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Experimental use of TRMM Precipitation Radar observations in 1D+4D–Var assimilation

Abstract

This paper presents a new application of the Tropical Rainfall Measuring Mission (TRMM) Precipitation
Radar (PR) observations for indirect four–dimensional assimilation into the European Centre Medium–
Range Weather Forecast (ECMWF) model. The PR reflectivities are first processed using a one–dimensional
variational (1D–Var) method to adjust model temperature and specific humidity. The Total Column Water
Vapour is then calculated via vertical integration of the humidity profile and assimilated into the operational
four–dimensional variational (4D–Var) system.

Several case studies were run to assess the feasibility and the effectiveness of assimilating PR reflectivities.
The case of tropical cyclone Zoe (December 2002) was investigated in detail. Results show a robust behavior
of the 1D–Var with PR data. Its performance in terms of retrieved rainfall is comparable to that of other
1D–Var systems which make use of TRMM Microwave Imager (TMI) observations. When the 1D–Var
TCWV pseudo–observations are input in the 4D–Var system, a positive impact is shown in the analysis and
the subsequent forecasts both on moist–related fields and also on winds and surface pressure. The quality
of the forecast is verified using track observations for the tropical cyclones. The track forecasts from the
experiments which include the 1D–Var TCWV are generally closer to the observed track than a control run.
Even if the number of TCWV values is substantially lower than that from the 1D–Var which uses TMI data
due to the smaller spatial coverage, the PR data have an impact of comparable magnitude.

These results show that active sensor data can provide indirect yet useful information on the moisture field
and that this information can effectively be assimilated to improve the analysis and the forecast of tropical
disturbances.

1. Introduction

Precipitation retrievals/analyses are fundamental to understanding and improving the model description of the
hydrological cycle. Numerical prediction models have improved considerably over the past few years in the
analysis and the forecast of precipitation thanks to progress in both parameterizations and data assimilation.
However, there is still the need to explore new avenues for model improvement through assimilation of data
from active and passive sensors. In the near future, an increasing number of observations providing 3D infor-
mation on clouds and precipitation will become available from spaceborne active instruments onboard various
satellite platforms such as the Global Precipitation Mission, and its European component, EGPM; CloudSat;
the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations; and the EARTH Cloud Aerosol Radi-
ation Experiment. The challenge will be to maximize the amount of information that can be extracted from this
data source and transformed through the model into knowledge about the atmospheric state.

Several authors have explored the impact of assimilation of precipitation data from various sources to improve
analysis and forecast of both global and mesoscale models (e.g.,Zupanski et al. (2001), Zupanski et al. (2002),
Zou and Kuo (1996), Tsuyuki (1997)). The feasibility of assimilating satellite–derived rainrates has also been
demonstrated in a number of studies. Hou et al. (2000) show how assimilation of TMI rainfall rates and Total
Precipitable Water (TPW) into a single column version of the Goddard Earth Observing System (GEOS) model
improves diagnoses of clouds and radiation in areas of active convection and the distribution of latent heating
in the Tropics, while reducing systematic errors in the forecasts. In a follow–up study,Hou et al. (2003) show
that assimilation of TMI and SSM/I surface rainfall yields more realistic analysis of storm structures. Forecast
skills are also improved as a result of the inclusion of rainfall information.

Since 1998, there has been an ongoing effort to assimilate satellite rainfall data into the ECMWF model.
Marécal and Mahfouf (2000) initiated work toward that goal by using surface rain rates to correct the model
first guess (background) in a one–dimensional variational context. Their results showed that the model first
guess could be improved upon using the observations; however, when the same observations were used di-
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rectly in the full ECMWF 4D–Var assimilation system, convergence to the optimal solution was not always
attainable, because of the technical set–up of the operational incremental 4D–Var (inconsistencies between
inner/outer loops, spectral/grid point representation of specific humidity, and possibly differences between
nonlinear and simplified physics). To bypass this problem they resorted to a 1D+4D–Var approach in which the
TMI surface rainrates are first processed with the 1D–Var system and the corresponding increments in specific
humidity are then converted into pseudo–observations of Total Column Water Vapor (TCWV) that can be easily
ingested in the 4D–Var system (Marécal and Mahfouf, 2002). This procedure has the advantage of ensuring
better convergence and propagating the information coming from the rainy pixels to the dynamics by using a
moisture–related variable. Their work has been continued and extended to the 1D–Var and 1D+4D–Var assim-
ilation of brightness temperatures via the use of a radiative transfer operator and its adjoint byMoreau et al.
(2003a, 2004). These authors show positive results from the quasi–operational TMI/SSMI 1D+4D–Var as-
similation for a number of tropical cyclones and hurricanes. TCWV from rainy pixels is assimilated, when
available, within the twelve–hour assimilation window providing some constraint on the time evolution of the
storm. In most cases, the forecast of the cyclone track and the cyclone intensity is improved with respect to the
control run when TMI or SSM/I observations are assimilated.

This study represents a complement to Moreau et al. (2004) and investigates the potential of the TRMM Pre-
cipitation Radar data. While PR data have been used for diagnostics and model evaluation, for the first time
they are the direct subject of assimilation. The specific goals of this study are (i) to demonstrate that the 1D–Var
system can handle the vertical information contained in the radar reflectivity and distribute it into significant
temperature and humidity increments and (ii) to show that the impact of the Total Column Water Vapor incre-
ments derived from the PR reflectivities in the 4D–Var can be comparable to the impact from the assimilation
of TMI–derived TCWV, despite the difference in spatial coverage between the two instruments, provided the
PR samples “meaningful” portions of the storm.

