Adaptive Grids for Weather and Climate Models

Christiane Jablonowski ¹, M. Herzog ², R. Oehmke ², J. E. Penner ², Q. F. Stout ², B. van Leer ² ¹ National Center for Atmospheric Research, Boulder, CO ² University of Michigan, Ann Arbor, MI

ECMWF Annual Seminar, September 2004

Overview of the talk

- Motivation: Atmospheric multi-scale regimes
- Overview of adaptive grid techniques
 - Static grid adaptations
 - Dynamic grid adaptations
- Introduction to the NASA/NCAR finite volume (FV) dynamical core
- Adaptive grid approach: Block-structured adaptive grids on the sphere
 - Adaptation strategy for static and dynamic adaptations
 - Adaptive spherical grid library for parallel processors
- Results: The statically and dynamically adaptive FV model
 - 2D shallow water experiments
 - 3D idealized dynamical core experiments
- Discussion: Adaptation criteria for real weather scenarios
- Conclusion and Outlook

Features of Interest in a Multi-Scale Regime

Hurricane Frances

Hurricane Ivan

September/5/2004

Adaptive Grids for 3D Atmospheric Models

- Statically adaptive grids
 - Reduced grid
 - Stretched grids
 - Transformed grids (e.g. Schmidt coordinate transformation)
 - Unstructured grids
 - Nested grids
- Dynamically adaptive grids
 - Irregular data structures: triangulated grids
 (Bacon et al., MWR 1998, Gopalakrishnan et al., MWR 2002)
 - Regular data structures: block-structured lat-lon grid (Skamarock et al., JCP 1989, Hubbard and Nikiforadis, MWR 2003, Jablonowski et al. 2004)
 - Cubed sphere with spectral element formulation: active research by A. St-Cyr, S. Thomas and J. Dennis (NCAR)

Static Adaptations: Reduced Grids

Number of grid cells in longitudinal direction is reduced towards high latitudes
 Keeps the resolution more uniform, allows longer time steps

Static Adaptations: Stretched Grids

GEM Canadian Model

Static Adaptations: Rotated and transformed (Schmidt) lat-lon grid

Model Arpege Meteo France

Static Adaptations: Stretched Icosahedral Grid (Schmidt transformation)

Courtesy of H. Tomita (Frontier Research System for Global Change, Japan)

Static Adaptations: Unstructured Grids

Model SEOM: Spectral Element Ocean Model, here 3552 elements with 64 collocation points

Spectral elements allow flexible configurations: h and p refinements possible (compare to D.B. Haidvogel's presentation)

Source: Rutgers University

Average grid spacing (km) within each element

Static adaptations: (Multiple) Nested Grids

Canadian Model

Dynamic Adaptations: Irregular Triangular Grid

Hurricane Floyd (1999)

OMEGA model

Courtesy of A. Sarma (SAIC, NC, USA)

Colors indicate the wind speed

Adaptive Grids for Weather and Climate Models

- Research goal: Build a hydrostatic (and later a non-hydrostatic) dynamical core for a future General Circulation Model (GCM) that can statically and dynamically adapt its horizontal resolution with respect to
 - regions of interest (e.g. mountain regions)
 - features of interest (e.g. low pressure systems, convection?, fronts?)
- Scientific computing challenge: Interdisciplinary team effort with the University of Michigan
 - Atmospheric science (Joyce Penner, Michael Herzog)
 - Numerics (Bram van Leer, Ken Powell)
 - Computer Science (Robert Oehmke, Quentin Stout)
- Collaboration with NASA / GSFC: S.-J. Lin and Kevin Yeh

The NASA/NCAR finite volume dynamical core

- 3D hydrostatic dynamical core for climate and weather prediction (also called Lin-Rood dynamical core):
 - 2D horizontal equations are the shallow water equations
 - 3rd dimension in the vertical direction is a floating Lagrangian coordinate

2D model is 1-level version of the dynamical core: Idealized test bed

• Numerics: Finite volume approach

- conservative and monotonic transport scheme
- upwind biased 1D fluxes, operator splitting
- van Leer second order scheme for time-averaged numerical fluxes
- PPM third order scheme (piecewise parabolic method) for prognostic variables
- Staggered grid (Arakawa D-grid)

The 3D Lin-Rood Finite-Volume Dynamical Core

Momentum equation in vector-invariant form

$$\frac{\partial v_h}{\partial t} + (\zeta + f) \overset{\mathbf{r}}{k} \times \overset{\mathbf{r}}{v_h} + \overset{\mathbf{r}}{\nabla} K + \overset{\mathbf{r}}{\nabla}_p \Phi = 0$$

Continuity equation

$$\frac{\partial \delta p}{\partial t} + \vec{\nabla} \bullet \left(\delta p \vec{v} \right) = 0$$

$$\overset{\mathbf{r}}{\nabla} \Phi + \frac{1}{\rho} \overset{\mathbf{r}}{\nabla} p$$

Pressure gradient term in finite volume form

Thermodynamic equation

$$\frac{\partial(\delta p\Theta)}{\partial t} + \vec{\nabla} \bullet (\delta p\Theta\vec{v}) = 0$$

