
Simulation and Prediction of the MJO with the NCEP models 

Wanqiu Wang, Suranjana Saha*, and Hua-Lu Pan* 

SAIC at National Centers for Environmental Prediction, Camp Springs, Maryland 
*Environmental Modeling Center, National Centers for Environmental Prediction, 

Camp Springs, Maryland 

Abstract 

This study investigates the impact of the air-sea interaction on the simulation and prediction of the Madden-Julian 
Oscillation (MJO) by the National Centers for Environmental Prediction atmospheric Global Forecast System model 
(GFS03) and Coupled atmosphere-ocean Forecast System model (CFS03). Comparison between simulations by GFS03 
and CFS03 indicates that the coupling improves the coherence between convection and circulation and the organization 
of eastward-propagating anomalies. The MJO simulated by CFS03 is greatly strengthened compared with that by 
GFS03, and is too strong and a little too slow compared with that observed. The forecast experiments with GFS03 and 
CFS03 suggest that air-sea coupling is necessary for MJO forecast beyond two weeks. Forecast MJO activities after 
two-week integrations with GFS03 become very week, while CFS03 maintains eastward-propagating strong anomalies 
throughout forecast integrations of 30 days. 

1. Introduction 
Since the discovery of the tropical Madden-Julian Oscillation (MJO) three decades ago (Madden and Julian, 
1971; Madden and Julian, 1972), most of the studies on the MJO have considered it a result of internal 
atmospheric dynamics involving the interaction between the convection and large-scale circulation. While 
some characteristics of the MJO can indeed be simulated by atmospheric models with prescribed sea surface 
temperatures (e.g., Hayashi and Golder, 1986; Wang and Schlesinger, 1999), a few recent studies suggest 
that air-sea coupling may be another important process in the MJO dynamics. Flatau et al. (1997) and 
Hendon and Glick (1997) showed observational evidence that there is a significant relationship among the 
convection, SSTs, latent heat flux, and insolation, with positive SST anomalies to the east of convective heat 
source due to reduced evaporation and/or increased insolation, and with negative SST anomalies under and 
to the west of the convective heat source due to enhanced evaporation and/or reduced solar flux. A few 
modeling studies have indicated that the inclusion of the air-sea interaction improves the simulation of 
several aspects of the MJO, including the seasonality, coherence between circulation and convection, and 
propagation (Waliser et al., 1999; Iness and Slingo, 2003; Kemball-Cook et al., 2003). 

One aspect of the studies on the MJO is its predictability and its role in the forecast of the extratropical 
fluctuations. Ferranti et al. (1990) demonstrated that the extended-range weather forecasts by the European 
Center for Medium-Range Forecasts (ECMWF) model would be significantly improved if the MJO activities 
in the tropics had been realistically captured by the modal. The prediction of the MJO itself, however, has 
not been successful. Lau and Chang (1992) showed that forecast of eastward propagation intraseasonal mode 
by previous versions of the National Centers for Environmental Prediction (NCEP) Medium-Range Forecast 
model (MRF86 and MRF87) were skillful only for the first 10-day forecast period. Hendon et al. (2000) and 
Jones et al. (2000) found that the more recent reanalysis version (Kalnay et al., 1996) of the NCEP MRF 
model was not capable of capturing the observed strong MJO activities in the tropics. It is not clear what are 
the causes of the failure of the MJO forecast in these studies. One of the possible reasons is that the 
atmospheric dynamics of the MJO were not well represented in the atmospheric model, as implied in the 
study of Jones et al. (2000) who showed that a ten-year run with the atmospheric model used in their MJO 
forecast did not reproduce the observed MJO with reasonable amplitude and phase speed. Another reason is 
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that certain physical processes, for example, the air-sea-interaction, were not included in the forecast models. 
If SSTs are not import, the forecast would not be sensitive to the treatment of the ocean surface. If the air-sea 
interaction is an important process, a coupled atmosphere-ocean model would be necessary for a realistic 
forecast of the MJO. 

