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ABSTRACT

We review the spatial discretization procedure for three high-order, unstructured grid methods recently developed for use
within ocean circulation modeling. They are based respectively on spectral finite element and high-order finite volume
formulations. We discuss and contrast the three methods in the context of the shallow water equations.

1 Introduction

Ocean modeling encompasses an enormous range of spatial and temporal scales. One of the great remaining
challenges for ocean modeling will be to bridge the scale gaps between global climate processes, basin-scale
and regional impacts, and (e.g.) ecosystem dynamics on even smaller spatial scales. The geophysical modeling
community is exploring several approaches to multiscale simulations in geometrically complex regions, includ-
ing nested, structured grids; block-structured grids; and unstructured grids. The latter category encompasses
finite element and finite volume methods, and their variants. Though historically less prevalent in ocean mod-
eling, these methods are especially attractive because of the geometric flexibility inherent in their unstructured
grids. Notably, they allow a single grid of varying cell sizes to address the needs of multiscale simulations.

A promising method with which we have been working is the spectral element method. The spectral element
method is an h-p type finite element method designed to combine the geometrical flexibility of traditional
(commonly low-order) finite element methods, and the high-order accuracy normally associated with spectral
methods. The spectral element method offers several attractive properties for geophysical simulations: geo-
metrical flexibility with a spatial discretization based on unstructured grids, high-order convergence rates, and
dense computations at the elemental level leading to extremely good scalability on parallel computers. Spectral
element ocean models based upon the Continuous Galerkin method (hereafter, CGM; see below) have been
developed by the authors, and have been applied in several idealized dynamical settings. See, for example,
Iskandarani et al. (1995), Iskandarani et al. (2003), Curchitser et al. (2001), and Perenne et al. (2000).

Notwithstanding recent progress, a number of computational issues remain unresolved with respect to the ap-
plication of finite element methods to geophysical flows. These include the enforcement of local conservation
properties, the availability of robust advection schemes capable of handling poorly resolved flow features with-
out generating noisy solutions, preservation of water mass properties on decadal and longer time scales, and
grid generation and adaptativity.

One possible approach to the resolution of these issues is the use of the Discontinuous Galerkin Method (DGM)
in conjunction with the spectral finite element discretization. Alternatively, an appropriate high-order spectral
finite volume (SFV) formulation may be devised. We discuss and illustrate these methods below.
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Figure 1: Elemental partition of the global ocean as seen from the eastern and western equatorial Pacific. The inset
shows the master element in the computational plane. The location of the interpolation points is marked with a circle,
and the structuredness of this local grid is evident from the predictable adjacency pattern between collocation points.

2 A brief overview of the methods

In the solution techniques considered here, the computational domain is divided into a finite number of cells
called elements, wherein the solution is approximated with a high-degree polynomial. In the CGM and DGM
discretizations, the equations governing the fluid flow are then enforced by minimizing the residual resulting
from the approximation. This discretization step turns the partial differential equations into coupled sets of
ordinary differential equations that can be integrated in time using a suitable time-integration procedure. This
variational (Galerkin) formulation may be replaced by one based upon finite volume considerations, as we
describe below for the SFV approach.

Figure 1 shows an example of an elemental grid covering the majority of the global ocean. In these methods,
the elements are quadrilaterals. The grid in figure1 was designed with enhanced resolution in the North Pacific
Ocean, and in particular its coastal and equatorial wave guides, essential pathways of El Nino signals. These
regions are tiled with small elements of average size of approximately 100 km. The element size increases away
from the North Pacific Basin. In particular, the North Atlantic and Indian oceans are tiled at reduced resolution.
Thus remote oceanic influences are represented (albeit more crudely) and problems with open boundaries are
avoided.

Inside each element the solution is interpolated on a structured grid (Fig. 1). The interpolation points within
each element are unevenly spaced and cluster towards the boundary of the element. This special choice of
interpolation points serves a dual purpose: eliminating the loss of accuracy that occurs near the edges when
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high-order polynomial interpolation is used, and providing the quadrature roots needed to evaluate numerically
the integrals arising from the minimization of the residual. The dual roles of interpolation and quadrature
translate to tremendous computational efficiency; in particular, it simplifies explicit time-stepping procedures
to the level of finite difference techniques.

