Linux Clusters at EARS
what is coming next?

Jure Jerman
Meteorological Office
Environmental Agency of Slovenia (EARS)
Outline

- Linux Cluster at Environmental Agency of Slovenia
- Operational experiences
- Future requirements for limited area modeling
- Needed ingredients for future system?
Tuba – current cluster system

- Installed 2 years ago, presented at 10th ECMWF HPC workshop:

- Hardware:
 - 13 Compute Nodes,
 - 1 Master Node, Dual Xeon 2.4 Ghz,
 - 28 GB memory
 - Gigabit Ethernet

- New: 4 TB IDE2SCSI disk array, xfs filesystem
Tuba software

Open source, whenever possible

- Cluster management software:
- OS: RH Linux + SCore (5.4) (www.pccluster.org)
- Mature parallel environment
 - Lower latency MPI implementation
 - Transparent to user
 - Gang scheduling
 - Pre-empting
 - Checkpointing
 - Parallel shell
 - Automatic fault recovery (hardware of Score)
 - FIFO scheduler
 - Capability of integration with OpenPBS and SGE
- Intel compilers
Ganglia - Cluster Health monitoring

Cluster Report for Sun, 24 Oct 2004 20:30:31 +0000

Metric load_one Last week Sorted descending

Overview of tuba cluster

There are 13 nodes (26 CPUs) up and running.
There are no nodes down.

Snapshot of tuba cluster | Legend

tuba cluster load_one
Operational experiences

- In production for two years
- Unmonitored suite
- NO hardware related problems so far!
- Some problems with SCore (mainly related to buffers in MPI)
- NFS related problems
- ECMWF's SMS, solves majority of problems
Reliability
New operational setup

ALADIN model
- 290x240x37 domain
- 9.3 km resolution
- 48h integration
- 55 min
Optimizations

Not everything in a hardware
Code optimizations

- B-Level parallelization (up two 20 % at greater number of processors)
- Load balancing of grid point computations (depending on the number of processors)

- Parameter tuning
 - NPROMA cash tuning
 - MPI message size

- Improvement in compilers (Lahey → Intel 8.1 20 – 25 %)
- Still to work on: hyperthreading in combination with OpenMP
Non operational use

- Downscaling of ERA-40 reanalysis with ALADIN model
 - Estimation of wind energy potential over Slovenia
 - Multiple nesting of target computational domain into ERA-40 data
 - 10 years period, 8 years / month
- Other research jobs
 - Radar latent heat nudging
 - Spectral coupling
- Coexistence with operational suite
Foreseen developments in limited area modeling

- Currently ALADIN 9 km
- 2008-2009 Arome, 2.5 km (Meteo France project): ALADIN NH solver + Meso NH physics
- “Grey zone” problem
- Smooth convergence with Arome through ALARO
- Expensive, 3 x per grid point
- Target Arome: ~100 x – 200 x more expensive
How to get there (if?)

Linux commodity cluster at EARS?
- First upgrade at the end of 2005
- 4-5 times the current system (if possible, below 64 processors)
- Tests going on with:
 - New processors: AMD Opteron, Intel Itanium-2
 - Interconnection: InfiniBand, Quadrics?
- Compilers: PathScale (AMD Opteron)
- Crucial: Parallel file system (TerraGrid)
How to stay at the open side of the fence?

- Linux and other OpenSource projects are evolving
- Great number of more and more complex software projects
- Specific (operational) requirements in meteorology
- Space for system integrators
- Price/performance gap between commodity and brand name systems is getting smaller when the size of system is growing
- Pioneer time of Beowulf clusters seems to be over
- Importance of extensive test of all cluster components
Conclusions

- Positive experiences with small commodity Linux cluster, great price/performance ratio
- Our present type of development of new cluster works for small cluster, might work for medium sized and doesn’t for big systems
- Future are Linux clusters, but branded