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1. Introduction 

The modelling and specification of the covariance matrix of background error are important elements in any 
data assimilation system, since it is primarily the background error covariance matrix that determines how 
information from observations is spread to nearby grid-points and levels of the assimilating model, that 
allows observations of the wind field to be used to garner information about the mass field, and vice versa. 

Despite its importance, however, the way in which the background error covariance matrix is modelled in 
any practical assimilation system is dominated by the compromises that must be made in order to produce a 
viable computational algorithm. These compromises inevitably result in a failure to model certain aspects of 
the covariance statistics, such as anisotropy, flow-dependence, baroclinicity, and so on. The art of 
background covariance modelling is therefore to limit the extent to which important aspects of the 
covariance statistics are neglected, while retaining a degree of computational efficiency. 

This paper presents an incomplete review of some current methods of background covariance modelling for 
variational analysis systems in numerical weather prediction, together with descriptions of some recent 
developments of the covariance model of the ECMWF operational 4D-Var analysis. 

The paper is divided into five main sections. The first two sections discuss alternative approaches to the 
diagnosis of background error statistics. The third section discusses how spectral methods may be used to 
model the statistics. The advantages and disadvantages of the spectral approach are presented, and the use of 
coordinate transformations to produce anisotropic correlations is discussed. Alternative methods to the 
spectral approach are provided by digital filtering and by generalized diffusion operators. These are not 
discussed in this paper. For descriptions of these methods, the reader is referred to the papers by Weaver and 
by Derber in this volume. 

The fourth section of the paper presents a method to allow spatially-inhomogeneous vertical and horizontal 
correlation models to be produced in what remains, essentially, a spectral method. The final section of the 
paper discusses the specification of dynamical (mass-wind) balance in the background covariance model. 

2. Diagnosis of Background Error Statistics 

The first problem to be faced in constructing a model of background error covariances is that it is impossible 
to produce samples of background error without access to the true state. There are two ways to address the 
problem. Either, we can attempt to disentangle information about the statistics of background error from the 
available information (innovation statistics), or we can try to find a surrogate quantity whose error statistics 
we can argue should be similar to those of the unknown background errors. 

An excellent example of the first approach is given by Hollingsworth and Lönnberg (1986). They examined 
the statistics of innovations (observation-minus-background) associated with radiosonde observations over 
North America. By assuming that observation errors for radiosondes are spatially uncorrelated, they were 
able to assign the spatial correlation of the innovations exclusively to background error. Binning the 
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innovation statistics as a function of the distance between pairs of observations allowed good estimates of the 
spatial correlation of background error as a function of distance to be obtained. Furthermore, by 
extrapolating the covariance of the innovations to zero separation, they were able to estimate the relative 
contribution of background and observation errors to the variance of the innovations. 

More recently, Järvinen (2001) has applied Hollingsworth and Lönnberg’s (op. cit.) method to the ECMWF 
4D-Var analysis, and to different observation types. In particular, by using aircraft observations, he was able 
to diagnose the temporal variation of background error covariance as it evolved during the 4D-Var analysis 
window. Figure 1 shows an example, taken from Järvinen (2001), of the spatial covariance of innovations for 
aircraft temperatures over north America. 

 
Figure 1: Covariance of innovations as a function of observation separation for aircraft temperature 
observations over the north America (from Järvinnen, 2001). 

The use of innovation statistics to diagnose statistics of background error has several limitations. To work 
successfully, the method requires a good quality, homogeneous observing network. For this reason, it is 
typically applied for data-dense regions such as north America. As a consequence, the estimates of 
background error covariance it provides are unrepresentative of less well-observed regions where, it may be 
argued, the role of the background error covariance matrix is more important. Moreover, the method 
provides estimates of background error for observed quantities rather than for model variables, making the 
method difficult to apply, for example, in the upper stratosphere where only radiance data are available. 

