
A uniform programming model for
complex distributed data objects
in distributed and shared memory

V. Balaji
Princeton University and NOAA/GFDL

Robert W. Numrich
Minnesota Supercomputing Institute

ECMWF High Performance Computing Workshop
Reading, UK

29 October 2004

Overview

• A uniform view of existing memory models.

• Target codes: shallow water example.

• High-level syntax for expressing data dependencies.

• Implementation in various parallelism idioms.

• Advanced features.

1

Memory models

Shared memory signal parallel and critical regions, private and shared vari-
ables. Canonical architecture: UMA, limited scalability.

Distributed memory domain decomposition, local caches of remote data (“ha-
los”), copy data to/from remote memory (“message passing”). Canonical
architecture: NUMA, scalable at cost of code complexity.

Distributed shared memory or ccNUMA message-passing, shared memory
or remote memory access (RMA) semantics. Processor-to-memory dis-
tance varies across address space, must be taken into account in coding
for performance. Canonical architecture: cluster of SMPs. Scalable at
large cost in code complexity.

2

Target codes

What algorithm developers need is to be able to think about the problem in
terms of their needs, and not those of the underlying architecture. The lan-
guage for expressing concurrent computation should not involve “messages”,
“critical regions”, “processor-memory distance”, but instead, “data dependency”,
i.e “in order to compute a(i,j) I need the value of a(i,j+1)”.

The target codes being considered are those with well-defined and predictable
data dependencies. We have called these “grid codes”, the grid being the
index-space substrate on which data dependencies are defined.

3

A general communication and synchronization

model for parallel systems

We use the simplest possible computation to illustrate the uniform memory
model. Consider the following example:

real :: a, b=0, c=0
b = 1
c = 2
a = b + c
b = 3 (1)

at the end of which both a and b must have the value 3.

4

A key abstraction: PETs and TETs

a=... a=... a=... a=...

allocate(a) allocate(a)allocate(a) allocate(a)

? ? ? ?

allocate(a)

? ? ? ?

a=... a=... a=... a=...
? ? ? ?

A persistent execution thread (PET) executes an instruction sequence on a
subset of data in unison with other PETs.

The persistence requirement is that the thread must have a lifetime at least as
long as the distributed data object.

Persistent and transient execution threads. PETs exist prior to the allocation
of any data object they operate upon; TETs are created after. PETs and TETs
may be layered upon each other (not shown).

5

Sequential and parallel processing

M

R

P

b=1
c=2
a=b+c
b=3

M

R

P0

R

P1

b=1 c=2
a=b+cb=3

Let us now suppose that the computations of b and c are expensive, and have no mutual
dependencies, and are thus good targets for being performed concurrently. If there were two
processors able to access the same memory, we could process b and c independently, as
shown on the right. Two issues arise. One minor one is that the memory traffic is somewhat
increased: on the left the values of b and c can stay in the registers, without updating the
memory values. On the right it is necessary, first, to transfer the value of b to memory where
it can be read by the other processor, and second. to signal that the computations is done. If
the processor on the right reads the value of b before it has been updated (a race condition)
the result will be incorrect.

6

Race conditions

a

b=a c=a

a

b=a a=c

a

a=b a=c

Race conditions occur when one of two concurrent execution streams attempts to write to a
memory location when another one is accessing it with either a read or a write: it is not an
error for two PETs to read the same memory location simultaneously. The second and third
case result in a race condition and unpredictable results. The third case may be OK for certain
reduction or search operations, defined within a critical region.

The central issue in parallel processing is the avoidance of such a race condition with the
least amount of time spent waiting for a signal: when two concurrent execution streams
have a mutual dependency (the value of b), how does one stream know when a value it is
using is in fact the one it needs? Several approaches have been taken.

7

Shared memory and message passing

(a)

P0 P1

b=1 c=2

a=b+c
b=3

-lock(b)

�
lock(b)

(b)

P0 P1

b=1 c=2

a=b+c
b=3

-send(b)
�

recv(b)

Parallel processing: comparison of signals for shared-memory and message-passing. The
computations b=1 and c=2 are concurrent, and their order in time cannot be predicted. (a)
In shared-memory processing, mutex locks are used to ensure that b=1 is complete before
P1 computes a=b+c, and that this step is complete before P0 further updates b. In message-
passing, each PE retains an independent copy of b, which is exchanged in paired send/receive
calls. After the transmission, P0 is free to update b.

8

Remote memory access (RMA)

(a)

P0 P1

b=1 c=2

a=b+c
b=3

�
start(b)

-
put(b)

�
wait(b)

(b)

P0 P1

b=1 c=2

a=b+c
b=3

�
get(b)

-post(b)
�

complete(b)

The name one-sided message passing is often applied to RMA but this is a misleading
term. Instead of paired send/receive calls, we now have transmission events on one side (put,
get) paired with exposure events (start,wait) and (post,complete), respectively, in MPI-
2 terminology, on the other side. It is thus still “two-sided”. A variable exposed for a remote
get may not be written to by the PE that owns it; and a variable exposed for a remote put may
not be read.

