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1 Introduction

ROMS is a versatile, state-of-the-art, free-surface, hydrostatic primitive equation ocean circulation model de-
veloped at Rutgers University and UCLA. As its predecessors, ROMS is terrain-following, and is discretized
in space on an orthogonal curvilinear, Arakawa C-grid. System attributes include extensive restructuring for
sustained performance on parallel-computing platforms (using MPI or openMP); high-order, weakly dissipative
algorithms for tracer advection; a unified treatment of surface and bottom boundary layers; an integrated set
of procedures for data assimilation (e.g., optimal interpolation, reduced-state Kalman filter, and adjoint-based
methods); advanced treatments of open boundary conditions; and redesigned mode-splitting and split-explicit
time-stepping algorithms with enhanced robustness and conservation properties. Below, we provide a con-
densed discussion of the last of these algorithmic improvements, distilled from Shcheptekin and McWilliams
(2004). More complete descriptions of all of the above features can be found in this reference, and in March-
esiello et al. (2001), Moore et al. (2005), Shchepetkin and McWilliams (1998, 2003), Warner et al. (2005), and
on the ROMS web site (http://marine.rutgers.edu/po/index.php?model=roms).

The remaining sections are organized as follows. Section 2 briefly defines the terrain-following coordinate
currently in use in ROMS. Section 3 describes two sources of potential error associated with the use of split-
explicit time-stepping: loss of constancy peservation and mode-splitting error. Finally, section 4 describes the
new split-explicit time-stepping scheme developed for use in ROMS to contend with these error sources.

2 ROMS generalized topography-following coordinate

In a topography-following vertical coordinate system there is a transformation,

z � z�x�y�σ� � (1)

where z is the Cartesian height and σ is the vertical distance from the surface measured as the fraction of the
local water column thickness; i.e., �1 � σ � 0, σ � 0 corresponds to the free surface, z � ζ , and σ � �1
corresponds to the oceanic bottom, z ��h�x�y�. In the case of the classical σ-coordinate, (1) reduces to

z � σ �h�x�y� � (2)
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This may be combined with nonlinear stretching, S�σ�,

z�x�y�σ� � S�σ� �h�x�y� � (3)

and further generalized into the S-coordinate of Song and Haidvogel (1994) which in essence behaves like (2)
in shallow regions and (3) in deep.

Discretization of the vertical coordinate introduces a set of coordinate surfaces,�
z

k� 1
2
� z

k� 1
2
�x�y� � k � 0�1� ����N

�
� (4)

where z 1
2
� z�0�

1
2

��h and z
N� 1

2
� ζ . If the ocean is at rest, the free-surface elevation is ζ � 0, hence z

N� 1
2
� 0.

In the case of a non-zero ζ , all z
k� 1

2
are displaced by a distance proportional to ζ and the distance from the

bottom as the fraction of unperturbed local depth,

z
k� 1

2
� z�0�

k� 1
2

� ζ

��1�
z�0�

k� 1
2

h

�� (5)

As a result the perturbed grid-box height, ∆zk � z
k� 1

2
� z

k� 1
2
, is related to the unperturbed height, ∆z�0�

k
�

z�0�
k� 1

2

� z�0�
k� 1

2

according to

∆zk � ∆z�0�
k

�
1�

ζ
h

�
� (6)

where the multiplier �1� ζ �h� is independent of the vertical coordinate. One consequence of (6) is the fact that
vertical mass fluxes generated by a purely barotropic motion vanish identically at every interface, z

k� 1
2
.

3 Some issues regarding split-explicit time-stepping

3.1 Integral conservation and constancy preservation for tracers

Combining the tracer equation in advective form,

∂q
∂ t

�
�
u � ∇

	
q � 0 (7)

with the statement of nondivergence, �
∇ �u

	
� 0 � (8)

the tracer equation in conservation form becomes

∂q
∂ t

� ∇ �
�
uq
	
� 0 � (9)

As a consequence of (7), if the tracer is specified as a spatially uniform field at the initial time, it remains so
regardless of the velocity field. On the other hand, as a consequence of (9), the volume integral of the tracer
concentration is conserved in the absence of incoming and outgoing fluxes across the domain boundary. The
continuity equation (8) provides the compatibility condition between these two properties.
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Consider the discretization of (9) obtained using a finite-volume approximation,

