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1. I ntroduction

Inthistak | would like to discuss how in the ECMWF wave model (which is a sibling of the WAM model)
the adiabatic part of the energy balance equation is treated numerically. But first | will present the basic
evolution equation for the spectrum of ocean waves, and | will make plausible why the spectrum is advected
by the group velocity. The numerical treatment of the energy balance equation is then illustrated by means of
the simple example of advection of the wave energy spectrum in one dimension. In the present operational
setting a first-order upwinding scheme is used. Arguments are presented why such a crude scheme is
appropriate to model the advection of wave energy over large distances (of the order of 10,000 km, while the
typical wave length is of the order of 100 — 500 m).

2. The ener gy balance equation and wave for ecasting
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Figure 1. Schematic of the problem in two dimensions.

Consider the ideal case of surface gravity waves with vanishing air density, while the water density is
constant. Furthermore, ignore effects of surface tension and viscosity.

Irrotational flow, Cx U =0,, givesvelocity field in terms of avelocity potential ¢,

u=Ueg

" Converted from PDF presentation
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Because of the constant water density the water is divergence free, i.e. [IIU =0, hence inside the fluid the
velocity potential satisfies Laplaces equation,

D°p=0

The main problem with water waves is, however, with the boundary conditions at the surface, described by
z=n(X,t) . First of dl, the surface evolves in space and time. In the linear approximation one finds

onlot=w=0dg/oz

The boundary condition at the surface then becomes the vanishing of the water pressure, where for potential
flow the water pressure follows Bernoulli’slaw, p= p, - p,, (0¢/0t + gz). Hence,

oplot+gn=0, a z=0
Finally, assuming deep water, the velocity vanishes as z approaches —.
The above problem can be solved exactly and for normal modes with wave number k =277/ A , and angular
frequency w(k),
n = aexp(ikx —iat),

the solution exists provided the angular frequency w satisfies the dispersion relation

w(k) = ,[gk.

Gravity waves have the important property that each wave number k has a different phase speed
c=wl/k=,/g/k. Therefore, there is Dispersion. Furthermore, the longer the waves the faster they
propagate. Finally, wave energy is propagating with the group velocity vy

v, =0l 3k =~ [g/k
hence, the group speed is exactly half the phase speed for deep water waves.

3. Ener gy balance equation

So far a single wave, but in nature there is a spectrum of waves. However, the phase of the waves is i)
unknown, and ii) attempts to predict them gives chaotic behaviour. Therefore concentrate on the prediction

of the ensemble average of the action density spectrum N(K;,t). Action plays the role of a number density
and is defined in such away that the energy spectrum is given as

F(K;%,t) = (k) x N(K; X,t)
which isthe usual rule in wave mechanics. From first principles one finds the following evolution egquation

%N +DX-(>*<N)+DE.(EN) =S=§,+S, +S,
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where X =dw/ aR‘,E =—-0w/0X and the source function S represent the physics of wind-wave generation,
dissipation by wave breaking and nonlinear four-wave interactions. In this talk | will only discuss the
adiabatic part, i.e. the L.H.S,, of the energy balance equation

4, Wave For ecasting

The energy balance equation (including nonlinear transfer) is solved by modern wave prediction systems,
where the forcing of the waves is provided by surface winds from weather prediction systems. For a large
part (80%) the quality of the wave forecast is determined by the accuracy of the surface wind field.

» Anexample of balance of source functions.
» Example of the forecast of wave height and wave spectrum.

» Verification of forecasts against the analysis.
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The plot shows the energy balance of wind-generated ocean waves for a duration of 3 hrs, and awind speed
of 18 m/s.
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Wind speed at 10m surface level
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Forecast Verification against analysis for wind and waves in the Northern Hemisphere.

Advection with the group speed: why?