Note that P1 begins its exposure to receive b even before executing c=2. This is a key opti-
mization in parallel processing, overlapping computation with communication.

9

Shared memory and message passing

(a)

P0 P1

b=1 c=2

a=b+c
b=3

�
wrlock(b)

-
rdlock(b)

� rdlock(b)

(b)

P0 P1

b=1 c=2

a=b+c
b=3

�
irecv(b)

-
isend(b)

�

wait(b)
-

Parallel processing: the full synchronization model applied to shared-memory protocols and
message-passing. Note that in shared memory, P0 never relinquishes the write-lock. In
message-passing, this is done using non-blocking isend and irecv operations.

10

Non-blocking communication

Network

��
��
M

�
��
C

P

��
��
M

�
��
C

P

Network

��
��
M

�
��
C

P

��
��
M

�
��
C

P

• On tightly-coupled systems, independent network controllers can control data flow be-
tween disjoint memories, without involving the processors on which computation takes
place. True non-blocking communication is possible on such systems.

• Note that caches induce complications.

• On loosely-coupled systems, this is implemented as the semantically equivalent de-
ferred communication, where a communication event is registered and queued, but
only executed when the matching block is issued.

11

The complete memory model
All the above mechanisms of sharing data can be combined into a single uniform memory
model, where an object has two states READ and WRITE. There are three types of access
operations, request, require, and release.

Access State MPI shmem MPI-2 Threads
Request READ irecv status=WAIT post WRLOCK?

wait(status=OK) wait(!WRLOCK)
Require READ wait unbuffer wait lock RDLOCK

put(put=OK)
Release READ unlock RDLOCK

wait(put=OK) start
Request WRITE isend put(buffer) put RDLOCK?

put=WAIT
Require WRITE wait fence complete wait(!RDLOCK)

put(status=OK) lock WRLOCK
Release WRITE unlock WRLOCK

12

Example: a release-write protocol
real :: a, b=0, c=0
integer :: p0, p1, pe
if(pe==p0)then

b = 1
call mpp_send(b, 1, p1)...
call mpp_sync_self()
b = 3

else if(pe==p1)then
c = 2
call mpp_recv(b, 1, p0)
a = b + c

end if

write-release
write-require

read-require

b cannot be on LHS
-

-

-

�

Any existing memory model can be formulated as a subset of the full UMM described above.
For example, the FMS MPP layer is based on a non-blocking mpp_send and a blocking
mpp_recv call.

13

That’s all very well, but...
The full UMM as applied to a single scalar variable b appears rather elaborate. In real codes,
however, we are dealing with more complex data objects, e.g distributed arrays, or components.
The strength of this model becomes more apparent if we build UMM semantics directly into
high-level distributed datatypes.

The existing and emerging modeling frameworks already implement such distributed data ob-
jects.

Distributed array An ESMF_Field holds its distributed contents in an ESMF_Array, which
already contains metadata describing distribution information (DataMap, Layout, VM).
The actual (“naked”) local array can be attached and detached with no data copies.

type(ESMF_Field) :: field
real :: a(:,:,:)
a(:,:,:) => ESMF_FieldGetDataPointer(field)
call ESMF_FieldHalo(field)
... = a(i+1,j+1,k) + ... (2)

Components Components and their states are distributed entities whose parallel data ex-
change model is a subset of the full UMM. For instance, PRISM exchanges data using a
non-blocking PRISM_Put and a blocking PRISM_Get (a “write-release” model).

14

Programming the UMM
• Clearly we would like to keep the complexities of programming distributed data objects out

of numerical algorithms as much as possible. We are currently exploring a kernel-driver
programming model, where each algorithm is coded as a module with a driver and a set
of kernels. External routines call the driver, using high-level distributed objects; it in turn
orchestrates numerical kernels that are written with simple intrinsic data types passed by
reference.

type(ESMF_Field) :: field
real :: a(:,:,:)
a(:,:,:) => ESMF_FieldGetDataPointer(field)
call ESMF_FieldHalo(field)
... = a(i+1,j+1,k) + ... (3)

• The process of acquiring access to an array’s contents has been split into a request and
require phase in order to enable useful work on a PET while waiting for access. This
may be done by a compiler (“pre-fetching”). Programming language extensions such as
Co-Array Fortran are designed for declaration of any derived type as a distributed object,
and allowing the compiler to apply pre-fetching and other optimizations.