In the traditional continuous Galerkin approach, the different elements are connected to their immediate neigh-
bors by the requirement that the solution be continuous across the edge they share. The sole restriction is that
a single value of the solution be used on either side of the shared edge. Thus, in contrast to higher-order finite
difference methods, the halo of points needed to exchange information between elements is limited to those
lying on the edge of an element only. This last property makes the spectral element method ideally suited for
parallel computations.

The distinguishing feature of the Discontinuous Galerkin Method is that it allows the interpolation of the so-
lution to be discontinuous across element boundaries, and thus takes the localization of the computation a
step further than the continuous formulation. Communication between elements takes place via the fluxes ex-
changed across element boundaries, and these can be biased to favor information coming from the upstream
direction. Furthermore, conservation is locally satisfied as fluxes are unique along edges. Thus, the Discontin-
uous Galerkin Method possesses the two desirable properties of upstream-flux bias and local conservation.

The Spectral Finite Volume method summarized below takes the concept of local conservation to an even higher
level. It considers each quadrilateral element to be subdivided futher into a set of N�N cells, and obtains the
discretized equations of motion for each cell by integration over the cell area. Such integration leads to a
statement relating the time rate of change of the cell-averaged properties to the fluxes across the cell edges. If
these quadratures are carried out at high-order, the resulting approximation is locally conservative (at the cell
level) and of high order.

All three of these methods offer a dual path to convergence: algebraic via (global) element refinement, also
called h-refinement, and exponential (when the solution is suitably smooth) via increasing the order of intra-
element interpolation and quadrature (p-refinement). Thus they allow the user to control the error either by ad-
justing the number of elements and their size, and/or by tuning the interpolation order. The optimal allocation of
computer resources between the global and local grids (h� versus p�type discretization) is problem-dependent.
Smooth solutions in regular geometries are computed most efficiently with few elements and high-order inter-
polation; whereas complicated geometries and localized flow features, such as fronts and jets, call for the use
of more elements and lower-order interpolation.

3 The Shallow Water Equations and their Solution

3.1 The shallow water equations (SWE)

The SWE are obtained by vertical integration of the three-dimensional Navier-Stokes equations along with the
assumptions of hydrostatic pressure and a vertically uniform horizontal velocity profile. Let Ω be the two-
dimensional region occupied by the fluid and let Γ denote its boundary. The reduced gravity SWE in Ω are
given by the continuity and momentum equations:

∂ζ
∂ t

� ∇ � �hu� � 0 (1)

∂u
∂ t

� u � ∇ u� f�u�
�τ
ρh

�g�∇ ζ �γu�
∇ � �νh∇ u�

h
(2)

where u � �u�v� is the horizontal velocity vector; h � H � ζ the fluid thickness; H , the resting depth of the
fluid; ζ , the free surface elevation; f, the vertical component of the Coriolis force; g� � ∆ρg�ρo, the reduced
gravity; γ, the bottom drag coefficient; ν , the lateral viscosity coefficient;�τ � �τx�τy� the wind stress acting on
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the surface of the fluid; and, ∇ , the two-dimensional gradient operator. A concise discussion of the energetically
consistent form of the shallow water equations is given inGent (1993).

The boundary conditions are Dirichlet conditions on u and/or ζ :

ζ � ζ b on Γζ
D� u � ub on ΓD (3)

and Neumann conditions on u:
ν∇ u �n � q on ΓN (4)

where ΓD and ΓN are the boundaries where the Dirichlet and Neumann conditions are applied, respectively.
Further details on the appropriate boundary conditions are given inBernardi and Pironneau (1991).

3.2 Galerkin formulations

The starting point of the spectral element ocean model is the Galerkin formulation of the shallow water equa-
tions:

�
A

∂ζ
∂ t

wp dA � �
�

A
�∇ � �hu��wp dA (5)

�
A

∂u
∂ t

wdA �

�
A

�
�τ
ρh

�u � ∇ u� f�u�g�∇ ζ �γu�
ν∇ h � ∇ u

h

�
wdA

�
�

A
ν∇ u � ∇ wdA�

�
ΓN

qwdS (6)

where wp and w are the weight functions associated with the surface elevation and the velocity, respectively.

