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Model error and background error
covariance

• 4D Variational Assimilation (4DVAR) is a

least squares optimal approximation to the

analysis under the assumptions that:

• The forecast model M is perfect

• The background forecast error covariance

is constant in time

• Observation and background error covari-

ance matrices are known
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Model error and background error
covariance

• The optimal BLUE (Best Linear Unbiased

Estimator) to the analysis is the Extended

Kalman Filter (EKF)

• 4DVAR is identical to EKF under the as-

sumptions above: it performs Kalman smooth-

ing for a perfect model with a constant

background error covariance and known ob-

servation and background error covariances

• Classical EKF calls for tangent linear fore-

casts of all columns of the forecast error

covariance matrix

• In operational NWP, this would mean 107

24 hour integrations every night - the equiv-

alent of ten million parallel one day fore-

casts
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Model error and background error
covariance

• Optimal Interpolation (OI) and 3DVAR pro-

vide for an unbiased snapshot analysis that

is independent of model error

• Continuous Data Assimilation (CDA) or ”nudg-

ing” corrects for model errors, but is based

on empirical structure functions rather than

true model dynamics
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Extended Kalman Filtering and 4D
Variational Assimilation

• EKF corrects for model error and dynami-

cally changing forecast error covariance ev-

ery time step

• As a result EKF, like CDA, OI or 3DVAR,

produces dynamically inconsistent model tra-

jectories

• These dynamical inconsistencies provide for

the degrees of freedom, or ”moving joints”

in the ”rigid skeleton” of 4DVAR that are

needed to correct for model bias or chang-

ing background error
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Approximating forecast error covari-
ance

• Variational and Kalman data assimilation

minimize the cost function for the analysis

x0 at initial time (as modified from Beck

(2004))

J(x0) =
L∑

t=0

((xt − xb
t)

T (P f
t )−1(xt − xb

t)+

rt(yt −Hxt)
TR−1

t (yt −Hxt))

where xt = Mt(x0) by the nonlinear model

evolution, H is the nonlinear observation

operator and R the observation error co-

variance matrix. rt is an indicator function

to identify the time steps with observations

yt.
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• The analysis error covariance matrix P a is

the inverse of the Hessian of J:

P a = (J ′′)−1 = (∇∇J)−1

• The choice of forecast error covariance ma-

trix P
f
t varies between different methods
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Approximating forecast error covari-
ance

• 4DVAR:

• P f is the static background error matrix B

and there is no model error

P
f
t ≡ B
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Approximating forecast error covari-
ance

• Full Kalman Filter EKF:

• P f is dynamic and may contain model error

with covariance matrix Q

• P f is propagated in time by the tangent lin-

ear model M . The model error covariance

matrix Q is added at each time step

P
f
t = MtP

aMT
t + Q
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Approximating forecast error covari-
ance

• Reduced Rank Kalman Filtering RRKF:

• RRKF behaves like the Extended Kalman

Filter in a low dimensional subspace deter-

mined at the beginning of the assimilation

window

P
f
t = MtL

T

[
E FT

F I

]
LMT

t

• L is the orthogonal matrix that transforms

model variables into control variables. E

is the model error covariance matrix in the

chosen k-dimensional subspace of the con-

trol space and F is its cross-correlation ma-

trix with the complement subspace
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Approximating forecast error covari-
ance

• Ensemble Kalman Filter EnKF:

• A low dimensional approximation En − P
f
t

to P
f
t is propagated by the full nonlinear

model and there is no model error

En− P
f
t = Mt(S)Mt(S)T

• S is a sample of vectors, such as a multi-

normal sample modulated by a low rank

approximation to the analysis error covari-

ance matrix P a at initial time
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Hessian approximation and singular
vectors

• The optimal low-rank approximation to fore-

cast error covariance, up to any given rank

k, and targeted at a particular final time

(and with respect to a particular final time

norm), are the dominant k singular vectors

of the Hessian, i. e. the inverse of the cor-

responding analysis error covariance matrix

P a. They are called Hessian singular vec-

tors, or HSV’s.

• As shown by Ehrendorfer and Beck(2003),

HSV’s evolve into the eigenvectors of the

corresponding forecast error covariance ma-

trix P f when the model dynamics are linear
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Hessian approximation and singular
vectors

• The orthogonal Hessian singular vectors z0
are defined by

MTCTCMz0 = λ(P a)−1z0

zT
0 (P a)−1z0 = I

where C represents the chosen final time

norm

• With the perfect model assumption P f =

MP aMT , and we get

CP fCTzt = λzt

The zt are still orthogonal, when trans-

ported by the tangent linear model
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Key Analysis Errors, observations and
RRKF skill

• Key Analysis Errors of Klinker, Rabier and
Gelaro (1998) are the initial time directions
that cause the largest deviations between
a 48 h forecast and the subsequent anal-
ysis, transported back to t = 0h by the
adjoint to the tangent linear model MT .
They have been suggested to be an indi-
cation of dominant analysis errors.

