Max-Planck-Institut für Meteorologie Max Flanck institute für Meneoralogie

The ICON project:

Design and performance of an unstructured grid approach for a global triangular grid model

Luis Kornblueh, Luca Bonaventura, and Peter Sanders, ...

Max-Planck-Institut für Meteorologie Max Planck Institute for Meteorology

ICON : **ICO**sahedral, Nonhdyrostatic model NWP + Climate + Chemistry

ICON development team:

E.Roeckner, D.Majewski,

L.Bonaventura, M.Giorgetta, T.Heinze, L.Kornblueh, P.Ripodas, B.Ritter, W.Sawyer, P.Sanders, and U.Schulzweida

• Discussions and/or joint work: N.Botta, F.Giraldo, J.Klemp, R.Klein, D.LeRoux, D.Randall, T.Ringler, and H.Tomita

Outline

- Overview of the ICON development project: motivations and project goals
- Model equations and discretization approach
- Preliminary results of a shallow water model
- Outlook on future work

Desired features for a new model

- Unique framework for large/small scale, lower/upper atmospheric dynamics
- Consistency between discrete tracer advection and discrete continuity equation
- Mass conservative static local grid refinement without spurious interface effects: building block for a multiscale model

Concept of discretization approach

- Achieve the same accuracy and efficiency as advanced NWP models...
- ... but preserve some discrete equivalents of global invariants relevant to geophysical flow...
- ... and narrow the gap to Computational Fluid Dynamics (CFD) models.

Max-Planck-Institut für Meteorologie Max Flanck institute für Meteorologie

Geodesic icosahedral grids

- Special case of **Delaunay** triangulation
- Solve the pole problem

- Local grid refinement
- Multiscale modelling

Max-Planck-Institut für Metcorologie -Max Flanck institute für Metcorology

Implementation issues

Indirect addressing that preserves data locality

Parallelization: horizontal data decomposition

Max-Planck-Institut für Meteorologie Max Flanck institute für Meteorology

Spatial discretization

 Finite volume discretization with triangular control volumes: triangular C grid

Delaunay -Voronoi property

Spatial discretization, properties

- Vorticity at triangle vertices: discrete Helmholtz decomposition (Nicolaides 1992)
- No spurious vorticity production
- Raviart-Thomas reconstruction of velocity, average onto edge for tangential component
- Improve Raviart-Thomas reconstruction by Radial basic functions giving higher order accuracy

The structure of a gridpoint

Max-Planck-Institut für Metoorologie Max Fienck institute für Meteorologie

Some ideas on parallelization

A datastructure

TYPE grid element

INTEGER :: index

INTEGER :: parent_index

INTEGER :: child_index(4)

INTEGER :: neighbor_index(3)

TYPE(cartesian_coordinates) :: center

REAL(dp) :: area

TYPE(cartesian_coordinates) :: vertex(3)

TYPE(cartesian_coordinates) :: edge_center(3)

TYPE(cartesian_coordinates) :: edge_normal(3)

REAL(dp) :: primal_edge_length(3)

REAL(dp) :: dual_edge_length(3)

END TYPE grid_element

TYPE grid INTEGER :: level TYPE(grid_element), POINTER :: g(:) **END TYPE grid**

SX-6: 2.2 Gflops for PCG

Cache-based architecures: unusable

Max-Planck-Institut für Metcorologie Max Fisick institute für Meneorologie

... more on data structures

INTEGER, ALLOCATABLE :: index(:)
INTEGER, ALLOCATABLE :: parent_index(:)
INTEGER, ALLOCATABLE :: child_index(:,:)

INTEGER, ALLOCATABLE :: neighbor_index(:,:)

REAL(dp), ALLOCATABLE :: area(:)
REAL(dp), ALLOCATABLE :: edge_primal(:,:)
REAL(dp), ALLOCATABLE :: edge_dual(:,:)
REAL(dp), ALLOCATABLE :: center(:,:)

REAL(dp), ALLOCATABLE :: vertex(:,:,:)
REAL(dp), ALLOCATABLE :: edge_center(:,:,:)
REAL(dp), ALLOCATABLE :: edge_normal(:,:,:)

Acceptable solution:

but not well structured

Ein Institut der Max-Planck-Gesellschal. 🧩

.. even more on data structures

TYPE triangle

TYPE(triangle), POINTER :: parent

TYPE(triangle), POINTER :: sub_triangle0 => NULL()

TYPE(triangle), POINTER :: sub_triangle1 => NULL()

TYPE(triangle), POINTER :: sub_triangle2 => NULL()

TYPE(triangle), POINTER :: sub_triangle3 => NULL()

TYPE(triangle), POINTER :: neighbor0 => NULL()

TYPE(triangle), POINTER :: neighbor1 => NULL()

TYPE(triangle), POINTER :: neighbor2 => NULL()

TYPE(edge), POINTER :: edge0 => NULL()

TYPE(edge), POINTER :: edge1 => NULL()

TYPE(edge), POINTER :: edge2 => NULL()

TYPE(vertex), POINTER :: vertex0 => NULL()

TYPE(vertex), POINTER :: vertex1 => NULL()

TYPE(vertex), POINTER :: vertex2 => NULL()

END TYPE triangle

Topological point of view

Discrete wave dispersion analysis

- Stationary geostrophic solution, no spurious pressure modes
- Two physical gravity wave modes
- Two spurious gravity wave modes: frequencies always higher than physical ones

$$\omega^{2} = \frac{8 g H}{d^{2}} \pm \frac{8 g H}{3 d^{2}} \sqrt{1 + 4 \cos^{2}(\frac{\sqrt{3}}{2} k d) + 4 \cos(\frac{\sqrt{3}}{2} k d)} \sin(d)$$

Dispersion plot, physical mode

Less good wavenumber space than quadrilateral C-grid

Zero group velocity at high wavenumbers

Discrete global invariants

- Mass conservation, consistent discretizations of continuity equation and tracer transport
- Mass and potential vorticity conservation, no spurious vorticity production
- Potential enstrophy conserving variant
- Energy conserving variant: Sadourny, JAS 1975

Random initial data on rotating plane (1000 days)

Relative vorticity after 1000 days integration with random initial data (numerical test carried out by Todd Ringler, CSU)

Shallow water test cases: tests 5-6

Test case 5 Relative vorticity day 10

Colour shading: model results

Black contours: NCAR reference spectral model

Max-Planck-Institut für Meteorologie Max Flanck institute für Meteorologi

Test 5, height field error at day 15

Glevel 6, dt = 900 s

Glevel 7, dt = 90 s

Some options for vertical coordinates

- Hybrid pressure vertical coordinate + new horizontal discretization: preliminary 3d-ICON model
- Terrain following normalized height coordinate + new horizontal discretization: first choice for operational, global nonhydrostatic model
- Non normalized, geometric height coordinate + cut cells

Geometric height + cut cells

Ein histitut der Max-Planck-Gebellschal. (#18) As hardre af me Max Planck Joseph

Outlook

- Optimized data structure and parallelization for model on locally refined grids
- Hydrostatic, 3D model on locally refined grids
- Coupling to existing MPI physics package, impact of spurious modes on simulations with full physics
- Sensitivity of results to local refinement