From now on forget about the physics and refraction. Consider deep-water propagation in one dimension
only, then evolution eguation for the spectrum becomes

Ok 4,2

y—F =0
ot X

Wave energy propagates with the group speed. This can be made plausible by studying the large time
behaviour of the solution to the initial value problem:

nx.t) =I:° dk a(k)e e,
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where the wavenumber dependent amplitude a(x) follows from the Fourier transform of the initial condition
n(x,0). The content of this solution is hard to grasp, but the main features of dispersive waves follow by
considering the asymptotic behaviour for large x and t; the interesting limit ist — oo with x/t fixed.

Accordingly, theintegral iswritten

n(xt) =ﬁ; dk a(k)exp
where
X(K) =w(k) —K?X
For the present X/t is a fixed parameter. The integral may be studied by the method of stationary phase.

Kelvin argued that for large time, the main contribution is from the neighbourhood of stationary points
k =k such that

X ) =a ()= =0

Otherwise, the contributions to the integral oscillate rapidly and make little net contribution (phase mixing or
interference). Expanding now a(k), x(«) inthe neighborhood of the stationary point x =k one finds

a(k) = a(k), x (k) = x(k) +(k k)’ x" (k)

With these approximations, the contribution becomes
aye{-ix(0} [ drexp L (x k)7 x (0
- 02 O
The remaining integral can be reduced to the real error integral
12
I dze” = d

and at the characteristic given by x/t =/ (k) =y, the solution becomes

2

n(x,1) ~ a(k) e ()

exp ElkX (k) -—S'gn(w (k))j

Obviously, this approach only works for dispersive waves with &' (k) # 0.

In words, for large times the main contribution to the signal is found along the characteristic determined by
the group velocity. This makes plausible that wave energy propagates along characteristics determined by the
group speed, and justifies the use of the energy balance equation. However, it should be clear that this
description is only valid for large times, which in practice means on timescales of the order of a number of
wave periods.
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6. Numerical advection scheme

A number of alternative propagation schemes have been tested by different groups in the past decade.
Examples are first-order upwinding schemes, a second order leap frog scheme, semi-Lagrangian schemes,
third-order schemes, etc. However, none of the schemes give satisfactory results unless special measures are
taken. In fact, a propagation scheme with vanishingly small errors would give poor results for sufficiently
large propagation times since it would not account for the dispersion associated with the finite resolution of
the wave spectrum in frequency and direction (the so-called Garden- Sprinkler effect ).

In order to explain this, study the evolution of one spectral bin having aheight F,(x,t) and awidth Af_ . The
total wave energy E istherefore given by .

n=N
E= Z F Af,

The energy in bin n propagates with the group velocity v, , or

ai gnaizo
ot TOX

For the initial condition
F.(x,0) = f,(%)
it is straightforward to solve for the evolution of the wave spectrum. The solution becomes

F,(x,t) = f, (X —vg,nt),

hence the waves with group speed v, , propagate over the surface with a spatia distribution that does not

change its shape. Since this is a linear problem, the solution for an arbitrary number of spectral bins is
obtained by summation of the solution for different group velocity. Consider the solution for two
neighbouring frequency bins and suppose that the two bins have equal spatial distribution of the box type
with width Ax, where Ax is the spatial resolution.

Clearly, after a finite time 15 there is a separation of the two pulses which is determined by the difference in
group velocity and the spatial width. Assuming that the frequency increment Af,, is small, one may use a
Taylor expansion of the difference in group velocity and the separation time ts becomes

_Ax f

Ugn Af

For larger time droplets are formed on the surface, hence the name Garden Sprinkler effect. In asimilar vein,
it can be shown that a finite directiona resolution A8 will give rise to the Garden Sprinkler effect as well.
Finite directional resolution givesin practice a much shorter separation time since

Ax 1
r =

Uy, 08

and 1/A68< f /Af, . It is emphasized that for a continuous spectrum the Garden Sprinkler effect will not
occur and therefore in a discrete model measures have to be taken to avoid it.
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7. The compromise

The Garden Sprinkler effect can be avoided by realizing that inside one bin the group speed varies with
frequency. Working out the consequences one finds that in good approximation the energy in a bin satisfies
an advection diffusion equation of the type

2
oF oF, D 0°F,

n n

t PMax o

where the diffusion coefficient D is proportional to the age of the wave packets. This gives, as expected from
dispersion, alinear spreading rate. However, it is an expensive solution because the age of each spectral bin
isrequired.