The spatial discretization proceeds by subdividing the domain into a set of conforming quadrilateral isopara-
metric elements. Each element is mapped into the unit square in the computational domain �ξ �η �, and the
variables ζ and u are interpolated as:

���
��

ζ �ξ �η � � ∑N p

i�1 ∑N p

j�1 ζi� j�t�h
p
i
�ξ �hp

j
�η �

u�ξ �η � � ∑Nv

i�1 ∑Nv

j�1 ui� j�t�h
v
i �ξ �hv

j�η �

(7)

where ζi j is the surface elevation at the pressure collocation nodes �ξp
i j
�η p

i j
�, �i� j� � 1� � � � �N p, and ui j is the

velocity vector at the velocity collocation nodes �ξv
i j�η v

i j�, �i� j� � 1� � � � �Nv. N p and Nv are the number of nodes
per element in the ξ and η directions for the pressure and velocity interpolation, respectively. In order to avoid
spurious pressure modes in the incompressible limit, in both the continuous Galerkin and the discontinuous
Galerkin formulations, a staggered mesh is employed where the order of the pressure interpolation is two less
than the velocity, Iskandarani et al. (1995), therefore Np � Nv�2 (Figure 2). The spectral finite volume (SFV)
formulation differs from the Galerkin spectral element formulation in that it uses an unstaggered grid with Np

= Nv; see below.

The basis functions hv
i for the CGM and DGM formulations are the Legendre cardinal functions,Boyd (2001):

hv
i �ξ � �

��1� ξ 2�L�

Nv
�1�ξ �

Nv�Nv�1�LNv
�1�ξ v

i ��ξ � ξ v
i �

� i � 1�2� � � � �Nv� (8)

LNv
�1 denotes the Legendre polynomial of degree �Nv�1� and L�

Nv
�1 denotes its derivative. The ξ v

i are the Nv

Gauss-Lobatto-Legendre points, i.e. they are roots of the function �1� ξ2�L�

Nv
�1�ξ �. The pressure interpolation

functions hp
i

for CGM are defined similarly but with the superscript v replaced by p.

The discontinuous formulation differs from the continuous by the choice of collocation points and basis func-
tions for the pressure, while keeping the velocity definition the same. For the pressure, instead of using a
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(c) SFV Figure 2: Isoparametric elements in the
computational domain. A plus (�) repre-
sents a velocity node and an open circle
(Æ) a pressure node in the (a) Continuous
Galerkin, (b) Discontinuous Galerkin,
and (c) Spectral Finite Volume formula-
tions. Solid squares along four edges of
cell Ωkl are the Gauss quadrature points
for high-order computation of fluxes in
(c).

Gauss-Lobatto-Legendre grid, a Gauss-Legendre grid is used. The collocation points for the pressure ξp
i

are
the roots of the Legendre polynomial LN p . The corresponding basis functions are Gauss-Legendre cardinal
functions:

hp
i �ξ � �

LN p�ξ �
L�

N p�ξ p
i
��ξ � ξ p

i
�
� i � 1�2� � � � �N� (9)

Note that point values are collocated at the Gauss-Legendre grid points in the SFV formulation and that the
corresponding basis functions, i.e., hv

i and hp
i

, are the Gauss-Legendre cardinal functions (9).

In the CGM and DGM, a system of ordinary differential equations (for ζ and u) is obtained after inserting (7)
into (5) and (6), and substituting hp

i
hp

j
for wp and hv

i hv
j for w:

Mp dζ
dt

� c (10)

Mv du
dt

� a� (11)

The matrices Mp and Mv are the mass matrices associated with the pressure and velocity interpolation functions,
respectively; they are defined as:

Mp
i j�kl �

�
A

hp
i �ξ �h

p
j �η �hp

k �ξ �h
p
l �η � dA (12)

Mv
i j�kl �

�
A

hv
i �ξ �hv

j�η �hv
k�ξ �h

v
l �η � dA� (13)

In the CGM, the right hand side vectors are:

ai j �

�
A

�
�τ
ρh

�u � ∇ u� f�u�g∇ ζ �γu �
ν∇ h � ∇ u

h

�
hv

i �ξ �hv
j�η � dA

�
�

A
ν∇ u � ∇ �hv

i �ξ �hv
j�η �� dA�

�
ΓN

hv
i �ξ �hv

j�η �q dS (14)

ci j � �
�

A
�∇ � �hu��hp

i �ξ �h
p
j �η �dA� (15)
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Equations (10) and (11) hold at the elemental level. The assembly procedure adds the contribution of the
different elements to the system of equations.

