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1. Introduction 

It is generally agreed that a discretized numerical model should reproduce at least some of the conservation 

properties possessed by the corresponding continuous equations. An obvious example, of importance in long 

integrations, is that the total mass of the atmosphere should be conserved. Similarly, the total mass of a tracer 

such as moisture or a chemical species should be conserved by the purely dynamical (advective) part of the 

model. Although the maintenance of conservation properties may be less important when there are significant 

real sources and sinks, it may be argued that introducing spurious sources and sinks, by failing to respect the 

properties of the underlying dynamical equations, could easily undermine the realism of the simulation. 

At the same time it is worth observing that if the continuous equations conserve a quantity X, then if the 

numerical scheme is accurate it should conserve X reasonably well; while a scheme that conserves X exactly 

but is otherwise inaccurate is not very useful. 

2. Eulerian vs. semi-Lagrangian schemes 

Discussion of conservation properties has become more prominent in recent years as semi-Lagrangian 

schemes have increasingly replaced Eulerian schemes, first for numerical weather prediction models and 

more recently for climate models. In an Eulerian model it is generally straightforward to design the 

discretization so that the total mass of the atmosphere (and that of each tracer quantity) is conserved, simply 

by considering the fluxes through the edges of grid boxes. On the other hand, in a semi-Lagrangian model the 

discretization is designed quite differently, and any formal conservation properties are normally lost. The 

great advantage of semi-Lagrangian integration schemes over their Eulerian counterparts is their 

computational efficiency, which many modellers are unwilling to forgo. It is therefore of interest to try to 

restore conservation properties to semi-Lagrangian schemes, thereby combining the merits of Eulerian and 

semi-Lagrangian models. 

There are basically two approaches to tackle the problem. The first is to apply an “a posteriori fix”, typically 

after each timestep. The second (and more elegant) approach is to modify the semi-Lagrangian scheme so 

that it becomes inherently conserving. We will look at both approaches in this paper, and discuss the 

activities planned in this field at ECMWF. 

 

3. A posteriori fixes 

The idea behind the a posteriori fix is simply to compute the gain or loss of the quantity X, integrated over 

the domain, at the end of the “dynamical” part of each timestep, and then to adjust the new field of X to 

restore conservation. The question then arises as to how and where the adjustments should be made. The 

simplest procedure would be to subtract or add the same amount everywhere in the domain, but a more 

satisfactory approach is to try to make the adjustments in those regions where the preliminary solution is 
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most likely to be in error, typically in regions of large gradient. Priestley (1993) described such a scheme in 

which the local error in the preliminary solution was estimated in terms of the difference between a high-

order (cubic) and low-order (linear) interpolated value at the departure point of each semi-Lagrangian 

trajectory. A similar but somewhat more sophisticated scheme has recently been proposed by Bermejo and 

Conde (2002). Both these schemes are in fact extensions of the quasi-monotone semi-Lagrangian algorithm 

of Bermejo and Staniforth (1992). 

4. Cell-integrated schemes 

The a posteriori fixes described above are clearly somewhat arbitrary, and a more pleasing solution would be 

to design an inherently conserving semi-Lagrangian scheme. Cell-integrated schemes form such a class. The 

underlying idea is the following: instead of finding the departure point corresponding to each arrival 

gridpoint, we find the departure points corresponding to the corners of the cell surrounding each arrival 

gridpoint, thus defining a “departure cell”. The conserved quantity X can then be integrated over the 

departure cell (using some assumed spatial distribution), transported to the arrival cell and “remapped” in 

such a way that the integral is conserved. An early example of such a scheme was that suggested by Ran�i� 
(1992). Laprise and Plante (1995) proposed a variant in which either upstream or downstream trajectories 

could be used. For a different but related approach, see Lin and Rood (1996); also Leonard et al. (1996). Nair 

and Machenhauer (2002) designed a cell-integrated semi-Lagrangian scheme for advection on the sphere. 

The main drawback of cell-integrated schemes is that their complexity (and computational expense) increases 

rapidly as we move up from one dimension, through two dimensions to three-dimensional problems. 

5. Cascade interpolation to the rescue!  

Cascade interpolation was first proposed by Purser and Leslie (1991), not with conservation in mind but 

rather to improve the computational efficiency of semi-Lagrangian schemes. In two dimensions, assuming 

Cartesian geometry (x,y) with a rectangular mesh, the procedure is as follows: 

1. First find the departure points as usual, then use them to construct a “Lagrangian” mesh, denoted 

(X,Y); 

2. Find the points at which the Lagrangian Y-lines intersect the Eulerian x-lines; 

3. Interpolate (one-dimensionally) along the Eulerian x-lines for the values at these intersection points; 

4. Finally, interpolate (one-dimensionally) along the Lagrangian Y-lines for the values at the departure 

points. 

The algorithm can be extended to three dimensions. In general, the multi-dimensional interpolation is 

replaced by a cascade of one-dimensional interpolations, and for high-order interpolation in particular this 

brings about a significant decrease in the computational burden. Moreover it becomes simpler to incorporate 

the ideas from cell-integrated schemes since they can be applied in one dimension at a time to produce a 

conserving cascade interpolation scheme. The first such scheme was proposed by Leslie and Purser (1995).  

Nair et al. (1999a) suggested a slightly simplified and more efficient version of cascade interpolation in 

Cartesian geometry, which they subsequently extended to the sphere (Nair et al., 1999b). Recently, Zerroukat 

et al. (2002) incorporated conservation properties into this version of cascade interpolation in Cartesian 

geometry, and finally (Zerroukat et al., 2004) in spherical geometry. Thus the ingredients are in place to 
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construct global semi-Lagrangian numerical weather prediction and climate models which inherently 

conserve mass and advected tracers. 

6. Some problems 

Cascade interpolation on the sphere is tricky in the vicinity of the poles, since the Lagrangian and Eulerian 

meshes are not guaranteed to intersect in the same straightforward way as in Cartesian geometry. Thus, the 

schemes of Nair et al. (1999b), Nair and Machenhauer (2002) and Zerroukat et al. (2004) all involve a 

certain amount of “engineering” near the poles. 

In the case of the ECMWF model, the use of a “reduced” Gaussian grid (Hortal and Simmons, 1991) poses 

further difficulties since cascade interpolation relies on a “tensor product” grid and it is not obvious how to 

extend it to the reduced grid. 

Conservative cascade interpolation on the sphere requires numerical integration of quantities around lines of 

latitude and longitude, and it thus less “local” than simple interpolation schemes. Implementation on 

distributed memory machines will therefore demand some additional thought about communication between 

processors. 

7. ECMWF plans 

At ECMWF we plan in the near future to explore the incorporation of conservation properties into the 

model’s semi-Lagrangian scheme. It should be instructive to examine diagnostically the lack of conservation 

in the present scheme, and to investigate whether the application of an a posteriori fix makes a significant 

difference to any aspect of the predicted fields. 

In the longer term, it is hoped to incorporate a conservative cascade interpolation scheme into the semi-

Lagrangian time-integration algorithm. If the reduced grid problem proves insurmountable, then it would 

always be possible to revert to a full grid for applications which really demand that conservation properties 

be respected. 
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