As a consequence of these limitations, innovation statistics are rarely used in modelling background error 
covariances for variational assimilation systems (although they remain an important tool for evaluating 
covariance models generated using other techniques). The more popular approach is to generate fields on 
model grid-points, and for model variables, of a surrogate quantity whose error statistics are assumed to be 
similar to those of background error. The practical advantage of this approach is that once such fields have 
been generated, it is straightforward to determine covariances of background error for the entire model 
domain, in terms of the model variables. The difficulty with the approach is that the statistics of any chosen 
surrogate quantity are likely to differ in some aspects from the statistics of background error. It is therefore 
hard to be confident that the background error covariance model truly represents the statistics of background 
error. (To some extent, the accuracy of the covariance model can be evaluated a posteriori, at least for well-
observed regions, using innovation statistics.) 
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The most popular choice for a surrogate for samples of background error is to use differences between 
forecasts of different length that verify at the same time. This choice is frequently referred to as the NMC 
method, after its introduction by Parrish and Derber (1992).  

Typically, pairs of forecasts whose lengths differ by 24 hours are used, since this minimizes the chance of 
aspects of the model’s diurnal cycle being incorrectly interpreted as background errors. The shorter forecast 
is typically chosen to be at least 12 hours long to reduce the risk of spuriously incorporating “spin up” effects 
into the diagnosed statistics of background error. 

The main advantage of the NMC method is that, in an operational NWP environment, the forecasts required  
to calculate the statistics are already available in the operational archives. No computationally expensive 
running of the forecast or analysis system is required. However, the method has several shortcomings. This 
was already well recognised by Parrish and Derber (op. cit.), who describe the method as “a very crude first 
step”. 

Differences between forecasts of different lengths are produced by the impact of data assimilation in the 
period between the starting times of the two forecasts. In poorly-observed regions, there may be few 
observations to effect a change in the initial condition of the later forecast, with the result that the two 
forecasts will be very similar. It is therefore likely that the NMC method underestimates the variance of 
background error in data-sparse regions. A second problem arises due to the length of the forecasts, which 
are typically between 12 and 48 hours. This is significantly longer than the forecast used to generate the 
background fields. As a result, covariances of forecast differences are likely to be broader in the horizontal 
and the vertical than those of background error. 

The NMC method was used to construct the background error statistics used in the ECMWF variational 
analysis before October 1999. Since then, an alternative method has been used, in which statistics of 
background error are estimated from an ensemble of analyses. This method is described below. 

3. Estimating Background Error Statistics from Ensembles of Analyses 

Suppose we perturb all the inputs to the analysis system. The result will be a perturbed analysis. Moreover, if 
the perturbations are drawn from the distributions of the true random errors in the inputs, the resulting 
analysis will be perturbed by an amount drawn from the distribution of analysis error. To see that this is the 
case, consider that the inputs to an unperturbed analysis may be regarded as being produced by adding 
perturbations, drawn from the relevant error distributions, to the true values of the input quantities. By 
definition, the analysis in this case differs from the truth by an amount equal to the analysis error. 

Suppose now that a short forecast is run from the perturbed analysis, such as is required to produce the 
background field for a subsequent analysis. The result will be a perturbed forecast. Furthermore, neglecting 
the effects of model error, the perturbation to the forecast will have the statistical characteristics of short-
term forecast (i.e. background) error. (The effect of model error may be incorporated by adding a stochastic 
forcing term to the model equations.) The idea is show schematically in Figure 2. 

Analysis
xb+εb

y+εo

SST+εSST (etc.)

xa+εa
Forecast

xf+εf
Analysis

xb+εb

y+εo

SST+εSST (etc.)

xa+εa
Forecast

xf+εf

 
Figure 2: Schematic illustration showing how a perturbed analysis and forecast may be generated by 
perturbing the inputs to the analysis system. 
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If now we run a new cycle of analysis with perturbed inputs, we may use the perturbed forecast to provide it 
with perturbed background fields. This allows a second perturbed analysis and forecast to be produced 
without requiring us explicitly to specify new perturbations to the background. This process may be 
continued for many analysis cycles. Furthermore, after a few days, the statistical characteristics of the 
perturbations of the analysis and forecast fields will depend only weakly on the initial background 
perturbation, so that a sequence of background fields may be generated whose statistical characteristics are 
essentially independent of the initial background perturbation. 

By running the analysis-forecast system twice for the same period, and by perturbing both runs using 
statistically independent perturbations drawn from the relevant distributions, we may generate pairs of 
contemporaneous perturbed background fields. The differences between these pairs of background fields 
have the statistical characteristics of differences between fields of background error. That is, they have the 
correlation structure of background error but twice the variance. The method is illustrated in Figure 3. 
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Figure 3: Schematic illustration of the analysis-ensemble method of generating fields of background 
difference. 