∆� n�1
i� j�kqn�1

i� j�k � ∆� n
i� j�kqn

i� j�k �∆t

�q

i� 1
2 � j�k

U
i� 1

2 � j�k
� �q

i� 1
2 � j�k

U
i� 1

2 � j�k
(10)

��q
i� j� 1

2 �k
V

i� j� 1
2 �k
� �q

i� j� 1
2 �k

V
i� j� 1

2 �k

��q
i� j�k� 1

2
W

i� j�k� 1
2
� �q

i� j�k� 1
2
W

i� j�k� 1
2

�
�

where qi� j�k is understood to be a volume-averaged concentration over the grid-box ∆�i� j�k,

qi� j�k �
1

∆� n
i� j�k

�

∆� n
i� j�k

qd� � (11)

The �q
i� 1

2 � j�k
are the interfacial values of tracer concentration. U

i� 1
2 � j�k

, V
i� j� 1

2 �k
, and W

i� j�k� 1
2

are volumetric

fluxes in the two horizontal and vertical directions. These are defined as velocity components multiplied by the
contact area between two adjacent grid boxes,

U
i� 1

2 � j�k
� u

i� 1
2 � j�k

∆z
i� 1

2 � j�k
∆η

i� 1
2 � j

V
i� j� 1

2 �k
� v

i� j� 1
2 �k

∆z
i� j� 1

2 �k
∆ξ

i� j� 1
2
�

(12)

where ∆z
i� 1

2 � j�k
� ∆η

i� j� 1
2
, and ∆z

i� j� 1
2 �k

� ∆ξ
i� j� 1

2
are vertical and horizontal measures of the corresponding grid-

box interfaces (∆ξ �∆η may be non-uniform because of the curvilinear horizontal coordinates). The superscripts
n�1 and n denote new and old time steps. The time step for the flux variables in (10) is not specified yet, but
must be effectively at n �1 �2 to achieve second-order temporal accuracy. However, the flux form by itself
guarantees exact conservation of the global volume integral of the advected quantity as long as there is no net
flux across the domain boundary.

Setting qi� j�k � 1 in (10) yields the discretized continuity equation,

∆� n�1
i� j�k � ∆� n

i� j�k �∆t �


U

i� 1
2 � j�k

�U
i� 1

2 � j�k
�V

i� j� 1
2 �k
�V

i� j� 1
2 �k

�W
i� j�k� 1

2
�W

i� j�k� 1
2

�
� (13)

Once it holds, the conservative form of the discrete tracer equation (10) also has the property of constancy
preservation in addition to global content conservation.

In a hydrostatic model the discrete continuity equation (13) is needed to compute vertical velocity rather than
grid-box volume ∆� n�1

i� j�k . [The latter is entirely controlled by change of ζ via (6).] Hence,

W
i� j� 1

2
� 0 � at the sea floor, and (14)

W
i� j�k� 1

2
��

k

∑
k��1


∆� n�1

i� j�k� �∆� n
i� j�k�

∆t
�U

i� 1
2 � j�k�

�U
i� 1

2 � j�k�
�V

i� j� 1
2 �k�

�V
i� j� 1

2 �k�

�
(15)

for all k � 1�2� ����N �

which, in fact, defines the meaning of W
i� j�k� 1

2
as a finite-volume flux across the moving grid-box interface

z
i� j�k� 1

2
. Vertical summation of (13) for different k leads to the equation for the free surface,

ζ n�1
i� j � ζ n

i� j �
∆t

∆� i� j



U

i� 1
2 � j
�U

i� 1
2 � j

�V
i� j� 1

2
�V

i� j� 1
2

�
� (16)

where ∆� i� j is the horizontal area of the grid box i� j;

U
i� 1

2 � j
�

N

∑
k�1

U
i� 1

2 � j�k
� V

i� j� 1
2
�

N

∑
k�1

V
i� j� 1

2 � j
� (17)
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are vertically integrated (barotropic) volume fluxes; and we have used the identity�
ζi� j �hi� j

�
�∆� i� j �

N

∑
k�1

∆� i� j�k � (18)

where hi� j is independent of time. Setting k � N in (15), consistently with (16)–(18) results in

W
i� j�N� 1

2
� 0 � (19)

as required by the kinematic boundary condition at the free surface.

