficiency and flexibility.

A relevant computational issue is also the fast growing cost of the Legendre transform computations required
for higher resolution integrations of spectral models. Although great progress has been made in increasing the
efficiency of such models, it would be desirable to consider for the next generation of climate and NWP GCMs
discretization approaches that allow for the most efficient use of massively parallel computers.

From a more practical point of view, both MPIfM and DWD maintain up to now separate models for global and
regional simulations, which entails unavoidable overhead and special interfaces for data exchange between the
different models. The global and regional model of DWD are even using completely different grids and data
structures and special interpolation operators are required to provide the boundary conditions to the regional
model.

In order to find a practical solution that takes into account all these issues, MPIfM and DWD have started the
ICON development project, which has begun its activity in May 2002. It is expected that close cooperation of
MPIfM and DWD will also result into extensive testing of the new model in NWP mode and joint development
of a new data assimilation system to be used by both institutions. Furthermore, the physical parameterization
packages developed for ECHAM5, GME and LM will be incorporated in the new GCM. Full testing of the
preliminary shallow water model is expected to be complete by the end of 2003 and a first operational version
should be available by the end of 2005. The resulting model should replace the present global and regional
models at MPIfM and DWD and constitute the atmospheric component of the Earth System Model under
development at MPIfM.

The main features of the envisaged model formulation will be presented in sections 2 to 5. The expected
advantages for modelling the stratosphere and the tropopause will be discussed in section6. The horizontal
discretization approach will be presented in section 7, in the context of a semi-implicit, mass conservative
shallow water model that has been developed as a preliminary step towards the full three dimensional model.
Numerical results obtained so far with this model are reported in section8 and some of the main open issues
regarding the future model development are discussed in section9.

2 Model equations

The model under development in the ICON project will use the fully elastic, nonhydrostatic Navier-Stokes
equations, which provide a framework that is sufficiently general for meteorological applications on most scales
relevant for numerical weather prediction and climate simulation. In order to couple most consistently strato-
spheric and mesospheric chemical processes to the dynamics, air is considered as a multicomponent medium,
consisting of

� a mixture of ideal gases (i.e., the constituents of dry air, which undergo chemical or photochemical
reactions, but no phase change); the partial densities of these components will be denoted by ρd�k
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� water vapour, which is also assumed to be an ideal gas, but which undergoes phase change; the partial
density of this component will be denoted by ρv

� liquid water, which is assumed to be an incompressible fluid and the partial density of which will be
denoted by ρl

� ice, which assumed to be and incompressible solid and the partial density of which will be denoted by ρf

The first assumption allows to consider the case in which the composition of dry air is changing, which is
relevant for upper atmospheric applications. Denote the total density of air by

ρ �
Nd

∑
k�1

ρd�k �ρv �ρl �ρ f � (1)

For meteorological applications, liquid water and ice contribute very little to the total specific volume and their
contributions will be neglected in the derivation of an equation of state for air as a gas mixture. Furthermore,
it is assumed that local thermodynamical equilibrium holds (so that a unique temperature can be defined for all
gaseous constituents) and that the state equation of an ideal gas

pk � RkTρk

holds for each gaseous constituent. Then, by Dalton’s law

p �
� Nd

∑
k�1

Rd�kmd�k �Rvmv

�
Tρd � (2)

Here, p is the total air pressure, ρd � ∑Nd
k�1

ρk�d is the total density of dry air, Rd�k is the gas constant for the
generic constituent of dry air, Rv is the gas constant for water vapour and mk are the mixing ratios of the various
species.