The road map of the paper is as follows. Section 2. briefly introduces the 1D+4D–Var technique used at
ECMWF to assimilate rain information from the TMI and SSM/I measurements. This procedure is currently
being adopted for the operational assimilation of brightness temperatures into the ECMWF model. Section
3. presents the 1D–Var retrievals with PR data. A description of the observational operator used to de-
rive radar reflectivities at 13.8 GHz from ECMWF three–dimensional model fields is also provided. Results
from the 1D+4D–Var experiments are introduced and discussed in section 4. A conceptual experiment using
nadir–only data, which re–create the viewing geometry of the upcoming spaceborne radar mission CloudSat
(Stephens et al., 2002), is described and discussed in section 5. Finally, section 6. provides a summary and
draws some conclusions from this study.

2. Philosophy of the 1D+4D–Var approach

In the past years, a two–step strategy for assimilation of rain rates or rain–affected radiances has been developed
at ECMWF. The first step is to perform a 1D–Var assimilation of the observed quantity using a simplified
version of the model physics in which the aim is to adjust model variables such as temperature and specific
humidity. The second step is the assimilation of the 1D–Var retrieval products into the 4D–Var system as
pseudo–observations. This procedure was successfully applied at ECMWF for Television Infrared Observation
Satellite (TIROS) Operational Vertical Sounder (TOVS) clear–sky radiances (Eyre et al., 1993) and for the
SSM/I brightness temperatures in clear–sky areas (Gérard and Saunders, 1999). Marécal and Mahfouf (2002)
applied this procedure to assimilate TMI rainfall retrievals and showed the feasibility of global assimilation of
rain–related observations.

Ideally, direct 4D–Var assimilation would be more desirable because it allows for a better connection between
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observations and model physics and avoids the introduction of correlations between model state and obser-
vations in the global system (linked to the double use of the background). However, the current ECWMF
assimilation system is not tuned to assimilate observations of intermittent quantities such as rainfall, due to the
incremental formulation. This computationally–efficient formulation of 4D–Var (Courtier et al., 1994) implies
the calculation of the background trajectory and the observation departures (observation minus model) at high
resolution using the full nonlinear model, and the iterative minimization of the cost function in a low–resolution
space using the tangent linear model and its adjoint with simplified linearized physical parameterizations. For
continuous fields, the different resolution between inner and outer loop does not affect negatively the results of
the minimization. For highly nonlinear and inhomogeneous fields such as clouds and precipitation, this differ-
ence in resolution sometimes results in a lack of convergence. In their subsequent work,Marécal and Mahfouf
(2003) list a series of further problems for direct 4D–Var of rain rates. Amongst those, the use of parame-
terizations with strong nonlinearities and thresholds; the underlying assumptions of the 4D–Var formulation:
perfect model, use of global background errors, tuned for non–rainy situations, and Gaussian statistics for the
errors. Other obstacles are forecast error estimates that presume cloud–free conditions and likely model bias in
rainy situations. Despite these problems, research toward direct 4D–Var assimilation of cloud and rain is still
ongoing, although the 1D+4D–Var approach seems to be more easily applicable and robust for the present time.

3. 1D–Var Retrievals using radar reflectivity

Given an atmospheric background state of temperature, specific humidity and surface pressure (�b), and a for-
ward model (H) that relates the model state (�) to a set of observations (�), it is possible to solve the inverse
problem in a variational context and derive the atmospheric state for which the least–square distance between
the observations and their model counterparts reaches its minimum. This is obtained by minimizing the follow-
ing functional

J �
1
2
��� �b�

T B�1��� �b��
1
2
�H���� ��T R�1�H���� �� (1)

where B represents the background error covariance matrix and R the observation error covariance matrix
which includes both instrumental errors and forward model errors. The operator H allows to go from model
space to observational space and is defined according to the type of observations of interest. In this study,
this operator consists of two moist physics schemes: large–scale condensation (Tompkins and Janisková, 2003,
2004) and convective parameterizations (Lopez and Moreau, 2004), plus the radar reflectivity model described
in the next section.

a. Radar forward model

The radar backscattering cross-section derived from the radar return power can be related to the amount of
solid precipitation (rain and snow) and the amount of cloud ice/water content that the radar signal encounters
in its path. The forward modeling of this radar signal can be performed by assuming a size distribution of
the scatterers and by computing their optical properties. The hydrometeor optical properties are computed
assuming all particles are spherical and applying the Mie solution at the frequency of interest (13.8 GHz for
the PR). Extinction and scattering cross–sections are computed as functions of temperature, and integrated
by assuming a Marshall–Palmer distribution for the precipitation–sized particles (Marshall and Palmer, 1948)
and a modified–gamma distribution for the cloud particles. The radar reflectivity factor is proportional to the
integral of the backscattering cross–section over the size distribution. A variable commonly used to describe the
radar return is the equivalent radar reflectivity, Z, which represents the radar reflectivity factor of an equivalent
volume of spherical water droplets. When the target is an ice cloud, it is necessary to convert the reflectivity
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factor into an equivalent reflectivity Z. This is done in the forward model by assuming a fixed density for the
snow and cloud ice particles. In presence of intense precipitation, the radar signal at 13.8 GHz is attenuated.
By computing the total optical depth and the path–integrated attenuation the attenuated profile of reflectivity
can be recovered. In this study, however, the attenuation–corrected reflectivity product from the TRMM 2A25
algorithm (Iguchi et al., 2000) is used and hence the computation of the attenuation is not required, although
the radar forward model has that capability. To speed up computational time all reflectivity values computed
with this model are collected in a look–up table and classified according to the values of temperature and
liquid/ice water contents, which are direct outputs of the ECMWF model. A bilinear interpolation is then
applied to extract the reflectivity value corresponding to the given temperature and hydrometeor content. A
special treatment of the melting layer (Bauer, 2001) is also included in the computation of the look–up table.
The reflectivity values contained in the look–up table were verified against those derived from other forward
models and those derived from simple Z–R relationship. Comparisons showed that the current forward model
provides reflectivities within a few dBZs of those derived with other methods.