Thus far it has been assumed that the time step and time-stepping algorithm for the tracer (10) and for ζ (16)
are the same. This would be the case if the barotropic and baroclinic components were advanced using the
same small time step dictated by the stability criterion for the barotropic mode. In a split-explicit, free-surface
model, the equation for free-surface (16) and the vertically integrated (2D) momenta are advanced using a
much smaller time step than the tracer equations. Each baroclinic time step starts with computation of the right
hand side of the 3D momentum equations. The right hand side components are integrated vertically to provide
forcing terms for the barotropic mode. During the barotropic time-stepping, the free surface and the barotropic
velocity components are advanced with the short time step, then averaged over the sequence of the barotropic
steps to prevent aliasing. Then the 3D momenta are advanced to the baroclinic time step n� 1, and vertical
integrals of the new fields are subtracted from the similar values from the barotropic submodel. The resultant
differences are then uniformly distributed throughout the vertical column to make sure that the corrected 3D
velocity components have the same vertical integrals as the barotropic ones. At the same time, the free surface
ζ at the new baroclinic step is assigned its new value from the barotropic submodel.

Because of the replacement of ζ at n�1 with its fast-time-averaged value, it is no longer possible to reconstruct
the vertical velocity via (15) in such a way that the top kinematic boundary condition (19) is respected. Alterna-
tively on might distribute the mismatch in (19) throughout the water column, so that the top boundary condition
holds, but at the expense of a discrepancy in (15), Song and Haidvogel (1994). In either case, a conservative
update of the tracer fields (10) loses its constancy preservation property.

3.2 Mode-splitting error

In the split-explicit method, the shallow water equations (SWE) are advanced in time, using the smaller CFL-
limited time step, to obtain the depth-integrated mode, e.g.,

∂U
∂ t

� ��� ��gD∇ xζ �
�

gD∇ xζ ��
�

� (20)

Here, g is the acceleration of gravity; D � h�ζ is total depth; U � Du is depth-integrated velocity (barotropic
mass flux); ∇ xζ is a shorthand for ∂ζ �∂x; and

� ��
1
ρ0

ζ�

�h

∂P
∂x

dz (21)

is the vertically integrated pressure gradient. The latter is a functional of the topography, free-surface gradient,
and free surface itself, as well as the vertical distribution of density and its gradient,

� �� �∇ xζ � ζ � ∇ xρ�z�� ρ�z�� � (22)

The term in curly brackets in (20) is interpreted as barotropic-baroclinic mode coupling. It is kept “frozen”
during the barotropic time-stepping while the first term on the right side evolves. The disadvantage of this
approach is that after the barotropic time-stepping is complete and the new free-surface field is substituted into
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the full baroclinic pressure gradient, its vertical integral will no longer be equal to the sum of the SWE-like
pressure gradient (computed using the new free surface) and the original coupling term (based on the old free
surface). This is usually known as mode-splitting error.

Unfortunately, this error plays the role of a disturbance, causing the vertically integrated pressure gradient to be
not in equilibrium with the barotropic mass flux. The barotropic time-stepping drives the barotropic part toward
an equilibrium, but it is disturbed again due to the redefinition of the vertically integrated baroclinic pressure
gradient. Higdon and Bennett (1996) analyzed the stability of a coupled linearized system in an isopycnic
vertical coordinate and showed that, if non-dissipative time-stepping algorithms are used for both modes, the
resultant model is unavoidably unstable. An alternative definition of the barotropic mode in an isopycnic model
that reduces the mode splitting error is obtained by replacing both gD∇ xζ terms in (20) with

∂�
∂ �∇ xζ �

∇ xζ �
∂�
∂ζ

ζ � (23)

This replacement may be shown to remove the dominant mode splitting error.