The precise formulation of the complete equations of motion for this multicomponent medium is still being
discussed within the ICON project working groups, especially with respect to the description of the moist
processes. A formulation of the basic dynamical equations of motion of dry air in the inviscid case which
appears to have some advantages is the following:

∂ρd

∂ t
�∇ � �ρdv� � 0 (3)

∂v
∂ t

��∇K� �2Ω�ζ��v�
1

ρd
∇ � p�∇Φ�F� (4)

∂ �ρdε�
∂ t

�∇ �

��
ρdε � p�R

�
�v
�
� 0 (5)

Here, v denotes the velocity of dry air, which is interpreted as the baricentric velocity of the dry air components,
thus allowing for a rigorous derivation of the energy balance (see e.g. [22]). ε is the total energy, K is kinetic
energy, Ω denotes the rotation velocity of the Earth, ζ � ∇� v is the relative vorticity, Φ denotes the normal
gravity potential (see e.g. [54]), F denotes the resultant of the external forces (among which electromagnetic
force plays an essential role above approximately 80 km height, where the presence of ionized particles begins
to have a relevant impact on the neutral flow), R denotes the radiation heat flux. This set of equations has to be
supplemented by conservation laws for the various (dry and moist) air components, chemical species and ions

∂ �ρdmk�

∂ t
�∇ �

�
�ρdmk�v�Jd

k

�
� Ik� (6)
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Here, Jd
k denotes the diffusion flux with respect to the velocity of dry air, which needs to be approximated or

parameterized, e.g. on the basis of Fick diffusion assumptions (see e.g. [25], [55]), whereas Ik denotes the
sources or sinks of species k� This formulation would allow for application of efficient momentum advection
schemes without spurious vorticity production (see e.g. [32]) and for total energy conservation. However, the
formulation of the energy equation is currently being discussed further. Relevant issues for the final choice
will be the concurrently designed treatment of the moist species, the desire to achieve an energy conserving
formulation when also dissipative terms are included, the need for a formulation that is practical for semi-
implicit time discretization. Results of the appropriate low Mach number asymptotics (see e.g. [29]) are also
being taken into account.

3 The icosahedral grid

The basis for the spatial discretization developed in the ICON project will be the triangular grid obtained by
recursive bisection of the regular icosahedron. The main reasons for this choice are its quasi-uniform coverage
of the sphere, which solves automatically the pole problem and avoids artificially high Courant numbers, along
with its hierarchical structure, that provides a very natural setting for local grid refinement. The use of such
grids on the sphere goes back to the work of Arakawa, Sadourny and Williamson around 1968 [47], [56].
Their quasi-uniformity suggested that they could provide a viable alternative to latitude-longitude grids for
high resolution simulations. Various finite difference and finite volume methods were developed on icosahedral
grids (see [35], [57], [58]) for the barotropic vorticity equations and the shallow water equations, but also due
to the development of models based on the spectral transform method, icosahedral discretizations were not
pursued further in the 1970s (see e.g. the review of the earlier literature given in [59]). Two new developments
took place in the 1980s, which somehow revived this line of research, along with the progressive improvement
of the available hardware. On one hand, it was shown in [36] how the approach in [47] could be extended to
the vorticity-divergence formulation of the shallow water equations, thus obtaining a numerical scheme that
conserves energy and potential enstrophy. This inspired the further developments of [24], [52] and led to the
development of general circulation models for climate applications within the BUGS project at CSU (see e.g.
[44], [45]). On the other hand, Baumgardner introduced in [8] a sperical equivalent of linear finite elements
based on the icosahedral grid. This led to the development of a semi-implicit scheme for the shallow water
equations in [7], from which the primitive equation forecast model of DWD [33] has evolved. This model has
been in operational use since December 1999 and is the only operational NWP model so far to be based on the
icosahedral grid. Other finite element approaches based on geodesic grids have been introduced in [16], [20],
[50].

In order to obtain numerical methods that are free of spurious pressure modes without recourse to large amounts
of artificial diffusion, a staggered variable arrangement is envisaged. Staggered grid discretizations on the icosa-
hedral grid have been proposed by Sadourny as early as [46], [48], although he did not investigate this approach
further. S.Ničković analyzed the properties of C-type grid staggering in [37], [38]. Some of these analyses dis-
played the possibility of computational geostrophic modes for basic second order spatial discretization on plane,
C-staggered hexagonal grids. On the other hand, efficient and accurate numerical schemes for realistic high
resolution applications of the shallow water equations to estuarine dynamics have been developed in [13],[14].
In these papers, a C-grid variable arrangement was introduced on unstructured grids with the Voronoi-Delaunay
property, which is shared by the icosahedral grids as well.