In the DGM formulation, since all the presure collocation points are located inside each element, no continuity
of pressure is imposed across element edges. Since ζ is discontinuous, strong forms of the Galerkin formulation
of the pressure gradient and horizontal divergence cannot be used; the gradient of the pressure does not exist
on the element edges. Instead, a weak form of the two operators is used. For each element E , the weak form of
the pressure gradient operator is �

E
gζ ∇ wdA�

�
δE

gζ nwdS � (16)

The weak form of the horizontal divergence operator is�
E

hu � ∇ wp dA�
�

δE
hu �nwp dS (17)

where δE is the boundary of an element E , and n is the normal direction to that boundary.

By the definition of the Gauss-Lobatto Cardinal functions,

hv
i �ξ v

j � � δi j� �i �� j (18)

where δi j is a Kronecker delta function. Thus the boundary integral in (16) vanishes for all test functions
w that correspond to the internal points (ξv

i �� �1). For those w that correspond to the edges, the elemental
contributions are assembled together. Since approximations of ζ on two neighboring elements are close to each
other, we assume that after assembly the boundary integrals from two neighboring elements cancel each other.

The Gauss-Legendre Cardinal functions hp that are used in the divergence operator (17) have the same property
as (18), but there are no collocation points on the edges. All functions hp

i j
are not zero on the element edges.

Thus the boundary integral does not vanish. There are different ways to compute the numerical flux �h�ζ �u �n
on the edge, Cockburn (1998). We choose an upwind numerical flux; an upstream element is used to compute
the flux, and then this flux is used in boundary integrals in both neighboring elements.

Replacing the corresponding strong operators in (14) and (15) by the weak operators (16) and (17), we obtain
the right hand side vectors for the DGM formulation

ai j �

�
A

�
�τ
ρh

�u � ∇ u� f�u�γu�
ν∇ h � ∇ u

h

�
hv

i �ξ �hv
j�η � dA

�
�

A
ν∇ u � ∇ �hv

i �ξ �hv
j�η �� dA�

�
A

gζ ∇ �hv
i �ξ �hv

j�η ��dA�

�
ΓN

hv
i �ξ �hv

j�η �q dS (19)

ci j �

�
A

hu � ∇ �hp
i �ξ �h

p
j �η ��dA�

�
δA

hupu �nhp
i �ξ �h

p
j �η �dS� (20)

where δA are all the element edges, and hupu �n is the upwind flux at the element edge.

Note that even an explicit time integration scheme requires the inversion of the matrices Mv and Mp. Fortu-
nately, the mass matrices can be made diagonal by evaluating the integrals with Gauss-Lobatto quadrature of
order Nv, Abramowitz and Stegun (1964), to compute the left hand side in the discretised momentum equa-
tions; Gauss-Lobatto and Gauss quadratures of order Np are used to evaluate the left hand sides in the CGM
and DGM forms of the continuity equation, respectively. The diagonal form of the mass matrices leads to
tremendous savings in computations and storage with negligible loss of accuracy.

3.3 A spectral finite volume formulation

The finite volume formulation begins by combining equations (1) and (2) into conservative form, Choi et al.
(2004). The two-dimensional SWE in Cartesian conservative form are

∂
∂ t

h �
∂
∂x

�uh��
∂
∂y

�vh� � 0
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∂
∂ t

�uh� �
∂
∂x

�u2h�
1
2

g�h2��
∂
∂y

�uvh� � f vh�
τx

ρ
�γuh� ∇ � �νh∇ u� (21)

∂
∂ t

�vh� �
∂
∂x

�uvh��
∂
∂y

�v2h�
1
2

g�h2� �� f uh�
τy

ρ
�γvh� ∇ � �νh∇ v��

This system can now be written more compactly as

∂U
∂ t

�
∂E
∂x

�
∂G
∂y

� S (22)

where, E and G represent the fluxes along the x- and y-directions, respectively. The vector of unknowns, the
Cartesian components of the flux vectors and source terms are