4 ROMS split-explicit time-stepping algorithm

The redesigned time-stepping used in ROMS introduces several new features, including:

� forward-backward feedback between the pairs of variables responsible for gravity wave propagation (sur-
face or internal) that combine an extended range of stability with the temporal accuracy of the best known
algorithms, in effect, generalizing traditional forward-backward schemes to higher orders of accuracy;

� redefinition of the barotropic mode equations to account for the non-uniform density field to reduce
mode-splitting error;

� a temporal weighted-averaging of the barotropic mode that allows an accurate representation of the
barotropic motions resolved by the baroclinic time step (e.g., tides and barotropic Rossby waves); and

� simultaneous conservation and constancy preservation properties for tracers in the evolving coordinate
system due to changes in ζ .

We next give brief details on the last three of these algorithmic improvements, referring the reader to Shchep-
etkin and McWilliams (2004) for a full description of the new split-explicit method and its properties.

4.1 Improved mode-splitting

The algorithms in ROMS take into account the effects of the non-uniform density field, resulting in a more
accurate mode-splitting method that is suitable for use in a terrain-following model. Consider a fluid element
bounded horizontally by two vertical lines corresponding to the locations of ζi and ζi�1 and vertically by the
free surface and bottom (Fig. 1, left). The horizontal component of the pressure-gradient force acting on this
element is calculated by the integration of the pressure along the contour surrounding the fluid element:

F
i� 1

2
�

ζi�

�hi

P�xi�z�dz�

ζi�1�

�hi�1

P�xi�1�z�dz�

xi�1�

xi

P�x��h�x��

�
�

∂h�x�
∂x

�
dx ��i��i�1��i� 1

2
� (24)

where the contribution of atmospheric pressure along the upper surface has been neglected. In (24) P�x�z� is
the hydrostatic pressure,

P�x�z� � g

ζi�

z�

ρ�x�z��dz� � (25)
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ρ�z�

Hk�1
ρk�1

Hk

ρk

Hk�1
ρk�1

�i

�i�1

�
i� 1

2

Figure 1: Left: Fluid element showing placement of different terms in (24). Right: Reconstruction of the
vertical density profile by parabolic segments (31): for each k � 1�2� ����N, ρk are density averaged over
grid boxes Hk of a vertically non-uniform grid. The shaded area is the same as the area of the diagonally
hatched rectangle.

Assuming a finite-volume approach to approximate (25) and eventually (24) at the discrete level, the barotropic
pressure-gradient force at the velocity point i�1

2 is a function of the density in the vertical columns i and i�1,
as well as the free-surface elevations ζi, ζi�1. Hence,

F
i� 1

2
��

�
ζi�1� ρi�1�1� ����ρ i�1�N � ζi� ρ i�1� ����ρ i�N

�
� (26)

where the structure of the functional � depends upon the discretization details of the baroclinic pressure
gradient, typically involving nonlinear interaction of ζi� and ρi��k fields.

In the ROMS mode-splitting technique, it is assumed that ζ is changing during the barotropic time-stepping

while the density values,
�

ρ i�k

�
, remain frozen and change only during the baroclinic time step. However, the

nonlinear relation (26) holds in barotropic time. Of course, it would be prohibitively inefficient to recompute
� in (26) at every barotropic step by vertical integration of the whole 3D pressure gradient. Instead, in each
vertical column, once at every baroclinic time step before the barotropic mode calculation begins, ROMS
computes a vertically averaged density,

ρ�x� �
1
D

ζ �x��

�h�x�

ρ�x�z�dz � (27)

and a vertically averaged dynamical density,

ρ��x� �
1

1
2D2

ζ �x��

�h�x�

���
ζ �x��

z

ρ�x�z��dz�

���dz � (28)

where D � D�x� � ζ �x��h�x� is the total thickness of the water column. Changing the integration variable to
σ � �z� ζ ��D yields

ρ�x� �
0�

�1

ρ�x�σ�dσ � ρ��x� � 2

0�

�1

���
0�

σ

ρ�x�σ ��dσ �

���dσ �
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which implies that ρ and ρ� are actually independent of ζ as long as the density profile ρ � ρ�σ� stays the
same. Expressed in terms of ρ and ρ�, (24) becomes

