
A comparative study of coupling
frameworks: the MOM case

study
V. Balaji

Princeton University and NOAA/GFDL
Giang Nong and Shep Smithline

RSIS Inc. and NOAA/GFDL
Rene Redler

NEC Europe Ltd

ECMWF High Performance Computing Workshop
Reading, UK

25 October 2004

Overview of talk

• Emergence of coupling frameworks

• Current capabilities at GFDL: the FMS coupler

• Implementation in ESMF and PRISM

• Towards a layered approach

1

Technological trends
In climate research... increased emphasis on detailed representation of individual phys-

ical processes governing the climate; requires many teams of specialists to be able
to contribute components to an overall coupled system;

In computing technology... increase in hardware and software complexity in HPC, as
we shift toward the use of scalable computing architectures.

In software design for broad communities... The open source community provided a
viable approach to the construction of software to meet diverse requirements through
“open standards”. The standards evolve through consultation and prototyping across
the user community.

2

The community response: modernization of

modeling software

• Abstraction of underlying hardware to provide uniform programming
model across vector, uniprocessor and scalable architectures;

• Distributed development model: many contributing authors. Use high-
level abstract language features to facilitate development process;

• Modular design for interchangeable dynamical cores and physical pa-
rameterizations, development of community-wide standards for com-
ponents.

3

FMS and MOM
GFDL developed the Flexible Modeling System (FMS) starting in 1997, as a means of uni-
fying all of GFDL models within a common codebase and shared software infrastructure.
It is a design prototype for the emerging community coupling frameworks: Earth Sys-
tem Modeling Framework (ESMF) and PRogramme for Integrated earth System Modeling
(PRISM).

The GFDL Modular Ocean Model (MOM) is a publicly available ocean model distributed
with FMS. It is a Z-coordinate ocean model in generalized curvilinear horizontal coordi-
nates, with an explicit free surface, a non-Boussinesq option, and 2- and 3- time-level
schems. It has been used in studies spanning a wide range of time and space scales,
from short-term studies of channel flows to coupled climate integrations on 1000-year
scales. A wide range of physics packages is available for use at various resolutions.

Links:

FMS and MOM http://www.gfdl.noaa.gov/ fms

Downloads: http://fms.gfdl.noaa.gov

ESMF http://www.esmf..ucar.edu

PRISM http://prism.enes.org

4

Architecture of FMS

Machine layer

Distributed grid layer

Model layer

Coupler layer

FMS Infrastructure

User code

FMS Superstructure

? ?

5

FMS shared infrastructure: machine and grid

layers
MPP modules communication kernels, domain decomposition and update, parallel I/O.

Time and calendar manager tracking of model time, scheduling of events based on
model time.

Diagnostics manager Runtime output of model fields.

Data override Runtime input of model fields.

Scientific libraries Uniform interface to proprietary and open scientific library routines.

6

The FMS coupler
Used for data exchange between models. Key features include:

Conservation: required for long runs.

Resolution: no constraints on component model timesteps and spatial grid. Supports
both explicit and implicit timestepping.

Exchange grid: union of component model grids, where detailed flux computations are
performed (Monin-Obukhov, tridiagonal solver for implicit diffusion, ...)

Fully parallel: Calls are entirely processor-local: exchange software will perform all inter-
processor communication.

Modular design: uniform interface to main calling program.

No brokering: each experiment must explicitly set up field pairs.

Single executable:

Highly efficient: currently able to couple atmos/ocean explicitly at each ocean timestep,
atmos/land/ice implicitly at each atmos timestep for current dec/cen models.

7

Implicit coupling and the exchange grid

Fluxes at the surface often need to be treated using an implicit timestep.
(e.g temperature flux in near-surface layers that can have vanishingly small
heat capacity.) This feature is key in the design of the FMS coupler. Con-
sider simple vertical diffusion in a coupled atmosphere-land system:

∂T

∂t
= −K

∂2T

∂z2
(1a)

T
n+1
k − Tn

k

∆t
= −K

T
n+1
k+1 + T

n+1
k−1 − 2T

n+1
k

∆z2
(1b)

AT
n+1 = T

n (1c)

This is a tridiagonal matrix inversion which can be solved relatively effi-
ciently using an up-down sweep. The problem is that some of the layers
are the atmosphere and others are in the land. Moreover the components
may be on different grids.