U �

�
� h

uh
vh

�
	 � E �

�
� uh

u2h� 1
2g�h2

uvh

�
	 � G �

�
� vh

uvh
v2h� 1

2g�h2

�
	 �

S �

�

�

0
f vh� τx

ρ �γuh� ∇ � �νh∇ u�

� f uh� τy

ρ �γvh� ∇ � �νh∇ v�

�
�	 � (23)

We stress that the SFV formulation is not based on a variational method, but rather on a finite volume formu-
lation, Alcrudo and Garcia-Navarro (1993). Equation (22) is spatially integrated over a region Ω to obtain the
integral form of the equations: �

Ω

∂U
∂ t

dΩ�

�
Γ
� �n dΓ �

�
Ω

S dΩ � (24)

after application of the Gauss theorem. Here n is the outward unit normal to the boundary Γ of Ω, and� �n �
Enx �Gny. The first volume integral represents the time rate of change of the amount of U in Ω, while the
surface integral is the total flux of U through the cell edges. Define U as the average of U over Ω, i.e.,

U �
1
V

�
Ω

U dΩ� (25)

where V is the area of Ω in two dimensions and the volume in three dimensions. The finite volume form of the
SWE can now be written as:

dU
dt

�
1
V

�
Γ
� �ndΓ � S� (26)

Equation (26) is still exact; the numerical approximation comes from evaluating the boundary integral and in
time-stepping the area averages.

Each unstructured element is divided into a grid of N�N cells and is transformed by one-to-one mapping into
a computational plane as shown in Figure 2. Each element then contains N2 cells over which equation (26) will
be solved. In order to take advantage of the interpolation properties of spectral methods,Boyd (1994), a point
value is interpolated via a high-order Lagrangian interpolant:

U�ξ �η � �
N

∑
i�1

N

∑
j�1

Ui jhi�ξ �hj�η � (27)

where ξ and η are the coordinates in the computational plane, Ui j is the function value at the collocation node

of the Gauss-Legendre point �ξ i�η j�, and hi�ξ � are the Gauss-Legendre cardinal functions (9).

The cell-averages Ukl can now be computed by integrating the Lagrangian interpolants over the area of each
cell:

Ukl �
N

∑
i�1

N

∑
j�1

Akl�i jUi j� Akl�i j �
1

Vkl

� ηl

ηl�1

� ξk

ξk�1

hi�ξ �hj�η ��J�dξ dη � (28)
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where Vkl is the area of cell�k� l�, ξk and ηl are the Gauss-Lobatto-Legendre points, and J � �xξ yη � xη yξ �
is the Jacobian of the mapping between physical space and computational space. The above operations are a
matrix-vector product that maps the N2 values of Ui j into the N2 cell-averages Ukl . This makes the scheme
compact as the reconstruction is now local to each element. A further advantage of this scheme is that it is
now possible to uniquely invert the mapping between the function values Ui j and the cell averages Ukl since the
averaging matrix A is square. For the given U vector of dimension N2, we reconstruct the N2 function values
U � A�1U . The matrix A can be computed and stored for each element as a pre-processing step.

A high-order quadrature is used to evaluate the boundary integrals in equation (26). We adopt Gauss quadrature
of order N to evaluate these boundary integrals since it provides high accuracy, and does not require flux evalu-
ation at element corners [thus obviating the need to figure out the upwinding directions at these corners, Figure
2(c)]. The discontinuous representation complicates the flux computations near element boundaries where the
solution is two-valued. Upwinding along the characteristic direction is required to resolve this discontinuity,
and to calculate a unique value for the boundary flux; we use an approximate Riemann solver based on the
Harten, Lax, and van Leer Contact (HLLC) flux as described by Toro (1999, 2001).

3.4 Time integration of equations

The explicit time integration of equations (10) and (11) may be performed with (e.g.) a third-order Adams-
Bashforth (AB3) scheme. Each of the equations in (10) and (11) can be written in the generic form Mdu�dt � r
where u and r are the vector of unknowns and the vector of right hand sides, respectively, and M is one of the
mass matrices. The AB3 scheme takes the form [see Gear (1971) for example]:

un�1 � un �∆tM�1
�

23
12

rn � 16
12

rn�1 �
5

12
rn�2


� (29)

The calculations require information at two previous time levels and thus a start-up method is needed at the
initial timestep; we choose a fourth-order Runge-Kutta scheme. All computations are performed at the elemen-
tal level and only the vector r needs to be assembled at each timestep. As an alternative to (29), a third-order
Runge-Kutta method might also be used, Choi et al. (2004).