F
i� 1

2
� g

���ρ�

i D2
i

2
�

ρ�

i�1D2
i�1

2
�

xi�1�

xi

ρD
∂h
∂x

dx

��� � (29)

This is a finite-volume discretization of the pressure-gradient term in the vertically integrated momentum equa-
tion,

∂
∂ t

�
DU

	
� ��� ��

1
ρ0

g

�
∂
∂x

�
ρ�D2

2

�
�ρD

∂h
∂x

�
��

1
ρ0

gD

�
ρ�

∂ζ
∂x

�
D
2

∂ρ�

∂x
��ρ��ρ�

∂h
∂x

�
� (30)

If ρ� � ρ � ρ0, the right side of (30) reverts back to the familiar SWE pressure-gradient term of (20), but in
the general case non-uniformity of ρ and ρ� leads to the appearance of two extra terms that are baroclinic in
nature. The problem therefore reduces to the search for a suitable method of calculation of ρ and ρ� from the

3D density field
�

ρ i�k

�
and an appropriate discretization of (29)–(30).

To address the first issue, consider, e.g., a piecewise-parabolic reconstruction of the vertical density profile from
a set of discrete values

�
ρk �k � 1� ����N

�
that is interpreted as a set of grid-box averages within each vertical

vertical grid box Hk (Fig. 1),

ρ�z�� � ρk �
ρ

k� 1
2
�ρ

k� 1
2

Hk
z��6

�ρ
k� 1

2
�ρ

k� 1
2

2
�ρk

��
z�2

H2
k

�
1

12

 
� (31)

Here the local vertical coordinate z� spans the grid box Hk, so that �
Hk
2 � z� � �

Hk
2 , and ρ

k� 1
2
� ρ

�
�

Hk
2

�
are the density values at at the upper and lower grid box interfaces, z � �

Hk
2 computed via an appropriate

reconstruction algorithm. Regardless of the details of computing ρ
k� 1

2
, (31) guarantees that

1
Hk

�Hk�2�

�Hk�2

ρ�z��dz� � ρk (32)

and leads to the discretization of vertically averaged density,

ρi �
N

∑
k�1

ρ i�kHi�k

!
N

∑
k�1

Hi�k � (33)

To compute ρ� we note from (31)–(32) that the hydrostatic pressure in (24) can be expressed as a continuous
function within each grid box Hk,

P�z�� � P
k� 1

2
�g

Hk�2�

z�

ρ�z���dz�� � P
k� 1

2

�gHk


ρk

�
1
2
�

z�

Hk

�
�

ρ
k� 1

2
�ρ

k� 1
2

2

�
1
4
�

z�2

H2
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(34)

�2

�ρ
k� 1

2
�ρ

k� 1
2

2
�ρk

��
z�

4Hk
�

z�3

H3
k

 �
�

where P
k� 1

2
is the pressure at a depth corresponding to the interface between Hk and Hk�1,

P
N� 1

2
� 0 and P

k� 1
2
� g

N

∑
k��k

ρk�Hk� � (35)

k � 1� ����N �
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It can be verified from (34) that P��Hk�2� � P
k� 1

2
and that the pressure distribution and its first derivative are

continuous across the grid box interfaces.

Subsequent integration of (34)–(35) leads to

�i �

ζi�

�hi

Pi�z�dz �
N

∑
k�1

�Hi�k�2�

�Hi�k�2

Pi�z
��dz� �

N

∑
k�1

Hi�kPi�k � (36)

where

Pi�k � P
i�k� 1

2
�

1
2

gHi�k

�
ρi�k �
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i�k� 1

2
�ρ

i�k� 1
2

6

�
�

P
i�k� 1

2
�P

i�k� 1
2

2
�gHi�k

ρ
i�k� 1

2
�ρ

i�k� 1
2

12
(37)

is the pressure averaged over Hi�k. This further leads to the definition of the vertically averaged dynamical
density as

ρ�

i �
1

1
2

�
N
∑

k�1
Hi�k

�2 �
N

∑
k�1

Hi�k

��
N

∑
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�
�

1
2

Hi�k

�
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ρ
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2
�ρ
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2

6
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Using the identity,

N

∑
k�1
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N
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k��k�1
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�
�

1
2

Hi�k

 
�

1
2

�
N

∑
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Hi�k

�2

�

one can interpret (38) as just a weighted average. Furthermore, since

N

∑
k�1

Hi�k � hi � ζi � Di� (39)

(36) may be expressed as

�i �
1
2

gρ�

i D2
i � (40)

To approximate �
i� 1

2
, we assume that D, ρ, and h are linear functions of the horizontal coordinate between

points xi and xi�1:

�
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2
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�
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∆x
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�

After some algebra, (40) and (41) yield
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The terms on the first, second, and third lines are obviously similar to the first, second, and third terms on the

right-hand-side of (30), respectively. The term on the fourth line in (42) is on the order of �
�
�∆x�3

�
while all

three preceding terms are � �∆x�, so the former is negligible relative to the others as ∆x � 0.

In the case of ζi � ζi�1 � 0, hence Di � hi and Di�1 � hi�1, (42) becomes

F�0�
i� 1

2

� g�ρ�

i �ρi�
h2

i

2
�g

�
ρ�

i�1�ρi�1

	 h2
i�1

2
�g

�
ρ i�ρi�1

	 h2
i �hihi�1 �h2

i�1

6
� (43)

Unlike the SWE pressure gradient, this does not vanish unless there is a special balance between the densities
ρ�

i , ρ�

i�1, ρ i, ρ i�1, and the unperturbed thicknesses, hi and hi�1. For example, if density is a linear function of
depth, ρ � ρ�z� ��α z resulting in

ρ i �
1
hi

0�

�hi

��α z�dz �
α hi

2
(44)
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2
h2

i

0�

�hi

0�

z

��α z��dz� �
α hi

3
� (45)

Then F�0�
i� 1

2

vanishes, as verified by direct substitution of these expressions into (43).

We therefore split (42) into

F
i� 1

2
� F�0�

i� 1
2

�F �

i� 1
2
� (46)

where

F �

i� 1
2
��

1
2
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��
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�
1
3

�
ρ i�1�ρi

	�
ζi�1� ζi

	��
contains all the terms of (42) with ζ . The transition from (42) to (43)–(47) has no approximations.

If the density field is a function only of depth, the baroclinic pressure gradient should vanish. However, in order
to make F�0�

i� 1
2

� 0 in (43), there must be cancellation between its terms that can be achieved only by having

a special relation between ρ�i and ρi. Except for a few special choices of the density profile (constant, linear,
or quadratic in z), this cancellation is not exact, but rather relies on the numerical accuracy of the integration
method. This is often referred to as hydrostatic inconsistency. The use of a high-order integration method can
reduce, but not totally eliminate, this error.

4.2 Temporal averaging of the barotropic mode

The requirements on the barotropic sub-model are to compute (i) �ζ 	n�1 and �U	n�1 at the new baroclinic
time step n � 1, properly averaged to filter out and avoid aliasing of barotropic time scales not resolved by
the baroclinic time step, and (ii) the barotropic mass flux, ��U		n�

1
2 , integrated over the barotropic time steps,

satisfying the slow-time, free-surface equation (16).

To fulfill task (i), choose an appropriate weighting shape function 
am� (Fig. 2, top panel) that satisfies discrete
normalization and centroid conditions,

M�

∑
m�1

am � 1 �
M�

∑
m�1

am
m
M

� 1 � (48)
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Here M denotes the barotropic-baroclinic mode-splitting ratio; i.e., it takes M barotropic steps to advance the
barotropic mode for the time interval corresponding to one baroclinic step. M� is the last index at which am �� 0,
where M � M� to ensure that 
am� is time centered at n�1. Once 
am� is specified, we define the slow-time
quantities (denoted by angle brackets),

�ζ 	n�1
i� j �

M�

∑
m�1

amζ m
i� j �U	n�1

i� 1
2 � j

�
M�

∑
m�1

amU
m
i� 1

2 � j �V 	n�1
i� j� 1

2
�

M�

∑
m�1

amV
m
i� j� 1

2
� (49)

where ζ m, U
m

, and V
m

are “instantaneous” barotropic variables. To satisfy the slow-time continuity equation
(13), we have to construct another set of fast-time-averaged barotropic fluxes, ��U		n�

1
2 and ��V 		n� 1

2 , which
are consistent with the change in sea level between the two consecutive slow-time steps,

�ζ 	n�1
i� j � �ζ 	n

i� j �∆t �div��U		n� 1
2

i� j
� (50)

This may be accomplished by the definition of a second set of weights, such that
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2
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2
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2
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2
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2

� (51)

As shown in Shcheptekin and McWilliams (2004), once 
am� is chosen, the other set 
bm� may be uniquely
determined.