The compromise now is to use schemes with a constant diffusion coefficient. This explains why a first-order
upwinding scheme is so successful, despite the fact that it is only first order accurate and is highly diffusive

having a numerical diffusion coefficient D = (Ax)?/At (with At the time step).

However, it is of course preferable to have some control over the amount of horizontal diffusion. Therefore,
one has studied the benefits of higher-order schemes (which are, of course more accurate than the first-order
schemes), combined with a smoothing of the results. In practice, the smoothing negates the advantage of the
accuracy of the higher-order scheme.

8. Numerical experiments

These findings are illustrated by means of the following numerical experiments, performed by Saleh Abdalla
(Results for wave height H, = 4JE):

* one dimensiona propagation test with Cubic-Interpolation Scheme (CIP). Af =0.01Hz. This accurate
scheme shows the Garden Sprinkler effect.

» CIP scheme with higher frequency resolution Af =0.001Hz. Removes Garden Sprinkler effect in
practice. Thisis not feasible operationally.

* CIP scheme with a spatial smoother:
F,(X) = (@-20)F,(X) +a{F,(x+AX) + F,(x - AX)}
where a =0.2v, At/ Ax . Removes Garden-Sprinkler effect.

» first-order upwinding scheme . No Garden-Sprinkler effect.
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CIP, Af=0.001 Hz
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Therefore, the first-order upwinding scheme seems to perform reasonably well, and is used for many years
now in the operational ECMWF wave model. It even performs well in extreme conditions such as hurricanes
(cf. example).

However, first- and third-order upwinding schemes have the drawback that the small scales are heavily
damped resulting in too low variability in the wave height field.
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Thursday 8 April 2004 12UTC ECMWF Forecast t+120 VT: Tuesday 13 April 2004 12UTC
Surface: **significant wave height / Surf. mean wave direction
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0. Smoothing and high-frequency variability

Interpolation (either linear or cubic) has the drawback that high-frequency variability is strongly damped. For
the shortest scales, typical damping time scales 14 are

T, =2xMAt
hence, damping by smoothing is for the small scales an important process.

Thisis one of the reasons why there is little variability in modelled wave height compared to observed wave
height. lllustrated by observed (Altimeter) and modelled wavenumber spectrum of significant wave height.

Another reason is the too small variability in the atmospheric wind field. This follows, eg., from a
comparison of modelled and observed (by the scatterometer) wavenumber spectrum of the surface wind
field.

As far as | can see the underestimation of modelled atmospheric activity in the short scales is most likely
caused by the smoothing action of the interpolation in the semi-Lagrangian scheme .

Note that problems near the surface are relatively minor. Near the tropopause, the high-wavenumber part of
the ECMWF modelled variability is considerably less than as found by aircraft observations from Nastrom
and Gage (1985).

This underestimation of variability is a serious problem, if one, at least, is interested in a proper
representation of the EPS spread (Shutts, 2004), of the interaction of ocean and atmosphere or in a proper
representation of ocean waves.
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10. Concluding remarks

| have demonstrated that an accurate propagation scheme not always leads to the desired result. For large
propagation distances, the dispersion associated with the finite resolution of the wave spectrum in frequency
and direction needs to be accounted for (the so-called Garden-Sprinkler effect).

The Garden-Sprinkler effect can be avoided by introducing a spatial smoothing or by introducing (explicitly
or implicitly) horizontal diffusion. This solution has, however, the drawback that the high-frequency
variability of the wave field is reduced.

Similarly, interpolation such as done in semi-Lagrangian schemes will result in large damping of the small
scales. The conjecture is that this is the main reason that a k™ law is not found in the ECMWF atmospheric

model.
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