The grid construction process is the same as described in [8]. This construction yields a Delaunay triangulation
of the sphere to which a Voronoi tessellation is naturally associated (see e.g. [3], [42]), which consists of
convex spherical polygons (either pentagons or hexagons). The points of the icosahedral grid obtained in this
way constitute the Voronoi grid on the sphere. Each of them belongs to a single hexagonal or pentagonal cell.
The vertices of these polygons constitute the dual, or Delaunay grid, whose generic cell is defined as the convex
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Level N. of cells N. of edges Av. edge length (deg) Av. edge length (km)

0 20 30 63.43 7053.89
1 80 140 33.86 3765.06
2 320 480 17.22 1914.39
3 1280 1920 8.64 961.26
4 5120 7680 4.33 481.14
5 20480 30720 2.17 220.43
6 81920 122880 1.08 120.32

Table 1: Features of the triangular icosahedral grids.

Level Amin�Amax λmin�λmax Velocity point off-centering,%

0 1 1 0.0
1 0.83 0.88 19.9
2 0.89 0.80 12.0
3 0.92 0.78 6.5
4 0.93 0.78 3.4
5 0.94 0.78 1.7
6 0.94 0.78 0.97

Table 2: Quasi-uniformity of the triangular icosahedral grids after Heikes-Randall optimization.

hull of those Voronoi gridpoints whose cells have that vertex in common. The Delaunay cells of the icosahedral
grid are all triangles. It can be proven (see e.g. the references in [26]) that for each side of a Voronoi cell
there is a unique orthogonal side of the Delaunay cell associated to it. In this report, only results obtained
using the (triangular) Delaunay cells as basic control volumes will be presented. The main features of the
triangular icosahedral grid are shown in table 1. Some parameters highlighting its quasi-uniformity properties
are displayed in table 2.

Let i denote the generic Delaunay cell and let l denote the generic edge of such a cell. Let � �i� denote the set of
all edges of cell i and � �i� the set of all cells which have edges in common with cell i� The gridpoint associated
to cell i will also be referred to as the cell center. The generic vertex of a cell, which is also the center of a cell
in the dual grid, is denoted by v� � �v� denotes the set of all cells of which v is a vertex and � �v� denotes the
set of all edges attached to vertex v� Let also nl denote a unit vector normal to the edge l and let tl denote the
unit vector tangential to the edge l such that nl �k � tl � For each cell edge, an orientation σi�l is defined so that
σi�lnl is the outer normal to the edge l of cell i� Given the edge l of a cell, the adjacent cells are denoted by the
indexes i�l�1� and i�l�2�� respectively. The indexes are chosen so that the direction from i�l�1� to i�l�2� is the
positive direction of the normal vector nl� Vertex indexes v�l�1� and v�l�2� can also be defined analogously, so
that the direction from v�l�1� to v�l�2� is the positive direction of the vector tl � The length of the edge l of a cell
is denoted by λl and the distance between the centers of the cells adjacent to edge l (i.e., the length of a edge of
the dual cell) is denoted by δl � The area of cell i is denoted by Ai�

For each cell edge, the velocity points of a C-type grid discretization are defined as the intersections between
the edges of the Voronoi and Delaunay cells. By construction, each of these points is the midpoint of an edge
of a Delaunay cell and equidistant from the centers of the adjacent Voronoi cells. A velocity point is also the
intersection of the edge of the cell with the arc connecting the centers of the cells adjacent to that edge. These
points are the locations of the discrete normal velocity components with respect to the cell edge. It should be
observed that the velocity points are not equidistant from the adjacent Delaunay grid cell centers. However,
grid optimization procedures such as those introduced in [23] can partly cure this problem, as shown in table
3, by reducing the off-centering to rather small values. Other optimization procedures, such as those of [53],
do not guarantee that the optimized grid retains the Voronoi-Delaunay property. The C-type staggering on the
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Delaunay grid is defined by specifying the discrete components of the velocity field normal to the cell edges at
the velocity points and by specifying the discrete height (or pressure) values at the centers of the grid cells. It
is to be remarked that this type of grid arrangement yields a spatial discretization which is very similar to what
is obtained by the Raviart-Thomas elements of order 0 (see e.g. [40]). Furthermore, the discrete analogous of
the Helmholtz decomposition theorem was proven in [41] for this type of grid arrangement.

4 Vertical discretization

The vertical discretization approach has only been outlined so far in a rather general way. Use of full spherical
geometry is envisaged, without any simplification in the dependence of the metric coefficients on height. This
entails abandoning also the so called traditional meteorological approximations and to make use of the deep
atmosphere equations, see e.g. [51]. Regarding the vertical coordinate, due to the generality of the foreseen
applications and to the needs of high resolution regional weather forecasting, a reasonable choice appears to be
the use of a height based vertical coordinate, such as for example the hybrid terrain following coordinates that
are common in mesoscale modelling. A height based coordinate would also be more practical for inclusion of
the upper stratosphere and mesosphere in the same unified model framework. However, it is planned to take
advantage as much as possible of formulations that are either coordinate invariant or that can be discretized
without reference to a specific coordinate system, such as for example equations in flux form. Staggering of the
vertical velocity component with respect to the pressure nodes in the vertical direction is also being considered.

5 Numerical methods

Finite volume techniques are being considered for the discretization of equations3,5 and 6. This allows to
achieve mass conservation in a straightforward way. Discontinous Galerkin techniques (see e.g. [15]) appear
quite an attractive tool for the discretization of the tracer equations, since higher accuracy is achieved in a
completely local way. This diminishes the need for communication among different processors if a domain
decomposition parallelization is performed, which is of great importance for simulations with a large number
of tracers, when tracer advection is responsible for a large share of the CPU time. Furthermore, these techniques
are very flexible with respect to implementation on locally refined grids.

For the discretization of the momentum equation, finite difference schemes along the lines of [32] appear rather
attractive, because they allow to combine the well known advantages of semi-lagrangian schemes with the
absence of spurious vorticity production. It will be shown in section7 how the Voronoi-Delaunay property of
the icosahedral grid allows to extend the approach of [32] on quadrilateral lat-lon grids. However, it is also
planned to implement an alternative semi-lagrangian option.

Semi-implicit time discretization appears a desirable target, in order to achieve optimal computational effi-
ciency, provided that efficient solvers can be applied. This restricts somehow the range of possible spatial
discretization approaches to those yielding relatively simple Helmholtz equations. Furthermore, as previously
remarked, mass conservation and applicability on locally refined grids are essential a priori requirements for
any approach considered viable for ICON. Again, an example of semi-implicit discretization is presented in
section 7. A mass conservative extension to the full Euler equations could take place, for example, by applica-
tion of a suitably modified version of the method introduced in [12]. Multigrid solvers (see e.g. [18], [49]) are
quite naturally being considered as a basic tool for achieving optimal computational efficiency in the context
of semi-implicit discretizations. Their potential for atmospheric modelling has already been shown in the past,
see e.g. [5], [6], [24], [44]. Their applicability on locally refined grids has been shown for example in [4], [43].
Solvers based on the so called cascadic multigrid also display quite interesting properties, see e.g. [11], [10],
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[28].