b. Set–up

The 1D–Var retrievals are run off-line using a standard set–up. The background temperature and specific
humidity profiles are taken from a 12–hour forecast of the ECMWF model with T511 spectral truncation (cor-
responding to approximately 40 km) and 60 vertical levels. These profiles of temperature, T , and specific hu-
midity, q, along with surface pressure, ps, tendencies, and other surface quantities are used in the moist physics
routines to compute cloud properties (cloud cover, ice and liquid–water contents) and precipitation fluxes. The
radar observation operator is then applied to the model fields to obtain the equivalent reflectivity. The direct
outputs of the 1D–Var are the optimal temperature and specific humidity profiles; from these variables it is
possible to derive precipitation and cloud amounts by running again the physical schemes. The background
error covariance matrix is taken from the operational ECMWF 4D–Var system (Rabier et al., 1998) (see Fig. 1
of Moreau et al. (2003b)). Temperature and specific humidity errors are assumed cross–uncorrelated.

c. TRMM/PR observations

A detailed overview of the specifications of the TRMM Precipitation Radar is presented inKozu et al. (2001).
Here only some general characteristics, that can be helpful to understand the type of rain/snowfall observations
obtained with a spaceborne active sensor, are reported. The PR is a scanning radar which operates at 13.8
GHz; the cross–track scanning swath is 220 km and the cross–range spatial resolution is about 4.3 km at nadir.
The vertical resolution is about 250 m. The minimum detectable signal is 0.7 mm h�1 which corresponds
approximately to 17 dBZ when using Kozu et al.’s effective reflectivity–rainfall rate conversion (Z � 372R5�4,
Z in mm6 m�3 and R in mm h�1).

The PR data used in this study are the attenuation–corrected 13.8–GHz radar reflectivities from the standard
TRMM 2A25 algorithm described in Iguchi et al. (2000). The attenuation correction is derived using a com-
bination of surface echo and path integrated attenuation. Non–uniform beam–filling effects are also taken into
account and corrected by assuming a probability distribution function for precipitation. The algorithm does not
provide explicit error estimates for the whole reflectivity profile.

Since there is no automatic acquisition procedure for this TRMM product, at present the reflectivities are
processed off–line for selected cases, averaged horizontally over the Gaussian grid of the model and interpolated
vertically to model levels.
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d. Assignment of uncertainties and data screening

A first approach to the error specification was to use a vertically–varying profile, based on the fact the accuracy
of the reflectivity must increase with decreasing attenuation, i.e. with increasing altitude. The error profile was
hence assigned as a linear function of height between 3 dBZ near the surface and 1 dBZ at 8 km. Above 8 km
the error was assumed constant and equal to 1 dBZ. Since it was observed that no benefits were obtained from
using this (arbitrary) error profile and since no scientific basis other than common sense could be invoked to
support our choice of profile, it was decided to simplify the problem by assigning at all levels an uncertainty σobs
of 25% to the PR reflectivity which corresponds approximately to 1.2 dBZ. The averaging and interpolation
procedures also introduce a representativeness error in the reflectivity. Ideally this error should be included
in the matrix R, but it is currently neglected due to difficulties in its estimate. The sensitivity to the error
assumptions is briefly discussed in section e.

To prevent an undesired impact from surface echo contamination, data below 1.5 km are not used in the 1D–Var.
Likewise isolated values of reflectivities are screened to prevent instabilities in the minimization. Reflectivities
below 16 dBZ are not used due to the sensitivity threshold of the PR instrument. At the end of each mini-
mization, the retrieved profiles is quality–controlled and rejected if the analysis minus observation departure
exceeds �3σobs. In this case, the retrieval is reset to the background.

e. 1D–Var Results

The 1D–Var retrieval was applied to one super–typhoon (Mitag, 5 March 2002) and to one tropical cyclone
which occurred in 2002 (Zoe, 26 December 2002), as well as to twenty–one occurrences of tropical cyclones
in 2003 and a squall line over land (5 August 2003). In all circumstances the 1D–Var (hereafter, 1D/PR–
Z) achieved convergence and produced robust results in terms of reflectivity and corresponding precipitation.
Results are only shown and discussed in detail for the well-documented case of tropical cyclone Zoe.