8

Implicit coupling and the exchange grid

Atmosphere

Exchange

Land Atmosphere

Land

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

9

coupler main loop

do nc = 1, num_cpld_calls
call generate_sfc_xgrid(Land, Ice)
call flux_ocean_to_ice(Ocean, Ice, Ocean_ice_flux)
call update_ice_model_slow_up(Ocean_ice_flux, Ice)

!fast loop
call update_land_model_slow(Land)
call flux_land_to_ice(Land, Ice, Land_ice_flux)
call update_ice_model_slow_dn(Atmos_ice_flux, Land_ice_flux, Ice)
call flux_ice_to_ocean(Ice, Ice_ocean_flux)
call update_ocean_model(Ice_ocean_flux, Ocean)

enddo

(2)

10

Ocean boundary
The boundary state is the state of the ocean model visible outside: the fluxes are the fields it needs for its
boundary forcing.

type ocean_boundary_data_type
type(domain2D) :: Domain
real, pointer, dimension(:,:) :: t_surf, s_surf, sea_lev, &

frazil, u_surf, v_surf
logical, pointer, dimension(:,:) :: mask
type (time_type) :: Time, Time_step

end type ocean_boundary_data_type

type, public :: ice_ocean_boundary_type
real, dimension(:,:), pointer :: u_flux, v_flux, t_flux, q_flux
real, dimension(:,:), pointer :: salt_flux, lw_flux, sw_flux, lprec, fprec
real, dimension(:,:), pointer :: runoff, calving
real, dimension(:,:), pointer :: p
real, dimension(:,:,:), pointer :: data
integer :: xtype !REGRID, REDIST or DIRECT

end type ice_ocean_boundary_type

11

Flux exchange
Three types of flux exchange are permitted: REGRID, REDIST and DIRECT.

REGRID physically distinct grids, requires exchange grid.

REDIST identical global grid, different domain decomposition.

DIRECT identical grid and decomposition.

Current use: REGRID between atmos⇐⇒ice, atmos⇐⇒land, land⇐⇒ice, REDIST be-
tween ocean⇐⇒ice.

12

Serial coupling
Uses a forward-backward timestep for coupling.

At+1 = At + f(Ot) (3)
Ot+1 = Ot + f(At+1) (4)

6

-

P

T

Ot

At+1

Ot+1

At+2

Ot+2

At+3

Ot+3

At+4

Ot+4

At+5

13

Concurrent coupling
This uses a forward-only timestep for coupling. While formally this is unconditionally un-
stable, the system is strongly damped. Answers vary with respect to serial coupling, as
the ocean is now forced by atmospheric state from ∆t ago.

At+1 = At + f(Ot) (5)
Ot+1 = Ot + f(At) (6)6

-

P

T

Ot

At

Ot+1

At+1

Ot+2

At+2

Ot+3

At+3

Ot+4

At+4

14

In terms of model code...
do nc = 1, num_cpld_calls

call generate_sfc_xgrid()
call flux_ocean_to_ice()
if(use_lag_fluxes)call flux_ice_to_ocean()
if(atmos_pe)then

call update_ice_model_slow_up()
call update_atmos... !fast loop
call update_land_model_slow()
call flux_land_to_ice()
call update_ice_model_slow_dn()

endif
if(.NOT.use_lag_fluxes)call flux_ice_to_ocean()
if(ocean_pe)call update_ocean_model()

enddo

• The pelists are set up in the coupler layer, and subsequently all the mpp calls auto-
matically operate within their pelists, with no changes to the model code.

• Within the atmos pelist, we can further declare land and ice as concurrent if needed.
Not currently implemented, since Tice � Tland.

15

Fitting into FMS

To incorporate your own ocean model (say) into FMS, you have to provide
init/run/exit routines (ocean_model_init, update_ocean_model,
ocean_model_end) and also encapsulate your ocean boundary state into
ocean_boundary_type.

It helps to use the FMS infrastructure but not essential. For users with,
say, a solo atmospheric model code that they wish to couple to MOM, the
advantage is that MOM is distributed with the FMS coupler, and all that is
needed is to write a few “wrapper” routines for the atmospheric model.

16

Features of the FMS coupler
• Predefined list of components (atmosphere, ocean, land, ice).

• Encapsulated boundary state and boundary fluxes with predefined fields. (There is
provision for adding an arbitrary bundle of tracers at runtime).

• Support for serial and concurrent coupling within single executable.

• Implicit coupling between land-ocean surface and atmosphere on atmospheric timestep;
explicit coupling between ocean surface and ocean on ocean timestep. The atmo-
sphere run method is split into down-up phases for the tridiagonal solver.

• Coupler serves as the scheduler for components, which return control to the coupler
at the end of an independent execution segment.

• Support for ensembles (multiple instances of the same component).

17

The ESMF coupler
The ESMF coupler closely follows the architecture of FMS, but with a more general and
powerful notion of a component. A component is defined by

• its structure, consisting of an init, run and exit method. Unlike FMS, the cou-
pler does not directly invoke these routines. These are registered for use by an
ESMF_SetServices() call.