6 Expected advantages for stratospheric
modelling

The first results obtained so far with the latest version of the MPIfM climate model (ECHAM5, soon to be
released officially) seem to show that higher vertical resolution in the stratosphere does have a significant
positive impact on the simulation of many tropospheric and stratospheric features. In validation runs that are
being carried out on the AMIP test cases, the transport of water vapour across the tropopause and the downward
control mechanisms appear to be simulated in a much more realistic way than in previous model versions
(personal communication by E.Roeckner). Key stratospheric phenomena such as the quasi biennial oscillation
have also been reproduced correctly in the ECHAM5 simulations with very high vertical resolution described
in [19]. In order to achieve this, appropriate gravity wave parameterizations had to be employed, forcing a
broad spectrum of atmospheric waves (see e.g. [34]). Furthermore, a vertical resolution varying between 0.7
and 1.0 km had to be used throughout the stratosphere. These capabilities of the ECHAM5 model will have to
be preserved in the next step of the model evolution.

Regarding the ICON development project, the main specific target with respect to the modelling of the tropopause,
stratosphere and mesosphere is the improved coupling of dynamical and photochemical processes. This should
be achieved by allowing for a varying composition of dry air and by completely consistent discretization of
the continuity equation and the flux form advection equations for the chemical species being considered. The
inconsistency between the discrete formulation of the continuity equation and that of the mass fluxes in the
tracer equations was shown in [39] to cause large errors for transport across the tropopause. The solutions
proposed so far for this problem and evaluated in [39] do not seem to be effective. Therefore, it is expected that
a model which is designed to be completely consistent with this respect leads to a significant improvement in
mass conservative simulation of troposphere - stratosphere exchanges.

7 The shallow water model

A basic concept for the horizontal and semi-implicit time discretization of the the Euler equations will be
presented here in the context of a numerical scheme for the shallow water equations. As customary for the
development projects of global models, a prototype based on these simpler equations is being studied as a first
step. Consider the vector invariant form of the shallow water equations on the sphere

∂v
∂ t

���ζ � f �k�v�∇
�

gh�K
�
� (7)

∂h
∂ t

�∇ �

�
h�v

�
� 0� (8)

where v � �u�v� is the horizontal velocity vector (on the sphere), K � 1
2�u

2 � v2� is the kinetic energy, ζ is
the vertical component of the relative vorticity, h� is fluid depth, h � h�� hs is the height of the free surface
above mean sea level, hs is the height of the orography, g is the gravitational constant and k the unit vector in
the radial outward direction. In order to highlight the issue of consistency with the discrete continuity equation
mentioned in section 1, also the conservation law for a passive tracer is considered,

∂ �qh�
∂ t

�∇ �

�
qh�v

�
� 0� (9)
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where q denotes the tracer concentration.

Using the notation introduced in section3, spatial discretization of the continuity equation (8) is straightforward
by integration on cell i and application of the divergence theorem, so that one obtains

Ai
∂hi

∂ t
�� ∑

l�� �i�

σi�lh
�

l ulλl � (10)

It is to be remarked that this approximation is by construction second order accurate on the triangular Delaunay
grid. Although in principle an arbitrary discrete flux could be employed in the space discretization of the tracer
conservation law (9), the resulting spatial discretization must be consistent with the spatial discretization of the
continuity equation. This amounts to the statement that, given a tracer with unit discrete concentration values
qi� its discretized form must be identical to (10) (see e.g. [1]). This leads to a spatial discretization of the tracer
conservation law (9) of the form

Ai
∂ �qihi�

∂ t
�� ∑

l�� �i�

σi�lqlh
�

l ulλl � (11)

where the values ql at the cell edges have to be reconstructed by means of appropriate interpolations. Specifi-
cation if the interpolation procedure amounts to the choice of a specific advection scheme.