A new global coupled atmosphere-ocean forecast system model (CFS03) has recently been developed at the 
National Centers for Environmental Prediction (NCEP). It consists of the latest version of the NCEP 
atmospheric Global Forecast System model (GFS03) and the Geophysical Fluid Dynamics Laboratory 
(GFDL) Modular Ocean Model V.3 (MOM3). In this study, we investigate the role of the air-sea interaction 
on the simulation and prediction of the MJO using CFS03 and GFS03. We will first examine results from 
two twenty-one-year runs: one by the uncoupled atmospheric model (GFS03) with prescribed SSTs and the 
other by the coupled atmosphere-ocean model (CFS03). Comparison between these two runs indicates that 
the coupling improves the coherence between convective heating and large-scale circulation, and enhances 
the amplitude of the simulated MJO. We will then explore the influence of the inclusion of an interactive 
ocean on the forecast of the MJO by comparing the performance of 30-day forecast by CFS03 and GFS03 
for the boreal cold seasons of 2000/2001 and 2002/2003. We have found that the inclusion of an interactive 
ocean helps maintain the strength of the eastward propagating anomalies associated with the MJO. 

2. The models and observational data 
The atmospheric model used in this study is the current version of the NCEP Global Forecast System model 
(GFS03). It adopts a spectral truncation of 62 waves (T62) in the horizontal (equivalent to nearly a 200-km 
grid) and a finite differencing in the vertical with 64 sigma layers. The top of the model atmosphere is at 0.2 
hPa. GFS03 was modified from the version of the NCEP model used for the NCEP/NCAR Reanalysis 
(Kalnay et al, 1996) with upgrades in the physics of solar radiation (Hou, 1996), boundary layer vertical 
diffusion (Hong and Pan, 1996), cumulus convection (Hong and Pan, 1998), gravity wave drag (Kim and 
Arakawa, 1995), and cloud water/ice (Zhao and Carr, 1997). 

The coupled model (CFS03) consists of GFS03 and the GFDL Modular Ocean Model V.3 (MOM3) 
(Pacanowski and Griffies, 1998). MOM3 is a finite difference version of the ocean primitive equations under 
the assumption of the Boussinesq and hydrostatic approximations. It uses spherical coordinates in the 
horizontal with a staggered Arakawa B grid and the z-coordinate in the vertical. The ocean surface boundary 
is computed as an explicit free surface. The domain is quasi-global extending from 74°S to 64°N. The zonal 
resolution is 1°. The meridional resolution is 1/3° between 10°S and 10°N, gradually increasing through the 
tropics until becoming fixed at 1° poleward of 30°S and 30°N. There are 40 layers in the vertical with 27 
layers in the upper 400 m and the bottom depth is around 4.5 km. The vertical resolution is 10 m from the 
surface to the 240-m depth, gradually increasing to about 511 m in the bottom layer. Vertical mixing follows 
the non-local K-profile parameterization of Large et al. (1994). The horizontal mixing of tracers uses the 
isoneutral method pioneered by Gent and McWilliams (1990) (see also Griffies et al., 1998). The horizontal 
mixing of momentum uses the nonlinear scheme of Smagorinsky (1963). 

In CFS03, the atmospheric and oceanic components are coupled without any flux adjustment. The two 
components exchange daily averaged quantities once a day. Because of the difference in latitudinal domain, 
full interaction between GFS03 and MOM3 is confined to 65°S to 50°N. Poleward of 74°S and 64°N, the 
SSTs are taken from observed climatology. Between 74°S and 65°S, and between 64°N and 50°N, SSTs are 
weighted average of the observed climatology and MOM3 with the weight linearly varying with latitude, 
such that the SSTs at 74°S and 64°N equal observed climatology and at 65°S to 50°N the SST’s equal values 
from MOM3. Sea ice extent is prescribed from the observed climatology. CFS03 has been found to 
reproduce a realistic climatology of SSTs in the tropics with the amplitude of mean errors being generally 
less than 1 K. 
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For evaluation of the performance of CFS03 and GFS03, simulations and forecast by the models will be 
compared with the NCEP/DOE Reanalysis-2 (R2) (Kanamitsu et al., 2002) and the Climate Prediction 
Center merged analysis of precipitation (CMAP) (Xie and Arkin, 1997). 

3. The MJO simulated by GFS03 and CFS03 
In this section we present the impact of the inclusion of the air-sea interaction on the simulated MJO by 
comparing two runs: one run is a 21-year simulation with GFS03 using prescribed monthly mean SSTs of 
1982-2002 and the other is a 21-year free run with CFS03. For comparison with the models, R2 and CMAP 
for 1982-2002 will be used. We will first look at the wavenumber-frequency power spectra of tropical 850 
hPa zonal velocity. We will then examine the leading combined patterns of the tropical intraseasonal 
variability of precipitation, 850 hPa zonal velocity, and 200 hPa zonal velocity, and the temporal evolution of 
the associated fields. 