• its import and export states (analogous to the boundary fluxes and boundary states
in FMS).

• a coupler must be written for every pair of components. This is not as onerous as it
sounds: coupler functions are fairly generic and once one exists, other similar com-
ponents can be plugged in with no effort at all. Efforts are underway to generalize
this “middleware”.

18

Making a MOM ESMF component
• Register the init/run/exit methods.

type(ESMF_GridComp) :: comp...
call ESMF_GridCompSetEntryPoint(comp,ESMF_SETRUN,update_ocean_model,...)

(7)

• Create the import and export states from FMS datatypes. This can be done entirely
with pointers: no data movement is involved.

ocean%u_surf=>expFMSArray(1)%ptr...
expESMF_Field(i)=ESMF_FieldCreate(ocnGrid,expFMSArray(i)%ptr,...)
call ESMF_StateAddField(expState,expESMF_Field,...)

(8)

• Run the component.

type(ESMF_GridComp) :: compOcn...
compOcn=ESMF_GridCompCreate(vm,"Ocean",rc=rc)
call ESMF_GridCompSetServices(compOcn,OceanRegister,rc)...
call ESMF_GridCompRun(compOcn,impOcn,expOcn,topClock,rc=rc)

(9)

19

The PRISM coupler

The PRISM coupler is designed with additional constraints: where com-
ponents may not be able to be part of a common executable, where their
execution sequence may not be easily parsed into init, run, and exit

methods, and where components may not be able to return control to an
external entity during execution. This has led to a different design, where
concurrency is the norm, and components and the PRISM coupler may all
be independent executables.

External configuration files (PMIOD/SMIOC/SCC) are used to share run-
time configuration information between components and the PRISM sys-
tem.

After configuration, components exchange data using PRISM_Put (non-
blocking) and PRISM_Get (blocking) calls. All execution is concurrent, with
the PRISM_Get block implicitly enforcing synchronization.

20

Making a MOM PRISM component
Write the SMIOC configuration information for MOM.

<transient local_name="ocean_SST">
<standard_name>sea surface temperature</standard_name>
<computation mask="true" mask_time_dependency="false"

method_type="mean">
<associated_gridfamily local_name="ocn_grid" />
<associated_compute_space local_name="center" />

</computation>

<intent>
<output transi_out_name="ocean_SST_out">
<exchange_date>
<period>

<nbr_secs type="xs:integer">43200</nbr_secs>
</period>

</exchange_date>
<corresp_transi_in type="xs:string">atm_SST_in</corresp_transi_in>
<component_name type="xs:string">atm</component_name>

</intent>
</transient>

21

Making a MOM PRISM component
• Ingest the configuration information in ocean_model_init.

call prism_def_var (var_id, var_name, grid_id, method_id, &
mask_id, var_nodims, actual_shape, var_type, ierr)

(10)

• Modify update_ocean_model to add the appropriate PRISM_Put and PRISM_Get
calls.

call get_date (Time%model_time, date%year, date%month, &
date%day, date%hour, date%minute, second)

call PRISM_calc_newdate (...)
call PRISM_Put(var_id, date, date_bound, data, info, ierr)

(11)

22

Comparison of coupling models

C0 C1

C2

?

? ?

C0C1 → C3

?

?

C3

C3 → C2

C0

-

C1
�

C2

�

C3

-

P

• In FMS and ESMF, after each independent component run segment, control is re-
turned to the coupler, which runs on the union of all PEs of its child components.

• PRISM uses a client-server model where all components execute concurrently, and
the coupler P processes their PRISM_Put and PRISM_Get requests. Configuration
of the coupler is through external files (SMIOC/SCC).

23

Conclusions: toward a layered approach
• In FMS and ESMF, the coupler is part of a superstructure, which exercises control

and scheduling functions for components. Components must be structured in terms
of init, run and exit methods. In PRISM it is part of the infrastructure, sharing
configuration information and processing requests from components. This is the key
architectural difference, not the MPMD/SPMD distinction. Synchronization in either
architecture is provided by our applications, which remain in unison, never more than
one coupling timestep out of synchronicity.

• The ESMF generic component interface, discussed in another talk, is a powerful
abstraction for creating coupled models, in contrast with FMS, which is specifically
targeted at coupled climate models with standard components. It is likely that a
generic coupler with FMS-like structure and capabilities will emerge for coupled cli-
mate modeling, but based on ESMF components. This will be a significant commu-
nity resource.

• The ESMF component and state data structures are rich in metadata, matching the
information provided in PRISM configuration files. It is likely that a layered approach
sharing configuration management standards will emerge shortly. Grid standards
are an important emerging development in this area.

• Drivers for FMS/ESMF/PRISM can be automatically generated based upon this meta-
data.

24

