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Model error and background error
covariance

e 4D Variational Assimilation (4DVAR) is a
least squares optimal approximation to the
analysis under the assumptions that:

e [ he forecast model M is perfect

e [ he background forecast error covariance
IS constant in time

e Observation and background error covari-
ance matrices are known



Model error and background error
covariance

e The optimal BLUE (Best Linear Unbiased
Estimator) to the analysis is the Extended
Kalman Filter (EKF)

e 4DVAR is identical to EKF under the as-
sumptions above: it performs Kalman smooth-
ing for a perfect model with a constant
background error covariance and known ob-
servation and background error covariances

e Classical EKF calls for tangent linear fore-
casts of all columns of the forecast error
covariance matrix

e In operational NWP, this would mean 107
24 hour integrations every night - the equiv-
alent of ten million parallel one day fore-
casts



Model error and background error
covariance

e Optimal Interpolation (OI) and 3DVAR pro-
vide for an unbiased snapshot analysis that
IS independent of model error

e Continuous Data Assimilation (CDA) or " nudg-
ing”’ corrects for model errors, but is based
on empirical structure functions rather than
true model dynamics



Extended Kalman Filtering and 4D
Variational Assimilation

e EKF corrects for model error and dynami-

cally changing forecast error covariance ev-
ery time step

e As a result EKF, like CDA, OI or 3DVAR,

produces dynamically inconsistent model tra-
jectories

e [ hese dynamical inconsistencies provide for
the degrees of freedom, or " moving joints”
in the "rigid skeleton” of 4DVAR that are
needed to correct for model bias or chang-
ing background error



Approximating forecast error covari-
ance

e Variational and Kalman data assimilation
minimize the cost function for the analysis
xo at initial time (as modified from Beck
(2004))

L
J(wo) = Y ((wr — 2)T(P)) " H(ay — ad)+
t=0

re(yr — Hay) T Ry (ye — Hay))

where x; = M;(xg) by the nonlinear model
evolution, 'H is the nonlinear observation
operator and R the observation error co-
variance matrix. r¢ is an indicator function
to identify the time steps with observations

Yt-



e T he analysis error covariance matrix P% is
the inverse of the Hessian of J:

po — (J//)—l — (VVJ)_l

e [ he choice of forecast error covariance ma-
trix Ptf varies between different methods



Approximating forecast error covari-
ance

e 4ADVAR:

e P/ is the static background error matrix B
and there is no model error



Approximating forecast error covari-
ance

e Full Kalman Filter EKF:

e P/ is dynamic and may contain model error
with covariance matrix @

e P/ is propagated in time by the tangent lin-
ear model M. The model error covariance
matrix @ is added at each time step

P/ = MmpPoM] + Q
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Approximating forecast error covari-
ance

e Reduced Rank Kalman Filtering RRKF:

e RRKF behaves like the Extended Kalman
Filter in a low dimensional subspace deter-
mined at the beginning of the assimilation
window

E FT

T
oo L M;

P/ ="

e L is the orthogonal matrix that transforms
model variables into control variables. FE
is the model error covariance matrix in the
chosen k-dimensional subspace of the con-
trol space and F' is its cross-correlation ma-
trix with the complement subspace
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Approximating forecast error covari-
ance

e Ensemble Kalman Filter EnKF:

e A low dimensional approximation En — Ptf
to Ptf IS propagated by the full nonlinear
model and there is no model error

En— P/ = M(S)My(S)T

e S is a sample of vectors, such as a multi-
normal sample modulated by a low rank
approximation to the analysis error covari-
ance matrix P% at initial time
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Hessian approximation and singular
vectors

e [ he optimal low-rank approximation to fore-
cast error covariance, up to any given rank
k, and targeted at a particular final time
(and with respect to a particular final time
norm), are the dominant k singular vectors
of the Hessian, i. e. the inverse of the cor-
responding analysis error covariance matrix
P% They are called Hessian singular vec-
tors, or HSV's.

e As shown by Ehrendorfer and Beck(2003),
HSV's evolve into the eigenvectors of the
corresponding forecast error covariance ma-
trix P/ when the model dynamics are linear
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Hessian approximation and singular
vectors

e T he orthogonal Hessian singular vectors zg
are defined by

MTCTCMZO = )\(Pa)_lzo

zg(Pa)_lzo =1

where C' represents the chosen final time
norm

e With the perfect model assumption P/ =
MPeM?T, and we get
CPfCTZt — )\Zt

The 2z are still orthogonal, when trans-
ported by the tangent linear model
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Key Analysis Errors, observations and
RRKF skill

e Key Analysis Errors of Klinker, Rabier and
Gelaro (1998) are the initial time directions
that cause the largest deviations between
a 48 h forecast and the subsequent anal-
ysis, transported back to t = Oh by the
adjoint to the tangent linear model M7
They have been suggested to be an indi-
cation of dominant analysis errors.

e [saksen, Fisher and Andersson (2004) have
carefully analyzed the influence that an anal-
ySis can have through the HSV's computed
for t = 48 h on forecast quality and found
this connection problematic.
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e Different final time norms at t= 48h pro-
duce very different Key Analysis Error pat-
terns, yvet they should be due to the same
defects in the analysis.