4.3 Time Stepping the Coupled Baroclinic-Barotropic System

The ROMS time-stepping algorithm is designed to produce mutually consistent estimates of the new location
of the sea surface (ζ n�1), the associated barotropic mass fluxes (��U		n�

1
2 ), and the time-rates-of-change of the

baroclinic fields (momentum and tracers) at time level n� 1
2 . Hence, the continuity equation on the long-time

step (16) is satisfied and constancy preservation is assured. The time-stepping algorithm proceeds as follows
(Fig. 2).

Stage 1: Compute the right side for the 3D momentum equations at time step n. Apply this right side to advance
the 3D momenta using a Leapfrog (LF) step combined with a half-step, backward interpolation with Adams-
Moulton (AM3-like) coefficients (the result is time-centered at n�1

2 ). Because no meaningful barotropic mass
fluxes time-centered at n� 1

2 are available yet, set the vertical averages for the newly computed fluxes back to
�U	n.

Stage 2: Advance the tracer variables in a similar manner with a LF step combined with an AM3 interpolation,
placing the resultant values at n� 1

2 .

Stage 3: Compute the right side for the 3D momentum equations from the mass fluxes and tracers (via density)
at n� 1

2 . Vertically integrate everything and also compute and store vertically averaged densities, ρi,ρ�

i , using
(33)-(38) time-centered at n� 1

2 . Apply the right side to the 3D momentum variables, but do not finalize the
time step since Hn�1 and �U	n�1 are not available yet.

Stage 4: Compute the right side terms for the barotropic mode from barotropic variables using (47) for the
pressure gradient and subtract it from the corresponding vertical integrals of the 3D right side computed in Stage
3 (i.e., convert them into baroclinic-to-barotropic forcing terms). Advance the barotropic variables (slightly
beyond the baroclinic time step n�1, depending on the shape of the fast-time filter), performing a 2-way, fast-
time averaging of barotropic variables on the way. The baroclinic forcing terms are kept constant during this
procedure, but the barotropic pressure-gradient terms are recomputed by (47) with participation of ρi and ρ�

i at

every barotropic step. Once this is complete, update the vertical coordinate system,
�

zi� j�k� z
i� j�k� 1

2
� Hi� j�k

�n�1
,

to be consistent with �ζ 	n�1.
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Figure 2: Barotropic-baroclinic mode data exchange in ROMS: Curved horizontal arrows symbolize the
predictor LF step combined with AM3 half-step-back interpolation of the result (light shading) and corrector
sub-steps (dark shading). The four ascending arrows denote the 2-way, vertically averaged densities, ρ and
ρ�, and the vertically integrated right side for 3D momentum equations [the last two meet with the two small
arrows symbolizing computation of the barotropic mode right hand side from barotropic variables; so that
asterisks (* *) denote the computation of baroclinic-to-barotropic forcing terms, two small arrows ascending
to the right]. The five large descending arrows symbolize 2-way, fast-time-averaged barotropic variables for
backward coupling. Shown in the top panel are schematics of the barotropic temporal averaging weights a m

and bm.

Stage 5: Finalize the computation of the 3D mass fluxes begun in Stage 3 using the now available Hn�1, and
set the vertical average to �U	n�1 from the barotropic mode.

Stage 6: Interpolate the 3D velocity components back in time to n�1
2 using a combination of the new time-

step values (from Stage 5), values from the predictor step (Stage 4), and old-time step values. Set the vertical
average of the resultant fields to ��U		n�

1
2 . Use the resultant velocity field and tracers at n� 1

2 to compute the
tracer fluxes and advance the tracers to n�1. This step is both conservative and constancy preserving.
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