• Isaksen, Fisher and Andersson (2004) have
carefully analyzed the influence that an anal-
ysis can have through the HSV’s computed
for t = 48 h on forecast quality and found
this connection problematic.
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• Different final time norms at t= 48h pro-

duce very different Key Analysis Error pat-

terns, yet they should be due to the same

defects in the analysis.

• Also, corrections in Key Analysis Error di-

rections actually deteriorate the forecast

for the first 12 hours. An improved analysis

should do the opposite.

• Fisher and Andersson (2001) and also Leut-

becher have noted that even after the first

12 hours into the forecast, HSV’s com-

puted at initial and final time, respectively,

project only weakly onto one another. They

mention this as a possible cause to the fail-

ure of RRKF experiments at ECMWF to

have a positive impact on forecast skill.
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Causes of failure of HSVs in RRKF:
the Roots

• Let’s first see a video!

• Fluid flow is a three dimensional system of

Newtonian rotation with a very large num-

ber (O(exp(Re)) of rotational degrees of

freedom

• Two-dimensional rotation is predictable: its

underlying Newtonian Lie group U(1) is com-

mutative. Two-dimensional vortices repre-

sent barotropic flow.

• Two-dimensional vortices foliate the plane

and their structure can be represented by

a separable normed space and the corre-

sponding evolution operator is homeomor-

phic to a unitary operator.
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Causes of failure of HSVs in RRKF:
the Roots

• Three-dimensional Newtonian rotation is chaotic.

It can represent also baroclinic flows.

• The Lie group SO(3) of three dimensional

rotation is non-commutative and the corre-

sponding inviscid fluid flow cannot be rep-

resented by any real linear space.
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Causes of failure of HSV’s in RRKF:
the Consequences

• As a consequence of its chaoticity, 3D fluid
flow cannot have any linear system of in-
variant subspaces. All subspaces ”roll away”
quite literally!

• Therefore HSV’s will be different for all fi-
nal times and all initial conditions. This
could be the reason why fixed subspaces
in RRKF, or Key Analysis Errors, do nor
persevere for even 12 hours.

• EnKF is likely to be troubled by this same
phenomenon, if its space of initial pertur-
bations is fixed for the whole analysis win-
dow

• Yet Ehrendorfer and Beck (2003) have shown,
that for a quasigeostrophic model, the full
EKF is quite skillful.

• But we cannot hope to compute the full
P f even with the Earth Simulator 2!
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Plumbing covariance leaks

• EKF takes into account model error every

time step: P f = MTP aM + Q

• As a result, it produces model trajectories

that are not dynamically consistent, but

still statistically BLUE

• In RRKF, the failure of the chosen sub-

space to contain the covariance (”It leaks

covariance”, according to Fisher and An-

dersson (2001)), is analogous to model er-

ror in the RRKF subspace. The Q term

should be present!

• We can incorporate model error also with

Hessian singular vectors!
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Variational Kalman Filtering (VKF)

• The obvious answer is to recompute the

HSV’s (almost) every time step. This could

be done with a local Lanczos algorithm.

• But there is a computationally faster way

to achieve the same result:

– Run 4DVAR over a few time steps - or

even just one - at a time and

– Build an approximation to the Hessian

from the search directions with the LBFGS

update formula.

– Use this LBFGS approximation to the

Hessian as a temporally local approxi-

mation to P
f
t in a full EKF algorithm
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Variational Kalman Filtering (VKF)

• The resulting matrix spans the same HSV

subspace as Lanczos (Kauranne (1992)),

but for a temporally local analysis error

covariance matrix P a
t . This matrix has cor-

rectly accumulated all past analysis, back-

ground and model errors in the dominant

HSV’s at each instant in time
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Computational Cost of Variational
Kalman Filtering

• The forecast error covariance P f is kept

piecewise constant over a VKF assimilation

”mini window” of a few time steps.

• There is no need for overlapping 4DVAR

periods, when a piecewise constant P f is

used over a mini window.

• The computational cost of VKF is only

slightly larger than that of 4DVAR.
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A numerical example

• A linear advection diffusion equation over

a latitude circle with an ozone like source

term

ut = −vux + kuxx + r(x)

where r(x) is a Haar wavelet like step func-

tion with average value zero

• A small finite difference model with 64 grid

points and a time step of 10 minutes

• Polar orbiter like satellite observations that

span a swath of ten grid points 15 times a

day

• Gaussian observation noise
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• Model error introduced in a 50 per cent

systematic overestimation of r(x)

• A 15 day run, first 4 days shown

• A diagonal constant component diag(B)

(i.e. variance only) in the forecast error

covariance matrix P f .
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Conclusions

• Problems with Hessian Singular Vector based

low rank Kalman filtering methods, such as

RRKF and EnKF, may be a result of rapid

and nonunitary covariance matrix eigenspace

rotation in 3D fluid flow

• Low rank Kalman filtering methods must

take model error into account explicitly when

propagating forecast error covariance. Oth-

erwise covariance leaks away from any fixed

subspace

• Variational Kalman Filtering is a computa-

tionally efficient method to do this

• First numerical results with very simple mod-

els are encouraging, but

• Numerical tests with more elaborate atmo-

spheric models are needed


