PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering

Lars Nerger, Wolfgang Hiller, and Jens Schröter
Alfred Wegener Institute for Polar and Marine Research
Bremerhaven, Germany

lnerger@awi-bremerhaven.de
Overview

PDAF in the context of Kalman filters

Parallel performance of PDAF
Data Assimilation

Estimate system state (atmosphere, ocean, ...) on the basis of a numerical model and measurements by combining both sources of information.

Filter ⇔ Smoother

Possible applications:

weather/climate forecasts
sensitivity studies
Data Assimilation

14-day forecast of ocean surface temperature

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Ensemble-based Kalman filters

Initialization: Sample initial state and its error estimate by an ensemble of model states.

Forecast: Evolve each ensemble member with the non-linear (stochastic) model.

Analysis: Apply update step of the Kalman filter to ensemble mean or all ensemble states. Error estimate given by ensemble statistics.

Re-Initialization: Transform state ensemble to exactly represent updated error statistics.
Computational and Practical Issues

- Huge amount of memory required (model fields and ensemble matrix)
- Huge requirement of computing time (ensemble integrations)
- Natural parallelism of ensemble integration exists - but needs to be implemented
- Existing models often not prepared for data assimilation
Logical separation of problem

Further considerations
- Combination of filter with model with minimal changes to model code
- Control of assimilation program coming from model
- Simple switching between different filters and data sets
- Complete parallelism in model, filter, and framework

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Extending a Model for Data Assimilation

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
PDAF interface structure

- User-supplied routines for
 - field transformations between model and filter
 - observation-related operations
 - filter post-step
- Defined calling interface for
 - calls of framework routines
 - calls to user-supplied routines
- Interface independent of filter (almost)
2-level Parallelism

parallelization variants

distribute operations

different processes for model and filter update

Filter update with model processes
parallel filter update

- distribute ensemble matrix
 - mode decomposition
 - domain decomposition

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Mode decomposition

\[X \rightarrow X_{p_0} \rightarrow X_{p_1} \rightarrow \ldots \rightarrow X_{p_s} \]

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Domain decomposition

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
MPI parallelization

- Distribute model integrations
- Distribute filter update step
- 3 communicators
 - `Comm_Model`: model tasks
 - `Comm_Filter`: filter processes
 - `Comm_Couple`: communication between model and filter
Current KF algorithms in PDAF

- Ensemble Kalman filter (EnKF, Evensen, 1994)
 - widely used
 - fully nonlinear error forecast
- SEEK filter (Pham et al., 1997)
 - explicit low-rank (error-subspace) formulation
 - linearized error forecast
- SEIK filter (Pham et al., 1997)
 - combination of strengths of EnKF and SEEK
3D box experiment

- finite element model FEOM
- 31x31 grid points, 11 layers
- nonlinear problem: interacting baroclinic Rossby waves
- Assimilate sea surface height each 2.5 days over 40 days

(FEOM: Danilov et al., Ocean Modeling, 2004)

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Speedup of PDAF

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Parallel Efficiency of Filter Update

Mode decomposition

Domain decomposition

(ens. size = 10)

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Further Example: FEOM North Atlantic

surface nodes: 16000
3D nodes: 220000
z-levels: 23
eddy-permitting
Summary

- Parallel Data Assimilation Framework PDAF
 - Simplified implementation of assimilation systems
 - Flexibility: Different assimilation algorithms and data configurations within one executable
 - Full utilization of parallelism
 - High parallel efficiency

L. Nerger et al., PDAF - The Parallel Data Assimilation Framework
Future directions

- Extensions of PDAF
 - more advanced filters (localization, adaptivity)
 - smoother algorithms

- Data assimilation applications (oceanography)
 - FEOM
 - stability of North Atlantic circulation
 - OPA-Model (with C. Böning, IFM-Geomar, Kiel)
 - large-scale circulation interannual to decadal
Application: FEOM North Atlantic

- 3D primitive equation model
- finite-element discretization

Filter Experiments:
- Assimilate synthetic observations of sea surface height ζ
- Covariance matrix estimated from 9-year model trajectory starting from January 1991 initialized from climatology
- Initial state estimate from perpetual 1990 model spin-up
- analysis steps: initial time & after 1 month of model integration
- No model error; forgetting factor 0.8 for both filters
Modeled Sea Surface Height

\[\zeta \text{: Truth in January 1994} \]

\[\zeta [m] \]

\[\zeta \text{: Free evolution in January 1994} \]

\[\Delta\zeta \text{: Free - Truth in January 1994} \]

RMS difference: 0.065 m
Estimated Sea Surface Height

$\Delta \zeta$: EnKF analysis, $N=32$ - truth in January 1994

$\Delta \zeta$: SEIK analysis, $N=32$ - truth in January 1994

ζ [m]

Initialization: Monte Carlo

RMS difference: 0.054 m

Initialization: 2nd-order exact

RMS difference: 0.049 m
Estimated Temperature at -70m

\[\Delta T: \text{free - truth at -70m in January 1994} \]

\[\Delta T: \text{EnKF analysis, N=32 - truth at -70m in January 1994} \]

\[\Delta T: \text{SEIK analysis, N=32 - truth at -70m in January 1994} \]
Comparison of Computation Times

- Ensemble size 32; 8 concurrent model integrations

Model integrations: 34000s

Filter update:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnKF</td>
<td>4600s</td>
</tr>
<tr>
<td>SEIK</td>
<td>10s</td>
</tr>
</tbody>
</table>