3.1. Power spectra of tropical 850 hPa zonal velocity 

Fig. 1 shows wavenumber-frequency power spectra of 10°S-10°N mean 850 hPa zonal velocity (u850). 
Seasonal cycle defined as the sum of the annual-mean and first 3 harmonics of the long-term daily 
climatology has been removed before the calculation of the spectra. The spectra from R2 (Fig. 1a) are 
characterized by an eastward-propagating wavenumber-1 peak around the period of 50 days. GFS03 
simulated large eastward-propagating wavenumber-1 variance throughout the intraseasonal period range of 
  

 
Figure 1: Wavenumber-frequency spectra of 10S-10N mean 850hPa zonal velocity (m2s-2day) from (a) 
R2, (b) GFS03, and (c) CFS03. Contours are plotted at 5, 10, 20, 30, 40, 50, 60, and 70. Values greater 
than 20 are shaded. 
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20-100 days with a peak near 60-day period and another peak near 90-day period (Fig. 1b). Compared with 
GFS03, the variance in coupled run with CFS03 (Fig 1c) is substantially enhanced with a strong peak near 
66-day period. The amplitude of the spectra from CFS03 simulation is about twice as large as that from R2, 
indicating that the intraseasonal anomalies in CFS03 simulation are about 40 percent stronger than that in 
R2. 

3.2. EOF modes of combined fields 

Emperical Orthogonal Functions (EOFs) of combined fields of 10-100-day filtered 10°S-10°N average of 
850 hPa zonal velocity (u850), 200 hPa zonal velocity (u200), and precipitation are calculated to identify the 
MJO. The EOF calculation has been done only for November 1 to March 31 to focus on the eastward 
propagating modes. For the analyses, u850 and u200 were taken from R2 and precipitation was taken from 
CMAP. In EOF1 from R2/CMAP (Fig. 2a), strong convective heating source and sink are seen in the Indian 
Ocean (60°E to 90°E) and in western Pacific near the date line. The convective heat source in the Indian 
Ocean approximately corresponds to convergent flow in the lower troposphere and divergent flow in the 
upper troposphere. EOF2 from R2/CMAP (Fig. 2b) is dominated by a strong convective heat source in the 
maritime continents and western Pacific (90°E-180°E), and the consistent convergent flow in the lower 
troposphere and divergent flow in the upper troposphere. 

 
Figure 2: Patterns of Combined empirical orthogonal functions (EOFs) of 10-100 day filtered 
precipitation, 850hPa zonal velocity (u850), and 200hPa zonal velocity (u200). (a) EOF1 from R2, (b) 
EOF2 from R2, (c) EOF1 from GFS03, (d) EOF2 from GFS03, (e) EOF1 from CFS03, and (f) EOF2 
from CFS03. Thick solid curves are precipitation, thin solid curves are u850, and thin dashed curved are 
u200. The percentage value above each panel is the variance explained by each mode. 
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GFS03 reproduced the observed heating source in the Indian-Ocean in EOF1 and the heating source over 
maritime continents and western Pacific in EOF2, but with much weaker amplitude (Figs. 2c and 2d). The 
Indian-Ocean convective heating source in EOF1 in CFS03 run (Fig. 2e) was stronger than that in GFS03 
run, but was located to the west of the observed. CFS03 simulated a realistic heating source over the 
maritime continents and western Pacific (90°E-180°E) in EOF2 (Fig. 2f). Overall, the coupling of the 
atmospheric component (GFS03) to MOM3 in CFS03 improves the coherence between the convective 
activities and large-scale circulation. 

3.3. Propagation and relationship among associated fields 

To examine the propagation and the relationship among different fields, we calculated lag correlation 
between principal component of EOF1 (PC1) and individual fields. The lag correlation between principal 
component of EOF2 (PC2) and individual fields reveals similar features except that the entire patterns are 
shifted eastward, and will not be shown. 

A consistent eastward propagation is seen in u850 and precipitation from the analyses (Figs. 3a and 3d). The 
analysis also shows that surface shortwave radiation flux anomalies (SW) are positive to the east of positive 
precipitation anomalies (Fig. 3g). Latent heat flux (LH) (Fig. 3j) is also found to propagate eastward with 
largest amplitude located in the western Pacific (110°E-170°E). The evolution of SST (Fig. 3m) also appears 
to propagate eastward coherently. These features are qualitatively consistent with the conceptual model 
proposed by Flatau et al. (1997). 

