Advancing Atmospheric Science with Blue Gene/L

Dr. Richard Loft Computational Science Section Scientific Computing Division National Center for Atmospheric Research Boulder, CO USA

Summary of remarks...

- Blue Gene/L seems to us to be an important architecture for many reasons.
 - Power/space & "fuel" efficiency
 - \$/Tflops sustained
 - Fast reduction network
- 80 km, 20 level explicit HOMME model
 - We see 587 Gflops on 1944 nodes of BG/L.
 - 13.7 simulated years/day (useful climate rate)
- 1/10 degree "eddy permitting" POP ocean model would be the next interesting thing to look at. (barotropic CG needs fast global sums)

BlueGene/L Architecture

Why Blue Gene/L is Attractive •Pros

- •Achieves high packaging density.
- •Lower power density.
- •Dedicated reduction network.
- •Puts network interfaces on chip.
- •Low cost per sustained FLOPs.
- Questions
 - •High reliability?
 - •Applications for 100k processors?
 - •System robustness: I/O, scheduling flexibility.

BlueGene/L ASIC 5.5GB/s 11GB/s PLB (4:1) 32k/32k 256 2.7GB/s 128 L2 440 CPU **4MB EDRAM** Shared "Double FPU" L3 directory L3 Cache Multiported 1024+ for EDRAM 256 or 144 ECC snoop Shared Memory SRAM ◀ / 32k/32k L1 22GB/s Buffer 128 L2 440 CPU 256 Includes ECC I/O proc 256 "Double FPU 128 DDR JTAG Control Ethernet Global Torus Tree Gbit Access with ECC Interrupt 5.5 GB/s 6 out and 3 out and 144 bit wide Gbit JTAG 4 global 6 in, each at 3 in, each at Ethernet DDR barriers or 1.4 Gbit/s link 2.8 Gbit/s link 256MB interrupts

NCAR

The Blue Gene/L Architecture

BlueGene/L Has Five Networks

3-Dimensional Torus

- interconnects all compute nodes (65,536)

Global Tree

 point-to-point, one-to-all broadcast, reduction functionality

Global Interrupts

- AND/OR operations for global barriers
- 1.5 microseconds latency (64K system)

Ethernet

- incorporated into every node ASIC
- active in the I/O nodes (1:64 in LLNL configuration)
 - 1K 1Gbit links
- all external comm. (file I/O, control, user interaction, etc.)

JTAG (Control)

BlueGene/L System Software Architecture

- User applications execute exclusively in the compute nodes
 - avoid asynchronous events (e.g., daemons, interrupts)
- The outside world interacts only with the I/O nodes, an offload engine
 - standard solution: Linux
- Machine monitoring and control also offloaded to service nodes: large SP system or Linux cluster.

Blue Gene/L system overview

Figure 1: Overview of a complete system with BlueGene/L as the computational core.

Scalable atmospheric dynamics...

Description of HOMME Atmospheric Dynamical Core

- High Order Method Modeling Environment (HOMME)
 - Solving the moist "primitive" equations on cube-sphere
 - CAM finite difference vertical discretization
 - Held-Suarez simplified test physics package
- Algorithmic Advantages of High Order Methods
 - h-p finite element method on quadrilaterals (Ne x N)
 - Exponential convergence in p (N)
- Computational Advantages of High Order Methods
 - Naturally cache-blocked N x N computations
 - Nearest-neighbor communication between elements
 - Well suited to parallel µprocessor systems
- Semi-Implicit Time Step to eliminate fast gravity wave modes
 - Crank-Nicholson time integration scheme
 - Use iterative CG solver for the resultant elliptic equation
 - Simple metric term/mass matrix preconditioner.
 - Acceleration 2.5x over explicit integration

The Cube-Sphere

- Equal angular grid
 Rancic et al (1996)
- Avoids pole problems
- Quasi-uniform
- Curvilinear coordinates: metric terms
- Ne=16 shown above

Ne=16 Degree of on-uniformity

The Spectral Element Computational Mesh: the "Cube-Sphere"

NxN element

- Spectral Elements:
 - A quadrilateral "patch" of gridpoints N x N
 - Gauss-Lobbattto Grid
 - N=8 is optimal (Taylor)

Cube

– Ne = Elements on an edge

NCAR

- 6*Ne*Ne elements total
- Cube Partitioning
 - Metis
 - Space filling curve partitioning algorithm
- Ne=8 shown ~180 km

6th Order Spectral Elements on the Ne=4 Cube Sphere

Partitioning a cubed-sphere on 8 processors

HOMME on Blue Gene/L...

Moist Held-Suarez Test Case: Temporally and Zonally Averaged Mixing Ratio

Explicit HOMME Integration Rate: 80 km, 20 levels

Blue Gene/L Performance: ~80 km 20 level HOMME

Blue Gene/L Per-Processor Performance

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

- Ne=18, 20 level data
- Explicit primitive equations
- "Coprocessor" Mode
- 16% of 2.8 Gflops peak
- **BG/L** vector intrinsics
- Not clear how many double FMA's are being generated.

Fraction of Time Spent In Communication

HOMME Communication Volume

Sustained Blue Gene/L Bandwidth

Scaling of Computational Cost with Number of Levels in HOMME

Summary of remarks...

- Blue Gene/L seems to us to be an important architecture for many reasons.
 - Power/space & "fuel" efficiency
 - \$/Tflops sustained
 - Fast reduction network
- 80 km, 20 level explicit HOMME model
 - We see 587 Gflops on 1944 nodes of BG/L.
 - 13.7 simulated years/day (useful climate rate)
- 1/10 degree "eddy permitting" POP ocean model would be the next interesting thing to look at. (barotropic CG needs fast global sums)

BlueGene/L Collaboration

<u>NCAR</u>

CU Boulder

Blue Gene/L

CU Denver

Questions?

CRCP (super-parameterized) physics...

CRCP or super-parameterization: What is "super" about it?

- The basic idea is to represent sub grid scales of the 3D large-scale model (with horizontal resolution ~ 100 km) by embedding a 2D cloud resolving model in each column of the largescale model.
- Involves thousands of 2D cloud resolving models interacting in a way consistent with large scale dynamics.
- Embarrassingly parallel but extremely expensive. (150x over traditional physics)

CRCP is the next step in the quest for a cloud-system- resolving AGCM

- The computational cost of the following simulations are approximately the same:
 - A millennium-long simulation using a traditional climate model.
 - A few years-long simulation using a traditional climate model with CRCP
 - A day-long simulation of a cloud-system-resolving AGCM O(few km)
- Cost of each separated by 3 orders of magnitude!

CRCP: 2D or not 2D: that is the question...

400 km box of clouds with dx = dy = 2 km

Advantages of CRCP

- Allows for better representation of convection, clouds and radiative transfer and surface exchange.
- Allows for a dynamic response to changes in cloud parameters (particle sizes, aerosol characteristics, precipitation mechanisms at approximately correct length scales.
- Example: cloud top longwave cooling in response to particle size change.

Coupling CRCP physics and dynamics together...

Logical View of CRCP-HOMME Coupling on Blue Gene/L

Begin with elements laid out for dynamics scheme

Begin scattering the columns

Continue scattering columns

Continue scattering columns