15

Example: 1D shallow water model

∂h

∂t
= −H

∂u

∂x
(4)

∂u

∂t
= −g

∂h

∂x

A forward-backward shallow water code might look like:

ht+1
i = h(ht

i, u
t
i, u

t
i−1, u

t
i+1) (5)

ut+1
i = u(ut

i, h
t+1
i , ht+1

i−1 , ht+1
i+1)

BEGIN TIME LOOP:
h(i) = h(i) - (0.5*H*dt/dx)*(u(i+1) - u(i-1)) FORALL i
u(i) = u(i) - (0.5*g*dt/dx)*(h(i+1) - h(i-1)) FORALL i

END TIME LOOP: (6)

16

Memory allocation

The first step in a discrete computation of Eq. 5 on a distributed set of PETs is
to allocate memory for a distributed array:

MakeDistributedArray(NX, NP, (+1,-1), h, s, e) (7)

• Discretize on NX points, distributed across NP PETs.

• Data dependencies are (+1,-1) (this data structure can be made arbi-
trarily complex).

• Each PET receives a pointer h to the local portion of the distributed array,
as well as indices s and e marking the start and end of the local computa-
tional domain.

17

Implementation
Distributed memory PET gets an array h(s-1,e+1), which includes a local cache of the

data on neighbouring PETs (the “halo”). User must perform operations (“halo updates”)
at appropriate times to ensure that the cache contains a correct copy of the remote data.

Shared memory one PET requests memory (malloc) for all NX points while the others wait.
All PETs are given a view into this single array.

DSM or ccNUMA processor-to-memory distance varies. We call the set of PEs sharing flat
(uniform) access to a block of physical memory an mNode, and the set of PEs sharing
an address space an aNode.

Whether it is optimal to treat an entire aNode as shared memory, or distributed memory,
or some tunable combination thereof depends on the platform (hardware), efficiency of
the underlying parallelism semantics for shared and distributed memory (software), and
even problem size. Memory request procedures must be flexible.

18

A 2D example

(1,1)

(nx,ny)

(is,js)

(ie,je)

Consider a platform consisting of 16 PEs consisting of 4 mNodes of 4 PEs
each. We also assume that the the entire 16-PE platform is a DSM or ccNUMA
aNode. We can then illustrate 3 ways to implement a DistributedArray.
One PET is scheduled on each PE.

19

Distributed memory

M

P P P P

M

P P P P

M

P P P P

M

P P P P

• each domain allocated as a separate array with halo, even within the same mNode.

• Performance issues: the message-passing call stack underlying MPI or another library
may actually serialize when applied within an mNode.

20

Hybrid memory model

M

P P P P

M

P P P P

M

P P P P

M

P P P P

• shared across an mNode, distributed among mNodes.

• fewer and larger messages than distributed memory, may be less latency-bound.

21

Pure shared memory

M

P P P P

M

P P P P

M

P P P P

M

P P P P

Array is local to one mNode: other mNodes requires remote loads and stores. OK on platforms
that are well-balanced in bandwidth and latency for local and remote accesses. ccNUMA
ensures cache coherence across the aNode.

22

Intelligent memory allocation on DSM

M

P P P P

M

P P P P

M

P P P P

M

P P P P

Better memory locality: allocate each block of 4 domains on a separate page, and assign
pages to different mNodes, based on processor-memory affinity.

23

Memory access operations for distributed arrays
Request WRITE must be posted (and fulfilled: see Require below) before array appears on

LHS. Non-blocking.

Request READ must be posted (and fulfilled: see Require below) before array halo appears
on RHS. Non-blocking.

Require WRITE must be fulfilled before array appears on LHS. Blocking.

Require READ must be fulfilled before array halo appears on RHS. Blocking.

Release WRITE must be posted immediately following update of array contents. Non-blocking.

Release READ must be posted immediately following computations requiring array halo.
Non-blocking.

24

Vectorization!

Simultaneous READ and WRITE access to an array is never permitted: if a PET
P has WRITE access to its computational domain, the neighbouring PET will
have WRITE access to P ’s halo, and thus P cannot have READ access.

To put it another way, one cannot write a loop of the following form:

h(i) = a*(h(i+1) - h(i-1)) FORALL i (8)

as the result is not well-defined on distributed arrays. This is the same rule
that must be obeyed to avoid vector dependencies.

25

Summary
• Uniform syntactic view of distributed, shared and hybrid memory architectures for codes

with well-defined and predictable data dependencies. No software-layering issues in hy-
brid programming.

• Underlying architecture is modeled as a set of persistent execution threads (PETs), hav-
ing a lifetime at least as long as the distributed data object.

• Applicable to distributed arrays, as well as states and components.

• Access operations: request/require/release. require alone is blocking.

• Coding rules: same restrictions as for vectorization.

• Implementation: MPI, shmem, MPI-2, shared memory threads using mutex locks.

• Distributed data objects are well-suited to the use of the co-array extensions.

• A kernel-driver programming model is used to keep the extended datatypes restricted to
the driver, and have kernels that use simple types passed by reference.

26