4 Supercritical channel flow

0 10 20 30 40m
0

10

20

30

h
0
 = 1.0 m

h
d
 = 1.5 m

SHOCK

inflow outflow

x

y
Figure 3: Schematic dia-
gram of oblique shock front
in the supercritical channel
flow.

We briefly illustrate the results of these methods with the example of supercritical flow in a constricted channel.
Additional test problems and convergemce studies are described in Choi et al. (2004) and Iskandarani et al.
(2004).

When a supercritical flow encounters a sudden change in channel cross-section, through a boundary wall con-
striction on one side wall of a channel as depicted in Figure 3, an oblique hydraulic jump (discontinuity)
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K CG DG SFV
Grid h �u� Grid h �u� Grid h �u�

4�3 21�16 1.396 8.243 21�16 1.351 8.295 24�18 1.486 7.961
8�6 41�31 1.450 7.633 41�31 1.432 8.130 48�36 1.491 7.959

12�9 61�46 1.535 8.577 61�46 1.455 8.060 72�54 1.495 7.956
16�12 81�61 1.450 7.259 81�61 1.463 8.011 96�72 1.496 7.955
exact 1.500 7.956 1.500 7.956 1.500 7.956

Table 1: Comparison of metrics for the supercritical flow test problem obtained on grids of various resolu-
tion (h-refinement). For CGM and DGM, the velocity grid has N � 6 collocation points, and the pressure
grid has N � 4 collocation points. Both the velocity and pressure grids have N � 6 collocation points for
the SFV method. K is the number of elements. “Grid” specifies the number of velocity collocation points;
�u� (m/s), the average value of flow speed behind the shock; and h, the average value of the water depth
behind the shock.

originates at the constriction. The initial conditions over the entire domain including the inlet at x � 0 are h0
= 1.0 m, u0 = 8.57 m/s, and v0 = 0 m/s; this corresponds to Fr = 2.74 at the inflow boundary. The rest of the
boundary conditions are supercritical outflow at x = 40 m and no-normal flow along the side walls. No bound-
ary conditions are required on the outflow boundary since the flow is supercritical. For a constriction angle of
8�95Æ, the analytical solution is ζ = 0.5 m, �u��	

u2 � v2 = 7.956 m/s, and Fr = 2.075 downstream of the jump;
the angle between the original flow direction and the jump is 30Æ.

Table 1 compares the performance of the three methods described above. Note that upon grid refinement,
both DGM and the SFV methods approach the exact solution, whereas the continuous treatment shows little
convergence. This reflects the slightly dissipative nature of the DGM and SFV algorithms. By contrast, the
CGM model is essentially inviscid, and therefore suffers from Gibbs oscillations irrespective of grid resolution.

5 Three-dimensional considerations

The representation of the vertical structure of the water column is particularly problematic as it involves com-
plicated (tall and steep) marine topography covering a wide range of length scales. Three common choices of
vertical coordinate are: 1) z-level, where the vertical is represented by a stack of horizontal slabs interrupted by
topography; 2) terrain-following coordinates, where the computational surfaces follow the sloping bathymetry;
and 3) layered models, where the water column is divided into isopycnal (equal density) layers. For a spec-
tral element model, the z-level approach is a poor choice; the first-order representation of the topography is
inconsistent with the high-order algorithms.

Terrain-following discretizations have the virtue of representing topographic processes accurately provided the
underlying bathymetry is well resolved on the computational mesh. Since it is in this limit that these higher-
order methods best apply, terrain-following coordinates are an obvious choice for geophysical spectral element
methods. In particular, the vertical discretization of a fully three-dimensional spectral element ocean model
(SEOM) is based on a spectral element formulation wherein the elements are three-dimensional hexahedra that
follow the bottom topography, Iskandarani et al. (2003). A three-dimensional spectral element grid can thus be
produced by stacking vertically and conformally a number of two-dimensional grids. Note, in particular, that
vertical resolution may still be distributed according to a priori considerations.

The layered discretization has until recently been impractical as it requires robust numerical schemes that can
handle discontinuous solutions without noise generation. The arrival of the DGM and SFV methods suggests
that layered treatments may now be feasible. This is an area of active research.
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