e Also, corrections in Key Analysis Error di-
rections actually deteriorate the forecast
for the first 12 hours. An improved analysis
should do the opposite.

e Fisher and Andersson (2001) and also Leut-
becher have noted that even after the first
12 hours into the forecast, HSV’'s com-
puted at initial and final time, respectively,
project only weakly onto one another. They
mention this as a possible cause to the fail-
ure of RRKF experiments at ECMWF to
have a positive impact on forecast skill.
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Causes of failure of HSVs in RRKF:
the Roots

e Let's first see a video!

e Fluid flow is a three dimensional system of
Newtonian rotation with a very large num-
ber (O(exp(Re)) of rotational degrees of
freedom

e [ wo-dimensional rotation is predictable: its
underlying Newtonian Lie group U(1) is com-
mutative. Two-dimensional vortices repre-
sent barotropic flow.

e [T wo-dimensional vortices foliate the plane
and their structure can be represented by
a separable normed space and the corre-
sponding evolution operator is homeomor-
phic to a unitary operator.
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Causes of failure of HSVs in RRKF:
the Roots

e [ hree-dimensional Newtonian rotation is chaotic.
It can represent also baroclinic flows.

e The Lie group SO(3) of three dimensional
rotation is non-commutative and the corre-
sponding inviscid fluid flow cannot be rep-
resented by any real linear space.
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Causes of failure of HSV'’s in RRKF:
the Consequences

e As a consequence of its chaoticity, 3D fluid
flow cannot have any linear system of in-
variant subspaces. All subspaces ' roll away”
quite literally!

e T herefore HSV’s will be different for all fi-
nal times and all initial conditions. This
could be the reason why fixed subspaces
in RRKF, or Key Analysis Errors, do nor
persevere for even 12 hours.

e ENKF is likely to be troubled by this same
phenomenon, if its space of initial pertur-
bations is fixed for the whole analysis win-
dow

e Yet Ehrendorfer and Beck (2003) have shown,
that for a quasigeostrophic model, the full
EKF is quite skillful.

e But we cannot hope to compute the full
PJ even with the Earth Simulator 2!
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Plumbing covariance leaks

e EKF takes into account model error every
time step: P/ = MTPep 4+ Q

e As a result, it produces model trajectories
that are not dynamically consistent, but
still statistically BLUE

e In RRKF, the failure of the chosen sub-
space to contain the covariance ("It leaks
covariance’, according to Fisher and An-
dersson (2001)), is analogous to model er-
ror in the RRKF subspace. The @ term
should be present!

e \We can incorporate model error also with
Hessian singular vectors!
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Variational Kalman Filtering (VKF)

e [ he obvious answer is to recompute the
HSV's (almost) every time step. This could
be done with a local Lanczos algorithm.

e But there is a computationally faster way

to

achieve the same result:

Run 4DVAR over a few time steps - or
even just one - at a time and

Build an approximation to the Hessian
from the search directions with the LBFGS
update formula.

Use this LBFGS approximation to the
Hessian as a temporally local approxi-
mation to Ptf in a full EKF algorithm
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Variational Kalman Filtering (VKF)

e [ he resulting matrix spans the same HSV
subspace as Lanczos (Kauranne (1992)),
but for a temporally local analysis error
covariance matrix P£. This matrix has cor-
rectly accumulated all past analysis, back-
ground and model errors in the dominant
HSV's at each instant in time
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Computational Cost of Variational
Kalman Filtering

e The forecast error covariance P/ is kept
piecewise constant over a VKF assimilation
"mini window' of a few time steps.

e T here is no need for overlapping 4DVAR
periods, when a piecewise constant Pl is
used over a mini window.

e [ he computational cost of VKF is only
slightly larger than that of 4ADVAR.



23

A numerical example

e A linear advection diffusion equation over
a latitude circle with an ozone like source
term

ur = —vug + kugr + r(x)

where r(x) is a Haar wavelet like step func-
tion with average value zero

e A small finite difference model with 64 grid
points and a time step of 10 minutes

e Polar orbiter like satellite observations that
span a swath of ten grid points 15 times a
day

e (Gaussian observation noise
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e Model error introduced in a 50 per cent
systematic overestimation of r(x)

e A 15 day run, first 4 days shown

e A diagonal constant component diag(B)
(i.e. variance only) in the forecast error
covariance matrix P/.
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Conclusions

e Problems with Hessian Singular VVector based
low rank Kalman filtering methods, such as
RRKF and EnKF, may be a result of rapid
and nonunitary covariance matrix eigenspace
rotation in 3D fluid flow

e Low rank Kalman filtering methods must
take model error into account explicitly when
propagating forecast error covariance. Oth-
erwise covariance leaks away from any fixed
subspace

e Variational Kalman Filtering is a computa-
tionally efficient method to do this

e First numerical results with very simple mod-
els are encouraging, but

e Numerical tests with more elaborate atmo-
spheric models are needed



