Ensemble Forecast Verification

Kristie J. Franz
Introduction

- ESP water supply hindcasts were generated for 14 forecast points in Colorado River Basin.

- Several verification methods were tested.
 (Franz et al., 2003)

- The 3 distribution-based methods studied were found to give useful and detailed information about the forecasts performance.
1) Ranked Probability Score (RPS) and Skill Score (RPSS)

(Epstein, 1969; Wilks, 1995)

- single summary score of forecast accuracy
- considers the magnitude & distance between the observation & forecast probability
- RPSS gives relative skill of forecast compared to another (climatology is used below)
2) Reliability ($\rho(O|F)$) (Murphy & Winkler, 1987, 1992; Wilks, 1995)

- Determines whether flows occurred at the frequency at which they were forecast.

Jan 1 hindcasts for the Animas River are fairly reliable but have low confidence. June 1 hindcasts show good reliability where forecast confidence is strong, but poor where sample sizes are low.
Verification Statistics Studied

3) Discrimination ($\rho(F|O)$) (Murphy & Winkler, 1987, 1992; Wilks, 1995)

- Determines whether the forecasts predicted the flow that was observed.

When high flows occurred for Gila River...

Jan 1 hindcasts indicated that low flows were least likely to occur, but did not discriminate between high and middle flows.

April 1 hindcasts showed improved discrimination but were not perfect (middle flows were occasionally forecasted with high probability even though they did not occur).
Testing methods for operational use

- All ESP forecasts and historical stage observations that were archived by the Ohio RFC were tested.

- Limited record of observed and forecast data is problematic. Poor forecast performance could be due to:
 - inaccurate forecasts
 - improper flow category identification due to poor observed record
 - inadequate forecast sample size

Low (25%)
Mid (50%)
High (25%)
What we have learned...

- Distribution-based verification methods are appropriate for ESP.
- RPS & RPSS are considered very useful from the forecaster’s perspective (provide a single number, easy to understand and calculate).
- Discrimination & reliability are more complicated and may be more difficult to implement (require large sample sizes and more involved interpretation).
- Obstacles to operational implementation:
 - Inadequate observational and forecast archives.
 - Understanding of the applicability of hindcasts for predicting operational forecast performance.
 - User education.
 - Methods may not be appropriate for short-term forecasts.
 - Interpreting statistics for run-time forecast modifications.
References