Figure 1 illustrates the performance of the 1D/PR–Z retrieval by comparing the background reflectivity to the
observed reflectivity for cyclone Zoe over the PR swath. It clearly appears that the cyclone is not located in
the same position in the background and in the observations causing a mismatch in the reflectivity field. Panel
(c) shows that the retrieval was successful in adjusting the temperature and specific humidity profiles in such a
way to increase the hydrometeor contents and hence the reflectivity, while effectively changing the precipitation
patterns.

Figure 2 shows a comparison of near–surface rainfall rates retrieved from different data sources and using
different 1D–Var set–ups. The background precipitation is shown in panel (a), while the reference rainfall from
the PATER algorithm (Bauer and Schluessel, 1993; Bauer et al., 2001) and from the TRMM 2A25 algorithm
are shown in panels (b) and (c) respectively. Panel (d) shows the rainfall retrieved with a 1D–Var where the
PATER rainfall rates in (b) were used as observations (1D/TMI–RR). Panel (e) shows the rainfall retrieved with
a 1D–Var where the 2A25 rainfall from (c) rates were used as observations (1D/PR–RR). Finally, panel (f)
illustrates the results of the 1D–Var where TMI brightness temperatures where used as observations (1D/TMI–
TB), and panel (g) is the output in terms of rain–fall rates from the 1D/PR–Z (the corresponding reflectivity
field is shown in Fig. 1, panel (c)). All 1D–Var runs share the same background field.

Using the PATER rainfall rates as a reference for the 1D/TMI retrieval and the 2A25 rainfall rates as a refer-
ence for the 1D/PR–Z retrieval, the overall agreement of the different retrievals is striking and the differences
between retrievals are smaller than the departures from the background. Focusing on the details, however, it
appears that the 1D/PR–Z is slightly more effective than the 1D/PR–RR in modifying the rain–fall field, espe-
cially in the south–west corner of the storm and in the north–east portion. Note that the only difference between
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Figure 1: Near–surface unattenuated radar reflectivity (dBZ) for tropical cyclone Zoe at 1200 UTC 26 December 2002:
(a) background field at 13.8 GHz; (b) 2A25 PR observations; and (c) output from the 1D–Var.
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the two retrieval algorithms is the use of 2A25 attenuation–corrected reflectivities in the 1D/PR–Z versus the
use of 2A25 rainfall profiles as observations. Similarly, in the 1D/TMI–TB the structure of the outer rain–band
which extends south–west is better captured than in the 1D/TMI–RR. The 1D/TMI–RR and 1D/TMI–TB al-
gorithm are extensively described and compared in Moreau et al. (2003b). Here, they are only used as sanity
check for the performance of the 1D/PR–Z.

f. Sensitivity runs

The impact of the error assumptions on the 1D–Var results is assessed by comparing the reflectivity and the
humidity increments from the standard run with 25% observation error at all levels and that from a run with 50%
error at all levels. These are shown in panel (c) and (d) of Fig. 3 as vertical cross–sections between 13.5–9S
and 173.5–178E. Panel (a) and (b) of the same figure show the background and the PR–observed reflectivities
respectively. The effect of doubling the observational error is only evident in the bottom–right area of the
plot, where the 1D/PR–Z gets less close to the observations due to the weaker constraint. However, in both
configurations the 1D/PR–Z corrects the background and approaches the observations with realistic increments
in specific humidity. The structure of this increments is similar in both cases with the exception of an area of
negative increments indicating a decrease in specific humidity in the standard retrieval that is not present in the
retrieval with double observation error.

A second impact study was performed to assess the benefits of using a full profile versus using a single–
level observation. In panel (e) of Fig. 3, the reflectivity and humidity increments cross sections are shown
for a run where only the 2A25 reflectivity at 2km was assimilated in the 1D/PR–Z. The error on this single–
level reflectivity was fixed to 25% to compare the results with those from the standard run (panel c). As it
appears from contrasting the two plots, the 1D/PR–Z with a single observation still manages to increase the
reflectivity and to produce meaningful humidity increments in most points and gets closer to the observed cross
section. However, further aloft a single–level observation does not have enough influence through vertical
error correlations to substantially change the background field. When the retrieval is applied to a single–level
observations, the 1D–Var relies heavily on the model and on the structure functions to distribute the increments
in the vertical, hence the final temperature and humidity profiles are less reliable than those retrieved using the
full profile of radar reflectivity.

These sensitivity runs support evidence of a good behavior of the 1D/PR–Z. The comparisons with other re-
trievals also offer an indirect proof of robustness of the 1D/PR–Z results.

4. 4D–Var experiments

In this section the results of the assimilation of 1D/PR–Z TCWV into the ECMWF model for selected cases
studies are discussed. The specific humidity profiles analyzed with the 1D–Var were integrated vertically and
the values of TCWV stored in an “observation” file along with its error estimate. This estimate stems naturally
from the 1D–Var formulation. As shown by Rodgers (1976, 2000), the error on the retrieved variables can be
expressed as a combination of the background error covariance matrix and the observation error covariance
matrix weighted by the Jacobians as follows:

A � �B�1 �KT
n ���R

�1Kn����
�1

� (2)

where Kn��� �
�

∂H���
∂�

�
n

represents the Jacobian matrix of the partial derivatives of the simulated reflectivity

with respect to the control variable � and n is the index relative to the last iteration. In a perfectly linear

Technical Memorandum No. 448 7



Experimental use of TRMM Precipitation Radar observations in 1D+4D–Var assimilation