The prognostics variables are:

$$u, v, \Theta, \delta p = -\rho g \delta z$$

δp: pressure thickness

Floating Lagrangian Vertical Coordinate

- 2D transport calculations within floating Lagrangian layers
- Layers are material surfaces, no vertical advection
- Periodic re-mapping of the Lagrangian layers onto reference grid

Adaptive Mesh Refinement Strategy in Spherical Geometry

Self-similar blocks with 3 ghost cells in x & y direction

Block-data structure and Reduced Grids

1 reduction level

2 reduction levels

Ghost cell exchange at fine-coarse interfaces

Fine – coarse grid interface: Fluxes across boundaries

Ensure mass conservation: flux averaging with surface area weights

Spherical Adaptive Grid Library

Block management is done by a Spherical Adaptive Grid Library: developed by Robert Oehmke & Quentin Stout (U of Michigan)

Designed for distributed memory parallel computers

Library manages:

- Definition and distribution of the sphere: Initial grid setup
- MPI communication among neighboring blocks
- Load balancing: e.g. equal number of blocks on each processor
- Adaptive grids: generation/destruction of blocks, keeps track of neighbors
- Iterations through the blocks

User supplied routines:

- Pack/unpack routines for boundary exchanges
- Split / Join operations for boundary exchange if neighboring blocks are at different resolutions
- Interpolation routines for data in newly refined/coarsened blocks

Overview of results: Highlights

- 2D shallow water tests:
 - (Williamson et al., JCP 1992 test suite)
 - First glimpse: Track the features of interest
 - Advection experiments (test case 1)
 - Advection with a reduced grid
 - Static refinements in regions of interest (test case 2)
 - Dynamic refinements and refinement criteria: Flow over a mountain (test case 5)
- 3D dynamical core tests:
 - Static refinements along the storm track
 - Dynamic refinements with vorticity criterion

First glimpse: Adaptations at work

Dynamic adaptations and the reduced grid

2 reductions

No noise or distortions accurate transport

2D Static adaptations: Region of interest

Smooth flow in regimes with strong gradients

2D Static adaptations: Closer look

Smooth wind field

• No severe noise or distortions at the fine-coarse grid interface

2D Static adaptations: Error norms

Test case 2, $\alpha = 45$:

- Errors at grid interfaces are moderate
- Errors increase in regions with strong gradients

Error norms 0.0010 non-adapted grid (2.5deg) static, placed at (135E,30N) as shown earlier static, placed at (180E,45N) 0.0008 Tolstykh (2.5deg), MWR 2002 Normalized 1₂(h) 0.0006 0.0004 0.0002 0.0000 48 96 336 192 240 288Hours

2D Dynamic adaptations

Adaptation criterion: based on the gradient of the geopotential height field

Adaptation criterion: Vorticity

Vorticity criterion detects regions with strong curvature

Adaptation criterion: Geopotential gradient

Gradient criterion detects disconnected regions of the wave train

Baroclinic wave test case

- analytically specified balanced initial field with overlaid perturbation
- baroclinic wave develops after 5-10 days
- deterministic test that converges towards reference solution

Jablonowski and Williamson 2004

Baroclinic waves in the 3D regime

- Jablonowski-Williamson baroclinic wave test case for dyn. cores
- Coarse resolution does not resolve the wave train

Static adaptations in 3D

• 1 Refinement along the storm track improves the simulation

3D run with 1 static refinement (day 10), finest resolution 2.5°x2.5°

Static adaptations in 3D

• 2 Refinements along the storm track capture the wave accurately

Static adaptations in 3D

• 3 Refinements along the storm track: no further intensification

Dynamic adaptations in 3D

- Polvani et al. 2004 baroclinic wave test case
- Refinements are guided by relative vorticity threshold

Dynamic adaptations in 3D

- Baroclinic wave is detected, more accurate prediction
- Sensitive relative vorticity threshold: 0.75*10⁻⁵ 1/s

Dynamic adaptation criteria: Features of interest

- Based on flow characteristics:
 - Simple thresholds
 - Gradient: grid is refined in regions with sharp gradients and coarsened in regions with smooth flows
 - Curvature
 - Flow features:
 - Vorticity
 - Divergence
 - Instability indicators, vertical temperature profiles
 - Cloud distribution, tracer concentration, convection, squall lines
- Based on numerics:
 - Estimation of the (numerical) local truncation error

Widely used:flow-based (gradient) indicators, but maybe mix isin 3D:vertical level must be selected

Real weather scenarios: 3D regimes

Winter storm in Europe on December 25, 1999

Suitable criterion for baroclinic waves, centers not necessarily detected, Post-processing quantity

Problematic: also detects land-sea mask, cyclone not detected, post-processing quantity

Problematic: Divergence can be noisy

Readily available on model levels: Possibly best option Choice of the vorticity threshold determines the sensitivity

Conclusions

- Static and dynamic refinements on the sphere work
- > AMR is a current research topic for the atmospheric sciences
- Future outlook:
 - Static and dynamic adaptations are a viable option for short-term weather predictions
 - \checkmark track storms as they appear
 - ✓ focus on forecast region of interest: replace nested grids
 - Static adaptations are feasible for long-term climate studies
 - ✓ refine mountainous terrain, reinitialize orography
- ⇒ Future steps: Add NCAR's 'physics' package, assess ref. criteria