Taking the scalar product of equation (7) with the unit vector nl at a generic velocity point yields, after use of
the vector identity

�k�v� �nl � v � �nl �k�

and of the definitions given in section 3, the equation

∂ul

∂ t
��� fl �ζl�vl �

∂ �gh�K�

∂nl
� (12)

where vl denotes the tangential velocity component vl � v � tl � An analogous equation can be derived for the
tangential velocity component. Thanks to the orthogonality between the cell edges and the arcs connecting the
cell centers, the directional derivatives in the normal and tangential directions are easily approximated as

�δν h�l �
hi�l�2��hi�l�1�

δl
�δτ h�l �

hv�l�2��hv�l�1�

λl
�

It is to be remarked that the approximation of the derivative in the normal direction will be only first order
accurate on the Delaunay grid, whose velocity points are not equidistant from the adjacent gridpoints. As
noticed in section 3, grid optimization procedures such as those introduced in [23] can partially solve this
problem. Furthermore, the normal velocity components are tangential to the edges of the dual cells, thus
allowing to define the vertical component of vorticity on the dual Voronoi grid by Stokes theorem in a very
natural way. It was shown in [41] that this definition of vorticity allows to prove a discrete equivalent of the
Helmholtz decomposition theorem for the C type staggering described above. The values of ζl at the edge are
then recovered by arithmetical mean. It is to be remarked that, computing the discrete circulation of equation
12, a spatially discretized equation for the evolution of ζ is obtained.

A semi-implicit time discretization of equations (7)-(8) will be considered, in order to improve efficiency for
high resolution simulations. For simplicity, only a simple two time level scheme based on the trapezoidal
integration rule is considered here, that is given by

un�1
l � un

l �∆t� fl � ζ̃ n�α
l �vn�α

l �∆t
�
δν�ghn�α � K̃n�α�

�
l

(13)

Aih
n�1
i � Aih

n
i �∆t ∑

l�� �i�

σi�lh
�

l un�α
l λl � (14)
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Here, φn�α � αφn�1 ��1�α�φn� h�l � hn
l �hs

l and α � �12 �1� for stability, with α � 1
2 yielding a second order

accurate time discretization in the linear case. On the other hand,ψ̃n�α denotes some estimate of the value of
ψ at time �n�α�∆t obtained by an explicit discretization. Along the lines of [32], where a more advanced flux
form semi-lagrangian scheme was applied in an analogous step, a simple upwind discretization is employed
in this preliminary implementation for these intermediate updates. Since the discrete values of ζ are naturally
defined at the vertices of the triangular cells, the intermediate update of ζ is computed by a discretization using
as control volumes the dual hexagonal/pentagonal cells.

The value of the tangential velocity component at timestep n� 1 can be recovered by deriving the analogous
of equation 12 for the tangential velocity component and performing again a semi-implicit time discretization.
This yields

vn�1
l � vn

l �∆t� fl � ζ̃ n�α
l �un�α

l �∆t
�
δτ�ghn�α � K̃n�α�

�
l
� (15)

Here, the values vn
l are to be determined by reconstruction of the full velocity vector at time n at the velocity

node l� In this implementation, standard linear reconstruction from Raviart-Thomas finite element theory (see
e.g. [40]) was employed to obtain a velocity vector at the mass points, whose components were then averaged
onto the cell edge. Other simpler reconstruction approaches are discussed in [41]. Furthermore, in order to
compute δτ�ghn�α � K̃n�α� values of hn�α � K̃n�α at the vertices of the triangular cells have to be computed. In
the present preliminary implementation, this is done by simple area weighted averaging.

Substituting equation (15) into (13) yields

un�1
l � γl�

n
l �u� (16)

�gγl� fl � ζ̃ n�α
l �α2∆t2�δτ hn�1�l �gγlα∆t�δνhn�1�l

where

�
n
l �u� � un

l �∆t� fl � ζ̃ n�α
l �vn

l �α�1�α�∆t2� fl � ζ̃ n�α
l �2un

l

�α�1�α�∆t2g� fl � ζ̃ n�α
l ��δτ hn�l �g�1�α�∆t�δνhn�l

and γl � 1��1�α2∆t2� fl � ζ̃ n�α
l �2�� Substitution of (16) into (14) yields for each cell i the discrete wave

equation

Aih
n�1
i �gα2∆t2 ∑

l�� �i�

�
�δνhn�1�l �α∆t� fl � ζ̃ n�α

l ��δτ hn�1�l

�
γlσi�lh

�

l λl

�� n
i �h�� (17)