15°S15°S

10°S 10°S

170°E 175°E

0.1

0.5

1

2

3

5

10

20

50

a

15°S15°S

10°S 10°S

170°E 175°E

2

3

5

10

20

50

15°S15°S

10°S 10°S

170°E 175°E

0.1

0.5

1

2

3

5

10

20

50

cb

15°S15°S

10°S 10°S

170°E 175°E

0.1

0.5

1

2

3

5

10

20

50

15°S15°S

10°S 10°S

170°E 175°E

0.1

0.5

1

2

3

5

10

20

50

ed

15°S15°S

10°S 10°S

170°E 175°E

0.1

0.5

1

2

3

5

10

20

50

15°S15°S

10°S 10°S

170°E 175°E

0.1

0.5

1

2

3

5

10

20

50

gf

Figure 2: Near–surface rainfall rate (mm h�1) for tropical cyclone Zoe at 1200 UTC 26 December 2002: (a) background
field; (b) PATER product; (c) 2A25 product; (d) 1D/TMI–RR retrieval; (e) 1D/PR–RR retrieval; (f) 1D/TMI–TB retrieval;
and (g) 1D/PR–Z retrieval. See text for explanations.
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Figure 3: Vertical cross section of 13.8 GHz unattenuated radar reflectivity (shading, dBZ) and specific humidity incre-
ments (g/kg, positive increments in solid contours, negative increments in dashed contours) for tropical cyclone Zoe at
1200 UTC 26 December 2002: (a) background reflectivity; (b) 2A25 PR observations; (c) 1D–Var reflectivity all levels,
25% error on observations; (d) 1D–Var reflectivity all levels, 50% error on observations; and (e) 1D–Var reflectivity one
level, 25% error on observation. See text for explanations.
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problem, K��� would not change from one iteration to the next since it would not depend on the new state. In
the case of a non–linear observational operator, however, the Jacobians need be recalculated at every iteration.
The error variance of the analyzed TCWV, σa, is then obtained by integrating the elements of the matrix
A relative to specific humidity for every profile. To save computational time, Marécal and Mahfouf (2000)
computed a fit to σa using a second–order polynomial function of the TCWV. In this study, we decided to use
equation (2) which is deemed to be more accurate for the error calculation and not excessively expensive in
the current 1D–Var parallel configuration. The values are on average comparable with those obtained with the
Marécal and Mahfouf (2000) formulation.

a. Experiment set–up

A few of the 1D/PR–Z cases were selected to be tested in the 4D–Var. The configuration is the same for all
experiments and uses the T511L60 ECMWF (40 km resolution, 60 vertical levels) model set–up (CY25R4) with
12 hour assimilation window. The 1D/PR–Z TCWV values available within three hours from the assimilation
time (1200UTC or 000UTC, depending on the case) are all ingested at this time. Only one 4D–Var cycle is
performed and a 10–day forecast is then run from the resulting analysis.

1D/PR–Z TCWV values are only assimilated in the proximity of the tropical cyclone in consideration. Hence,
the number of TCWV pseudo-observations entering the 4D–Var is of the order of one hundred per case study.
If compared with the number of points from a corresponding 1D/TMI–TB retrieval which is five times larger,
the former appears negligible. One would expect almost no impact in the 4D–Var from the inclusion of this
data. This is certainly true on a global scale, but if one focus on the forecast of a specific cyclonic event, then
the effect of even few points can be significant, especially in data–void oceanic regions.

b. Results

The case of tropical cyclone Zoe is discussed in detail. For the other cases only the comparison of the track
forecasts with observations is shown.

Figures 4–7 presents the comparison between a control run (hereafter, “control”) and an experiment in which
the 1D/PR–Z TCWV pseudo–observations for cyclone Zoe were assimilated into the 4D–Var system (hereafter,
simply “experiment”). To quantify the impact of these pseudo–observations, the following fields are analyzed:
TCWV, temperature at 850 hPa, surface winds, mean sea level pressure (hereafter, MSLP), surface precipitation
and surface convective precipitation. Figure 4 shows the TCWV differences between the experiment and the
control at analysis time (1200UTC) and at forecast time +48h. The impact of the observations is evident in
the analysis as well as in the 48h forecast, indicating that the TCWV increments are not “rained out” even
if there is an increase in precipitation as shown in Fig. 6. Differences in TCWV can be as large as 10–15
kg m�2 and are mostly positive at the analysis time indicating a general moistening in the model as a direct
consequence of the introduction of the 1D/PR–Z TCWV pseudo–observations. However the 48h forecast shows
both areas of positive and negative increments, indicating a general redistribution in the atmospheric moisture.
The temperature differences at analysis time are not as dramatic and do not exceed �3 K. However, these
temperature changes can trigger precipitation formation in moist areas. The impact on the dynamical fields is
small at the analysis time as shown in Fig. 5a. Since specific humidity errors contained in the B matrix are
assumed to be univariate, the only way TCWV observations can influence the dynamical fields in the analysis
is through the time integration over the twelve–hour 4D–Var assimilation window. In the forecast, in fact, the
pressure field is largely modified in response to the different storm evolution as shown in Fig. 5b. The MSLP
increments show a dipolar structure. In particular, an area of lower pressure (negative departures) is created
on the east side of the storm, and a corresponding area of higher pressure (positive increments) is created on
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the west side, indicating a shift in the storm position. This point will be further discussed when comparing
the track forecast with observations. A similar impact is also seen in the wind field. Initially, there is little
difference between the experiment and the control surface winds; as time goes by, however, the effect of the
added moisture and the different precipitation pattern induces a dynamical response in the model such as to
move the storm from its original location closer to the actual location as indicated by the PR observations.