Both GFS03 and CFS03 simulated the eastward propagating feature in u850, precipitation and SW, but the 
coherence between the circulation field (u850), precipitation and SW, and the organization of the eastward 
propagation appear to be improved in CFS03 compared with those in GFS03 (Figs. 3b, 3c, 3e, 3f, 3h, and 
3i). The eastward propagation of LH in the simulation by CFS03 (Fig. 3l) does not appear to be as realistic as 
that by GFS03 (Fig. 3k). While GFS03 captured the large amplitude in LH over the western Pacific (Fig. 3k), 
CFS03 did not reproduce a correlation of any appreciable amplitude between 130°E and 180°E (Fig. 3l) as 
found in R2 (Fig. 3j). As discussed in Inness and Slingo (2003), the mean surface wind is important in 
determining the LH anomalies. If the mean surface wind is the major factor controlling the distribution of 
LH, the positive LH correlation (between 130°E and 180°E) to the east of the convection in R2 and GFS03 
(Figs. 3j and 3k) should correspond to mean westerlies in the western Pacific. The inconsistent LH in CFS03 
with that in R2 may be due to errors in the time mean of surface wind. To explore this possibility, we 
calculated the climatology of 1000 hPa zonal velocity. As shown in Fig. 4, mean westerlies are found in the 
western Pacific between the equator and 10°S in both R2 and GFS03 (Figs. 4a and 4b), while CFS03 
simulated weak easterlies in this area. This suggests that the weak correlation near zero time-lag in the 
western Pacific in CFS03 simulation (Fig. 3l) is related to the errors in mean surface wind. 
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Figure 3: Lag correlation between EOF1 principal component (PC1) and (a) 850 hPa zonal velocity 
(u850) from R2, (b) u850 from GFS03, (c) u850 from CFS03, (d) precipitation from CMAP, (e) 
precipitation from GFS03, (f) precipitation from CFS03, (g) surface net down ward solar radiation (SW) 
from R2, (h) SW from GFS03, (i) SW from CFS03, (j) surface downward latent heat flux (LH) from R2, 
(k) LH from GFS03, (l) LH from CFS03, (m) SST used in R2, (n) SST used in GFS03, and (o) SST from 
CFS03. SW, LH, and SST are plotted only for ocean surface. Positive values are shaded. 
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Figure 4: November-March time-mean 1000hPa zonal velocity (m/s). (a) R2, (b) GFS03, and (c) CFS03. 
Contours are plotted at –8, -6, -4, -2, -1, 0, 1, 2, 4, 6, and 8. Positive values are shaded. 

CFS03 simulated the eastward propagating feature in SST as in the observation (Figs. 3m and 3o), although 
some differences in details exist between CFS03 and R2. One surprising feature in Fig 3 is that even the SST 
field in GFS03 simulation shows an eastward propagation feature (Fig. 3n), indicating that at least part of the 
intraseasonal variability associated with EOF1 is model’s response to the prescribed SST anomalies. A 21-
year run was made with GFS03 using climatological SSTs to further test this. Wavenumber-frequency 
spectra of u850 from this run are shown in Fig. 5. It is noticed that the peak near 90-day period in GFS03 run 
with observed monthly-mean SSTs (Fig. 1b) does not appear in Fig.5. The lag correlation between PC1 and 
u850, precipitation, SW, and LH shows similar features to those in the GFS03 simulation with observed 
monthly SSTs but with faster eastward propagation (not shown). This demonstrates that the intraseasonal 
variability in the simulation with GFS03 with observed monthly-mean SSTs indeed contains response to SST 
anomalies. 