This method of generating surrogate fields of background error clearly has much in common with the 
ensemble Kalman filter (e.g. Evensen, 2003). The possibility of exploiting this connection to provide a flow-
dependent background error covariance model is clearly attractive. However, we have yet to explore this 
avenue, and have so far restricted our attention to generating coefficients for the current ECMWF static 
covariance model. 

In common with the NMC method, the analysis-ensemble method produces global fields of model variables 
on the model grid. This is a significant advantage over methods based on innovation statistics. Unlike the 
NMC method, however, we can expect reasonable estimates to be produced of the variance of background 
error in data-sparse regions. This is because any small difference in the initial state will amplify over several 
analysis cycles, eventually reaching the level implied by climatological variance, unless checked by the 
incorporation of observational information. 

The analysis ensemble method may be regarded as a diagnostic of the actual statistical characteristics of the 
analysis system to which it is applied. This is both an advantage and a disadvantage. It is clearly useful to be 
able to diagnose the characteristics of the analysis system. However, the method does not necessarily 
produce the optimum covariance matrix of background error for a given system. As a simple example, 
suppose that the analysis system tends to produce analyses that have excessive levels of gravity-wave 
activity. The analysis ensemble method will correctly diagnose a large variance for gravity-wave modes in 
the background errors. If now a new background error covariance model is generated from the diagnosed 
statistics, and used in the analysis system, it will assign large variances to gravity wave modes. The resulting 

48 



FISHER, M.: BACKGROUND ERROR COVARIANCE MODELLING 

analyses are likely to contain even larger levels of gravity-wave noise than were produced using the original 
background error covariance model. 

A particular advantage for the analysis ensemble method is that it estimates statistics for forecasts of the 
same length as are used to provide the background fields for the analysis. By contrast, forecasts used to 
derive statistics by the NMC method are typically significantly longer than those used to provide background 
fields. The effect of forecast length on the structure of background error correlation was shown by Järvinen 
(2001), and can also be illustrated using the analysis ensemble method by running forecast from the 
perturbed analyses and calculating statistics of forecast difference for different forecast lengths. This is 
illustrated in Figure 4, which shows the difference between the estimated correlation of forecast error and 
that of analysis error for 500hPa geopotential as a function of distance, and for various forecast lengths. 

 

 
Figure 4: The difference between forecast correlation and analysis correlation calculated using the 
analysis ensemble method for 500hPa geopotential, and for a selection of forecast ranges. 

It is clear that forecast correlations tend to increase with time at distances less than about 1200km, and to 
decrease with time for longer distances.  

Figure 5 shows a comparison of background error correlation for 500hPa geopotential calculated using the 
NMC and analysis-ensemble methods. The difference is consistent with the view that the NMC method tends 
to produce correlations that are representative of longer forecasts than those used to generate background 
fields for the analysis. 
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Figure 5: Background error correlation for 500hPa geopotential estimated using the NMC method (solid 
line) and the analysis ensemble method (dashed line). 

The analysis ensemble method also tends to produce correlations that are shallower than those generated 
using the NMC method. Figure 6 and Figure 7 show vertical correlations of vorticity calculated using the 
two methods. 

  

Figure 6: Mean vertical correlation for vorticity as a 
function of model level, calculated using the analysis-
ensemble method. 

Figure 7: Mean vertical correlations for vorticity 
calculated using the NMC method. 

4. Modelling of Background Error Statistics Using Spectral Methods 

The state vector of a typical analysis system for NWP has a dimension of around 106. Consequently, the 
background error covariance matrix contains roughly 1012 elements. This is too large to be stored in the 
memory of current computers. Moreover, to specify the elements of such a matrix, we require at least 106 
background or forecast differences. This is far more than are available. It is therefore necessary to reduce the 
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problem to manageable proportions by constructing the background covariance matrix from a set of very 
sparse matrices. In the ECMWF variational analysis system, the background error covariance matrix is given 
by 

  (1) T T=B L Σ CΣL

Here, L is a balance operator that accounts for correlations between the mass field (i.e. temperature and 
surface pressure) and the wind field. This matrix is sparse. The matrix Σ is implemented as an inverse 
spectral transform from the spectral coefficients of the model state vector, followed by a multiplication at 
each gridpoint by the standard deviation of background error, followed by a spectral transform. These 
operations are also sparse. Finally, the matrix C is block diagonal, with one block for each total wavenumber 
n, and for each variable. Each block has dimension Nlevels×Nlevels, where Nlevels is the number of model levels. 