Figure 6 shows the impact of the assimilation of 1D/PR–Z TCWV pseudo–observations on the precipitation
field as differences between the near–surface rainfall in the experiment and in the control. The 12–hour forecast
shows an overall increase in surface rainfall in excess of 10 mm h�1 mostly due to an increase in stratiform
precipitation. Panels (b) and (c) of the same figure show the difference between the 24h minus the 12h forecast,
and the 48h minus the 36h forecast. Both forecasts show higher values of precipitation in the experiment than
in the control, and the difference is as pronounced as in the initial 12–hour forecast, although the location of
the maximum has changed with the cyclone evolution. Panels (d) through (f) show the contribution to the
precipitation differences deriving from the convection. For this cyclone, it appears that the main contributor
to the total precipitation is the stratiform component, although the convective precipitation is higher in the
experiment than in the control.

As further verification of the instantaneous precipitation in the forecast, the reflectivity derived from the experi-
ment with the 1D/PR–Z TCWV pseudo–observations and that derived from the control were compared against
TRMM/PR observations of tropical cyclone Zoe on December 28 at 400 UTC. These observations were not
used in the assimilation and can be used to evaluate the two 40h forecasts started from the analyses at 1200UTC
on December 26. We can see from Fig. 7 that the reflectivity field from the experiment is slightly closer to
the PR observations particularly in the north–west and in the south–east part of the storm indicating a positive
impact of the TCWV data on the medium–range forecast.

c. Track forecasts

An evaluation of the skills of the 4D–Var with 1D/PR–Z TCWV data is obtained by comparing the forecast track
with observed track data (courtesy of the National Hurricane Center of the National Oceanic and Atmospheric
Administration). The model tracking algorithm locates the cyclone by determining the position of the minimum
MSLP and maximum vorticity via a recursive search mechanism (van der Grijn, 2002). Since the 4D–Var
takes into account the temporal evolution of any variable within the assimilation window a modification of
the humidity field due to the assimilation of the TCWV data will induce a dynamical response in the model.
An initialization that takes into account the extra moisture or that has better knowledge of the position of the
cyclone at the analysis time is expected to generate a better forecast of the cyclone itself in terms of both
location and intensity.

Figure 8a shows a comparison of the observed track for tropical cyclone Zoe with the forecast track from the
control run and from three 1D+4D–Var experiments where 1D/PR–Z, 1D/TMI–RR and 1D/TMI–TB data have
been respectively assimilated in the analysis. The numbers correspond to forecast times. Besides considerations
regarding forecast skills after 48 hours, which are beyond the scope of this paper, the assimilation of TCWV
generally improves on the initial positioning of the cyclone and provides a better forecast of the location of the
storm, confirming what observed in the structure of the MSLP increments (ref. Fig. 5). The experiment which
provides the best track forecast is the 1D/TMI–TB. However, the 1D/PR–Z track is closer to the observations
than the control run track and the improvement is comparable to that derived from the 1D/TMI–RR experiment.
Considering the lower number of TCWV values that are ingested in the 1D/PR–Z 4D–Var experiment, this
shows that PR data have a good potential for analysis and forecast improvement, at least for this case–study.

A comparison was also made between the track forecast resulting from the assimilation of the 1D/PR–Z TCWV

Technical Memorandum No. 448 11



Experimental use of TRMM Precipitation Radar observations in 1D+4D–Var assimilation

0.
5

18°S18°S

16°S 16°S

14°S14°S

12°S 12°S

10°S10°S

8°S 8°S

6°S6°S

166°E

166°E 168°E

168°E 170°E

170°E 172°E

172°E 174°E

174°E 176°E

176°E 178°E

178°EAnalysis Time: 2002-12-26 12:00:00
tcwv and t850 diff (kg/m2 and K):  edns - ef9z

kg/m2

0.5

1

3

5

10

20
-20

-10

-5

-3

-1

-0.5
a

-1

-1

-1

-0.5

-0.5

-0
.5

-0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

18°S18°S

16°S 16°S

14°S14°S

12°S 12°S

10°S10°S

8°S 8°S

6°S6°S

166°E

166°E 168°E

168°E 170°E

170°E 172°E

172°E 174°E

174°E 176°E

176°E 178°E

178°EFC Base: 2002-12-26 12:00:00  FC Length: +48
tcwv and t850 diff (kg/m2 and K):  edns - ef9z