 
Figure 5: As in Fig. 1, except for an uncoupled run with GFS03 using climatological SSTs. 
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4. Forecast experiments of the MJO by GFS03 and CFS03 
While the comparison in the MJO simulation between the uncoupled atmospheric model and the coupled 
atmosphere-ocean model may help understand the role of are-sea coupling, it is also interesting and desirable 
to examine the necessity of the use of an interactive ocean in the forecast of the MJO. In this section we 
compare the results from forecast experiments using GFS03 with that using CFS03. Forecast has been made 
once per day for initial conditions of the 120-day cold season of November 1 to February 28 for 2000/2001, 
2001/2002, and 2002/2003. In this preliminary study, we will only diagnose the forecast for strong eastward-
propagating MJO events. The events are selected based on the amplitude of principal components (PC1 and 
PC2) of the two leading modes of the combined EOFs of 10°S-10°N mean u850, u200, and precipitation, and 
based on the coherence of PC1 and PC2. An event is selected if its amplitude of PC1 and PC2 is greater than 
1 standard deviation and if the lag between PC2 peak and PC1 peak is between 8 and 17 days. Four events 
are found to satisfy these criteria: two are in the cold season of 2000/2001, and the other two in the cold 
season of 2002/2003. The time series of PC1 and PC2 are shown in Fig. 6 and the dates of PC1 and PC2 
peak values are listed in Table 1. 

PC1 peak PC2 peak 

19 November 2000 29 November 20000 

25 January 2001 10 February 2001 

12 November 2002 23 November 2002 

24 December 2002 1 January 2003 

Table 1 Dates of peak values of PC1 and PC2 in the seasons of November 1 to February 28 of 
2000/2001, and 2002/2003 

 
Figure 6: Principal components of EOF1 (PC1, solid curves) and EOF2 (PC2, dashed curves) for 
November 1 to March 31 of (a) 2000/2001 and (b) 2002/2003. 

Four forecast experiments have been made (Table 2) to examine the impact of the treatment of the ocean 
surface. The first experiment (DAMP) was made with GFS03 using damped initial SST anomalies with an e-
folding time scale of 90 days. The second experiment (CLIM) was conducted with climatological SSTs. The 
third experiment (AMIP) was carried out with GFS03 using weekly optimum interpolation (OI) SSTs 
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analysis of Reynolds et al. (2002). The fourth experiment (COUP) was performed with CFS03 using realistic 
oceanic initial condition from the NCEP global oceanic data assimilation system (Behringer, personal 
communication). 

Experiment Description 

DAMP GFS03 using damped initial SST anomalies 

CLIM GFS03 with climatological SSTs 

AMIP GFS03 with observed weeklt SSTs 

COUP CFS03 with realistic initial oceanic condiction 

Table 2: Forecast experiments 

The forecast will be presented for four initial phases. Phase 2 initial dates correspond to the peaks of PC1 as 
shown in Table 1, representing the mature state of the MJO when strong convection is in the Indian. Phases 3 
initial dates correspond to the peaks of PC2 in Table 1, representing the mature state of the MJO when strong 
convection is over the maritime continents and western Pacific. Phase 1 is ten days prior to phase 2, 
representing the initial stage of MJO events in the Indian Ocean. Phase 4 is ten days after phase 3, 
representing the weakening stage when the convective heat source propagates eastward out of the western 
Pacific. 

Intraseasonal anomalies are defined as the deviation from a parabolic fit to the 120-day time series for each 
lead time from 1 day to 30 days for each cold season. The forecast anomalies have been smoothed by 
averaging the forecast from three adjacent initial dates centered at the specified initial dates of each phase. 
Composite forecast of u850 anomalies starting from the four initial phases is presented in Fig. 7. Forecast 
with damped SSTs (DAMP) and forecast with climatological SSTs (CLIM) maintained strong propagating 
anomalies only for about two weeks (Figs. 7e, 7f, 7g, 7h, 7i, 7j, 7k, and 7l). Forecast with observed SSTs 
(AMIP) sustained the eastward propagating strong anomalies for most of the 30-day forecast periods (Figs. 
7m, 7n, 7o, and 7p), except that the propagating anomalies from phase 2 initial conditions became too weak 
after 20 days (Fig. 7n). Forecast using an interactive ocean (COUP) maintained strong eastward-propagating 
anomalies for the entire 30-day forecast period and for all initial phases (Figs. 7q, 7r, 7s, and 7t), suggesting 
that a coupled model is probably necessary for a satisfactory forecast of MJO activities. Anomalies in the 
COUP forecast from phase 2 initial conditions, however, seem to propagate too slowly (Fig. 7r). 
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Figure 7: Composite 850 hPa zonal velocity (m/s). (a) R2 from phase 1 initial conditions (ICs), (b) R2 
from phase 2 ICs, (c) R2 from phase 3 ICs, (d) R2 from phase 4 ICs, (e) DAMP forecast from phase 1 
ICs, (f) DAMP forecast from phase 2 ICs, (g) DAMP forecast from phase 3 ICs, (h) DAMP forecast from 
phase 4 ICs, (i) CLIM forecast from phase 1 ICs, (j) CLIM forecast from phase 2 ICs, (k) CLIM forecast 
from phase 3 ICs, (l) CLIM forecast from phase 4 ICs, (m) AMIP forecast from phase 1 ICs, (n) AMIP 
forecast from phase 2 ICs, (o) AMIP forecast from phase 3 ICs, (p) AMIP forecast from phase 4 ICs, (q) 
COUP forecast from phase 1 ICs, (r) COUP forecast from phase 2 ICs, (s) COUP forecast from phase 3 
ICs, and (t) COUP forecast from phase 4 ICs. Values are shaded at –2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 
and 2.5. 