where

�
n
i �h� � Aih

n
i ��1�α�∆t ∑

l�� �i�

σi�lh
�

l un
l λl

�α∆t ∑
l�� �i�

σi�lh
�

l γl�
n
l �u�λl �

The set of all equations (17) for each cell i yields a linear system in the unknowns hn�1
i � Its matrix is sparse and

its symmetric part is positive definite and diagonally dominant. Furthermore, the asymmetric part of the matrix
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is multiplied by the Coriolis coefficient, so that the resulting matrix is actually a relatively weak asymmetric
perturbation of an M-matrix. In the present implementation, its solution is computed by fixed point iterations
in which the preconditioned conjugate gradient method is used in each iteration for the symmetric part.

Finally, since time discretization of (10) and (11) must also preserve consistency with continuity, as remarked
in [21], the conservation law for the tracer should be discretized in time accordingly as

qn�1
i hn�1

i � qn
i hn

i �
∆t
Ai

∑
l�� �i�

σi�lqlh
�

l un�α
l λl � (18)

8 Numerical results

A number of numerical tests is being carried out in order to assess the effective accuracy of the discretization
outlined above. The tests have been performed with a preliminary implementation of the method described in
section 7. In this implementation, for simplicity, the nonlinear terms were dropped in equation15. Furthermore,
simple interpolation and vector reconstruction approaches were employed, as previously mentioned. Complete
quantitative evaluation of the performance of an improved implementation on the basis of the standard shallow
water test suite in [60] is currently under way. Here, only a few selected and preliminary results will be reported.

Firstly, due to concerns about the capability of C grid staggered arrangements to describe properly geostrophic
equilibrium (see e.g. [38]), a test case is considered for the linear shallow water equations. The fluid is initially
at rest and the height field is initialized with the initial datum shown in figure1, in which a zonally symmetric
perturbation of about 500m was superimposed to a constant height field h0 � 2000m� Geostrophic adjustment
of the initially unbalanced state generates a fast propagating gravity wave, shown in figures2,3 at times t � 24h
and t � 48h� respectively, along with the balanced height field close to the pole. The simulation was performed
at various resolutions with analogous results, those shown here are for a grid size of approximately 220km and
a gravity wave Courant number 1.5 approximately. The gravity wave propagates at approximately the correct
speed, altough with the expected phase delay due to the semi-implicit discretization.

Test cases 5 and 6 of the standard shallow water test suite in [60] have also been run. The height field for test 5
(flow over an isolated mountain) is shown at day 10 in figure4, as computed with a grid size of approximately
120km and a gravity wave Courant number 1.5 approximately. The height field for test case 6 (Rossby Haurwitz
wave) at day 7 is shown in figure 5, as computed with a grid size of 240km approximately and a gravity
wave Courant number 1.5 approximately. Figures 4,5 can be compared directly with figures 5.1c, 5.5c of
[27], respectively (the same contours have been used for each plot as in those figures). Good quantitative
agreement with the reference spectral solution is displayed. Analogous results have been obtained also at
coarser resolutions, although longer term integrations gave so far larger errors with respect to the reference
solutions.

9 Open issues and development plans

Although the preliminary results of the proposed horizontal and time discretization approach appear promising,
a more accurate implementation must be achieved and a number of important features of the future ICON
model have yet to be fully specified. A choice has to be made on the formulation of the energy equation and
on the representation of the moist processes The precise formulation of the 3D model equations and a unified
design of the parameterization packages should be achieved within 2003. Applications to realistic stratospheric
modelling are still a long way ahead, but idealized stratospheric tests could be run within the next few months.
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Figure 1: Initial height field for geostrophic adjustment test case, contours every 20 m.

Figure 2: Height field at day 1 for geostrophic adjustment test case
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Figure 3: Height field at day 2 for geostrophic adjustment test case
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Figure 4: Height field at day 10 for test case 5
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Figure 5: Height field at day 7 for test case 6
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