kg/m2

0.5

1

3

5

10

20
-20

-10

-5

-3

-1

-0.5
b

Figure 4: Differences between 4D–Var experiment and control run for cyclone Zoe on December 26, 2002. Total Column
Water Vapour (kg m�2, negative values in hatches and positive values in black–and–white shading) and Temperature at
850 hPa (K, positive increments in solid black contours and negative increments in dotted black countours): (a) analysis
at 1200UTC using 1D/PR–Z TCWV pseudo–observations; and (b) 48h forecast.
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Figure 6: Differences between 4D–Var experiment and control run for cyclone Zoe on December 26, 2002. Left column
shows total precipitation (mm h�1, negative values in hatches and positive values in black–and–white shading): (a) 12h
forecast from the analysis at 1200UTC; (b) 24h minus 12h forecast; and (c) 48h minus 36h forecast. Right column
shows the convective precipitation (mm h�1, negative values in hatched shading and positive values in black–and–white
shading): (d) same as in (a); (e) same as in (b); and (f) same as in (c). MSLP is also shown for reference in all panels
(hPa, black contours).
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Figure 7: Near–surface unattenuated radar reflectivity (dBZ) for tropical cyclone Zoe at 400 UTC on 28 December 2002:
(a) 2A25 PR observations; (b) 40h forecast started from the analysis on December 26 at 1200 UTC for the experiment
with 1D/PR–Z TCWV pseudo–observations; and (c) 40h forecast started from the analysis on December 26 at 1200 UTC
the control experiment.
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and that from the assimilation of the 1D/PR–RR TCWV. Results shown in Fig. 9 indicate a slightly better
performance of the experiment with 1D/PR–Z TCWV data, except between 12 and 24 hours.

Finally, Fig. 9 shows the comparison between the track forecast from a control run and the experiment with
1D/PR–Z TCWV data for tropical cyclones Gerry (55–80E/30–20S, February 13, 2003) and Kalunde (55–
75E/25–15S, March 10, 2003). In both cases, despite the time lag between the forecasts and the observations
(the cyclone in the forecast moves at a lower speed and there are differences in the trajectory), the run with the
PR–derived TCWV produces tracks which are closer to the observed tracks.

d. Discussion of the 4D–Var results

The results from the 1D+4D–Var experiments prove that precipitation radar data contain information on mois-
ture field which information can be extracted through a 1D–Var procedure and assimilated as TCWV pseudo–
observations into the 4D–Var system to provide better initial conditions and better forecast of selected case stud-
ies. Results depend crucially on the PR sampling a core portion of the tropical cyclone and on the model pro-
viding initial background fields close to the observations. Limitations apply to cases in which the observation–
background departures are so large that the increments implied by the 1D–Var, and hence the 1D/PR–Z TCWV
observations, are too far removed from the background. In these cases the incremental system, which is based
on the assumption of small departures from the model background trajectory, cannot handle the observations.
This is a general prerequisite for the assimilation of any type of data and it is not specific to the PR reflectivities.

In three out of the four cases studied, the assimilation of 1D/PR–Z TCWV had a positive impact on the forecast
of precipitation and storm location. The TCWV increments were also retained in the medium–range forecast
thanks to the model propagating in time the information on the state variables derived from the observations
and contained in the analysis.

5. CloudSat-type conceptual experiments

In this section an experiment that was carried out to show the potential of spaceborne active sensors which do
not operate in a scanning configuration but rather have a fixed angle of viewing (generally nadir) is discussed.
Although aware of the obvious differences between a precipitation radar and a cloud radar, to fix ideas it was
useful to think of the CloudSat configuration with a nadir–looking radar sampling a small portion of the cyclone.
The 2A25 PR reflectivities for cyclone Zoe were sampled and averaged only when the scanning angle was close
to the nadir. With this screening the number of TCWV values available after the 1D/PR–Z was reduced from
one hundred to eight points along the satellite track. One might think that this small number of points would
have no impact on the cyclone forecast. However, since the TRMM overpass was sampling a meaningful
portion of the cyclone, even with this reduced data–set it was possible to see a small positive impact after the
assimilation of 1D/PR–Z TCWV.

To ensure that this result was not just coincidental, a second assimilation experiment was performed using
opposite increments to those retrieved by the 1D/PR–Z to compute the pseudo–observations of TCWV. In other
words, whenever the 1D/PR–Z had given a positive specific humidity increment with respect to the background,
this was changed to a negative increment of the same magnitude with a resulting analyzed TCWV which was
lower than the background (drying); viceversa for negative 1D/PR–Z specific humidity increments, the resulting
analyzed TCWV was higher than the background (moistening). The rationale for this notional experiment was
to show that as long as the pseudo–observations of TCWV are realistic, the 4D–Var analysis and forecasts are
improved. However, if the TCWV values are prescribed to have opposite tendencies than what was retrieved,
then the forecast resulting from the assimilation of such data becomes worse than both the control run and the

16 Technical Memorandum No. 448



Experimental use of TRMM Precipitation Radar observations in 1D+4D–Var assimilation