SST anomalies in the forecast experiments are shown in Fig. 8. There are some small differences between R2 
(Figs. 8a, 8b, 8c, and 8d) and AMIP forecast (Figs. 8m, 8n, 8o, and 8p). This is because R2 and AMIP 
forecast use different sets of weekly OI SST analysis by Reynolds et al. (2002). R2 uses the real-time 
analysis that was produced daily using available data for the previous seven days. The AMIP forecast 
experiments use daily SSTs linearly interpolated from the OI analysis produced once per week. Although 
some details in the COUP forecast appear to be erroneous, the COUP forecast captured some features in the 
observation. For examples, the COUP forecast reproduced the observed positive anomalies in the western 
Indian Ocean and negative anomalies in the western Pacific in the second half of the forecast period from 
phase 1 initial conditions (Figs. 8a and 8q). The observed cold anomalies in the Indian Ocean during the 
forecast period from phase 2 initial conditions were captured in the COUP forecast (Figs. 8b and 8r). The 
forecast positive SST anomalies after day 16 in the Indian Ocean in the forecast from phase 3 initial 
conditions appear to be real (Fig. 8s). The negative SST anomalies in the western Pacific after day 10 in the 
forecast from phase 3 initial conditions are consistent with the observed but are possibly too strong (Fig. 8s). 
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Figure 8: As in Figure 7, except for SST (K). Values are shaded at –0.3, -0.2, -0.1, 0.1, 0.2, and 0.3. 

5. Summary 
This study investigates the impact of air-sea interaction on the simulation and prediction of the Madden-
Julian Oscillation (MJO) by the NCEP atmospheric Global Forecast System model (GFS03) and Coupled 
Forecast System model (CFS03). Comparison between simulations by GFS03 and CFS03 indicates that the 
coupling improves the coherence between convection and circulation and the organization of eastward-
propagating anomalies. The MJO simulated by CFS03 is greatly strengthened compared with that by GFS03, 
and is too strong and a little too slow compared with the observation. It is not clear why the MJO simulated 
by CFS03 is too strong and propagates too slowly. One possible reason is the coupling fashion between the 
atmosphere and the ocean adopted in the model. In the current CFS03, atmospheric and oceanic components 
are run sequentially with forcing fields being passed from one component to the other after one-day 
integration of each component. In the atmospheric component used in this study, SSTs are updated at the end 
of its one-day integration with daily-mean values passed from the oceanic component. This introduces a 
delay of the effect of SSTs on the atmospheric fields and may help enhance and slow down the MJO, 
according to the study by Woolnough et al. (2001) who showed that the magnitude of the atmospheric fields 
increases with decreasing propagating speed of the SST anomalies. 

The results from CFS03 simulation are consistent with the conceptual model proposed by Flatau et al. (1997) 
except that latent heat flux pattern in CFS03 is not consistent with that in reanalysis, possibly due to that 
CFS03 failed to simulate the mean surface westerly in the western Pacific. The simulation by GFS03 
indicates that the simulated intraseasonal variability with monthly-mean observed SSTs contains response to 
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SST anomalies. To completely exclude direct response to SST anomalies in the intraseasonal time range in 
an uncoupled atmospheric simulation, temporally smoother SSTs should be used. 

The forecast experiments with GFS03 and CFS03 suggest that air-sea coupling is necessary for MJO forecast 
beyond two weeks. Forecast MJO activities after two-week integration with the GFS03 become very week, 
while CFS03 maintains eastward-propagating strong anomalies throughout integrations of 30 days. The 
results of MJO forecast in this study, however, are based only on four events and appear to be noisy. 
Forecast experiments for longer periods are necessary for more statistically significant results. 
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