PERFORMANCE ANALYSIS of REGIONAL Eta MODEL installation, running and optimization on different hardware/software platform

Marijana Crepulja
maja@meteo.yu

Aleksandar Miljković
aleksandar.miljkovic@coming.co.yu

11th Workshop on the use of High Performance Computing in Meteorology
Republic Hydrometeorological Service of Serbia

Outline

- NWP in Serbia - The Eta model characteristics
- Historical overview and description of present operational system
- Latest efforts in installation and running the Eta model on different platforms
- Conclusion
Development of NWP in Serbia

- In 1972 Belgrade University professors Zaviša Janjić and Fedor Mesinger developed the first version of regional NWP model in cooperation with the Federal Hydrometeorological Institute of Yugoslavia (HIBU).
- NWP model has been used operationally in Belgrade since 1979.
- After its unique vertical coordinate was defined by prof. Mesinger in 1984, the model was named the Eta model.
- Several model components were developed in National Center for Environmental Prediction (NCEP), Washington and Geophysical Fluid Dynamics Laboratory (GFDL), Princeton.
The Eta model characteristics

- Limited area grid point model based on finite differences numerical methods
- The horizontal grid is Arakawa semi-staggered E grid defined in a transformed lat/lon coordinate system
- \(h \) points carry surface pressure, cloud water temperature, specific humidity, vertical velocity, turbulent kinetic energy and passive substances
- \(v \) points carry \(u \) and \(v \) components of the horizontal wind
Eta coordinate

\[\eta = \left(\frac{p - p_T}{p_s - p_T} \right) \eta_s \]

where:
- \(p \) is the pressure at the surface
- \(p_T \) is the pressure at the top of the atmosphere
- \(p_s \) is the pressure at the model surface
- \(\eta_s \) is the eta coordinate at the model surface

Reference of standard atmospheric pressure at model surface \(Z_s \)
Height of model surface
\(\eta \) = Eta surface

11th Workshop on the use of High Performance Computing in Meteorology
Computer resources

<table>
<thead>
<tr>
<th>Computers / year</th>
<th>NWP Eta model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro VAX / 1988</td>
<td>Resolution 1.1°; 36 hour forecast; 16 vert.levels; time step 120s, 759 numerical points</td>
</tr>
<tr>
<td>CONVEX -two processors / 1991</td>
<td>Resolution 0.4°; 48 hour forecast; 16 vert.levels; time step 120s, 6385 numerical points</td>
</tr>
<tr>
<td>Sgi Indigo2 / 1995</td>
<td>Resolution 52 km; 48 hour forecast; 32 vert.levels; time step 120s, 8773 numerical points</td>
</tr>
<tr>
<td>Pentium III CPU 600MHz / 1998</td>
<td>Resolution 52 km; 48 hour forecast; 32 vert.levels; time step 120s; (AVN LBC), 8773 numerical points</td>
</tr>
<tr>
<td>BEOWULF cluster 3X3 and 4X4 CPU 1.4MHz / 2001</td>
<td>Resolution 18km; 5 days forecast; 32 vert.levels; time step 45s; (DWD LBC), 70000 numerical points</td>
</tr>
</tbody>
</table>

11th Workshop on the use of High Performance Computing in Meteorology
Republic Hydrometeorological Service of Serbia

One hour forecast on different platforms

11th Workshop on the use of High Performance Computing in Meteorology
Republic Hydrometeorological Service of Serbia

Agenda

• Our Mission
• Hardware Platform
• OS Consideration
• Porting Adventure
• Achieved Results
• Yet to be done…

11th Workshop on the use of High Performance Computing in Meteorology
Republic Hydrometeorological Service of Serbia

Our Mission

• Our goal is to speed up Eta model as much as possible, considering price/performance ratio

• 32bit platform is already exploited to maximum (PGA Compiler, SMP, Clustering)
Republic Hydrometeorological Service of Serbia

Hardware Platform

- Itanium 2 is Our Platform of Choice
 - EPIC (Itanium) goes beyond simple GHz
 - Excellent Scalability
 - From 2 to 128 CPUs per box
 - Up to 84 CPUs per rack
 - Support all relevant OS platforms and more
 - SuSE and RedHat Linux
 - Windows
 - HP-UX
 - OpenVMS
 - Promising Platform
 - Dual Core 9M Itanium 2 Already available
 - Dual Core 12M Itanium 2 in 2005

11th Workshop on the use of High Performance Computing in Meteorology
OS Consideration

- **HP-UX For Performance**
 - HP Fortran Compiler
 - Mature Software Platform

- **Linux For Price & Performance**
 - Intel Linux Fortran Compiler
 - Proven Development Platform
 - User Friendly Environment
 - Portable Code
Porting Adventure (1 of 3)

• Starting environment
 – Linux IA32
 – PGA Compiler

• Two destination environments
 – HP-UX
 – Linux 64bit Itanium2
Porting Adventure (2 of 3)

- HP Fortran Compiler follows f90 standards (Easy to port)
- GRIB library requires minor modification since it supports HP-UX PA, but not HP-UX Itanium2
- Auto-parallelization and Itanium2 optimization led to significant performance boost
 - Without Itanium2 optimization - 19min per iteration (1h)
 - With Itanium2 optimization – 3min per iteration! (1h)
Porting Adventure (3 of 3)

- Intel Fortran Compiler – Faster but less compatible
- Code modification required for GRIB library and Eta model
- Different optimization options must be provided for different Eta model stages while compiling the model
Republic Hydrometeorological Service of Serbia

Achieved Results

• We are at the beginning of porting journey
• Reference platform
 – Two-way rx2600 Itanium2 3M 900MHz
 – RedHat Linux AS
 – 4GB RAM
 – 5min per Iteration (1h of forecast)
Yet to be done…

• General directions
 – Optimize on single node
 • Modifying code and introducing Intel Fortran specific code
 • Introducing new Itanium2 processors
 – More cache leads to more FPU performance
 – Dual core leads to higher density
 – Optimize for Cluster (MPI)
 • MPI – Intel Linux Fortran Compiler Issues?
Special Thanks

• Ljiljana Dekić, RHMS
• Vladimir Dimitrijević, RHMS
• Drago Samardžić, Coming