168E 170E 172E 174E 176E

168E 170E 172E 174E 176E

18S

16S

14S

12S

10S

18S

16S

14S

12S

10S

  0
  6

 12
 18

 24

 36
 48

 60

 72

 84

 96

108

OBS
CONTROL
1D/PR reflectivity
1D/TMI RR
1D/TMI Tb

168E 170E 172E 174E 176E

168E 170E 172E 174E 176E

18S

16S

14S

12S

10S

18S

16S

14S

12S

10S

  0
  6

 12
 18

 24

 36
 48

 60

 72

 84

 96

108

OBS
CONTROL
1D/PR reflectivity
1D/PR rain

ba

Figure 8: Comparison of forecast tracks with observed track of tropical cyclone Zoe on December 26, 2002: (a) obser-
vations (solid line), control run (dotted line), 1D+4D–Var assimilation with 1D/PR–Z TCWV (dashed line), 1D+4D–Var
assimilation with 1D/TMI–RR TCWV (dash–dotted line), and 1D+4D–Var assimilation with 1D/TMI–TB TCWV (dash–
three dotted line); (b) same as in (a) but for observations (solid line), control run (dotted line), 1D+4D–Var assimilation
with 1D/PR–Z TCWV (dashed line) and 1D+4D–Var assimilation with 1D/PR–RR TCWV data (dash–dotted line). Num-
bers indicate forecast time in hours.
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Figure 9: Comparison of forecast tracks with observed tracks. (a) Tropical cyclone Gerry (analysis time 1200UTC,
February 13, 2003): observations (solid line), control run (dotted line), 1D+4D–Var assimilation with 1D/PR–Z TCWV
(dashed line); and (b) same as (a) but for tropical cyclone Kalunde (analysis time 000UTC, March 10, 2003).
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experiment with the “real” 1D/PR–Z TCWV data. Results from this conceptual experiment are shown in Fig.
10a. The experiment was partially successful in the sense that the track forecast resulting from the assimilation
of the “real” 1D/PR–Z TCWV performs better than the control and the “false” 1D/PR–Z experiment in the
first 48 hours. Afterwards, however it is the latter which produces a better track. At most short–term forecast
times it is possible to see that the run with “false” 1D/PR–Z TCWV data is the furthest from the observed track
whereas the opposite is true for the run with the “real” 1D/PR–Z TCWV data. The control run track places in
between the two.

As a further verification of the hypothesis, the same conceptual experiment with tropical cyclone Gerry was
repeated. Only nadir points (seven in total) were used in the assimilation. Results are shown in panel (b) of
Fig. 10. It can be noticed that in this case the impact of the “real” 1D/PR–Z TCWV pseudo–observations
is negligible, and actually slightly negative, at the beginning of the forecast. However, between 36 and 48
hours the forecast tracks from the 1D/PR–Z TCWV experiments is closer than the control run to the observed
track. The forecast from the experiment with “false” 1D/PR–Z TCWV data has as well a negative impact at the
beginning of the forecast and follows the operational forecast afterwards.

The main conclusion is that even a low number of observations in a data–void area can have a positive impact
in the forecast of a specific case provided that the observations contain significant information relative to the
meteorological situation of interest.
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Figure 10: Comparison of forecast tracks with observed tracks. (a) Tropical cyclone Zoe (analysis time 1200UTC,
December 26, 2002): observations (solid line), control run (dotted line), 1D+4D–Var assimilation with 1D/PR–Z TCWV
(dashed line), 1D+4D–Var assimilation with 1D/PR–Z TCWV nadir–only with opposite increments (dash–dotted line);
and (b) same as (a) but for tropical cyclone Gerry (analysis time 1200UTC, February 13, 2003). See text for explanations.

6. Summary and conclusions

This paper presented results from exploratory studies to assess the potential of reflectivity data from the Pre-
cipitation Radar onboard TRMM. This is the first time to our best knowledge that this type of data are used for
assimilation. The approach to the assimilation follows that ofMoreau et al. (2003b) and Marécal and Mahfouf
(2002): a 1D–Var retrieval is first performed to retrieve temperature and specific humidity increments with
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respect to the model first guess. Specific humidity increments are then vertically integrated to obtain Total
Column Water Vapour values that can be introduced into the 4D–Var system as “pseudo–observations”.

The results from the 1D/PR–Z were verified against other retrieval methods that share the same physical param-
eterizations but make use of different observational operators and use independent observations. The rainfall
produced using 1D/PR–Z analyzed profiles of specific humidity and temperature compare well with both the
PATER and the 2A25 products. Another point of strength of the 1D/PR–Z retrieval is that it can be applied over
land, where most passive microwave retrievals suffer from uncertainties in the specification of the surface emis-
sivity. Some sensitivity runs were performed to further evaluate the performance of the 1D/PR–Z. The use of a
full vertical profile versus a single–level observation is beneficial in distributing the temperature and humidity
increments to better match the observed reflectivity cross sections. The assumptions on the observational error,
albeit important, do not affect the results dramatically. While research to better quantify both observation and
forward model error is still ongoing, the 1D/PR–Z results appear to be robust to changes in the magnitude of
those errors.

The impact of the assimilation of 1D/PR–Z TCWV data in 4D–Var is positive for most of the case studies
that have been investigated. The increments in moisture at the analysis time are propagated to the forecast and
converted into substantial changes of the dynamics. This is reflected in better track forecasts for the tropical
cyclones under scrutiny when comparing the observed track to a control run and to the experiments where
the 1D/PR–Z data were assimilated. Though limited in number, 1D/PR–Z TCWV data can be as effective as
TCWV values derived from an instrument such TMI which samples a much wider swath.

Although 1D+4D–Var assimilation of radar reflectivities has so far been successfully tried on selected case
studies, there is no obvious obstacle to experiment with a cycling of the analysis, mimicking the operational
context, provided that model biases are quantified and corrected to ensure a correct behavior of the assimilation.
To better exploit the vertical information deriving from the PR reflectivities, research is currently being done on
how to include the full profiles of specific humidity and temperature retrieved by the 1D–Var into the 4D–Var
system. Operational assimilation of satellite radar data could become a reality with the future missions (i.e.,
GPM) that will provide more frequent global measurements.
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