The diagonal blocks of C are each of the form 

  (2) n nh V

where Vn is a correlation matrix, and represents the vertical correlation for a particular variable and 
wavenumber. By specifying different vertical correlation matrices for different wavenumbers, it is possible 
to produce vertical correlations that depend on horizontal scale, so that features with large horizontal scale 
have deeper vertical correlations than features of small horizontal scale. This non-separability of vertical and 
horizontal correlations is necessary for the simultaneously-correct specification of mass and wind 
correlations (Phillips, 1986; Bartello and Mitchell, 1992). 

The coefficients hn in equation (2) determine the horizontal correlation. This representation of the horizontal 
correlations defines the horizontal correlation matrix as equivalent to a convolution on the sphere with a 
function of great-circle distance. Specifically, the convolution of a function f defined on the sphere with a 
function h of great circle distance is given by 

 , ,
,

( , )n m n m n
m n

h f h f Y λ φ⊗ =∑  (3) 

where the coefficients hn are the coefficients of the Legendre transform of h. 

The advantage of this spectral approach is that it reduces the horizontal correlation matrix to a diagonal 
matrix. The disadvantage is that, by assuming the correlations to be equivalent to a convolution, the resulting 
correlations are homogeneous and isotropic. This is clearly a major shortcoming of the method. 
Nevertheless, the spectral method remains attractive due to its efficiency, the ease with which its coefficients 
may be calculated from forecast or background differences, and its absence from polar discontinuities. 
Fortunately, it is possible to relax the restrictions of homogeneity and isotropy while retaining the advantages 
of the spectral approach. 

A method for including anisotropy in a spectral covariance model was presented by Dee and Gaspari (1996). 
They showed that an anisotropic covariance model may be produced by adopting a three-step process. In the 
first step, a horizontal coordinate transform is applied, so that functions specified on a grid represented by the 
points xi are interpolated to a new grid represented by the points Xi. The coordinate X is related to the 
coordinate x by a given invertible functional relationship, X=g(x). 

The second step of the covariance model is to apply an isotropic covariance model in the transformed 
coordinate, X. This may be implemented as a spectral convolution. Finally, the convolved fields are 
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interpolated back to the original grid defined by the points xi. Although the covariance model is isotropic 
with respect to the X coordinate, it is anisotropic with respect to the x coordinate. 

Dee and Gaspari (op. cit.) chose g to be a simple function of latitude. The resulting correlations were 
elongated with respect to a purely isotropic covariance model along the north-south axis in mid-latitudes, and 
along the east-west direction in the tropics. A more general coordinate transformation, based on momentum 
coordinates, was used by Desroziers (1997). 

Vertical coordinate transformations may also be useful in defining background covariance models. It is clear 
that there are three distinct regions for which vertical correlations have different characteristics. These 
regions are the boundary layer, the free troposphere and the stratosphere. In the current ECMWF covariance 
model, these regions are identified only approximately, by fixed model levels. It is likely that the 
specification of vertical correlation could be significantly improved by employing a vertical coordinate 
transform that explicitly maps the transitions between these regions onto fixed surfaces of the coordinate 
system. One possibility might be to use a boundary-layer variant of the coordinate introduced by Zhu et al. 
(1992): 
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Here, *p  is surface pressure, Bp  is the pressure at the top of the boundary layer, and Tk+1/2 is the 

temperature. 

 
Figure 8: A possible vertical coordinate for use in a background covariance model. 
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This coordinate system has exactly KB levels evenly spaced in log-pressure in the boundary layer. For 
appropriate choices of the coefficients ak+1/2, bk+1/2 and ck+1/2, the coordinate tends to an isentropic 
vertical coordinate in the lower stratosphere. The coordinate system is illustrated in Figure 8 for an idealised 
case. The coordinate marked in red coincides with the top of the boundary layer, and the first fully-isentropic 
surface is marked in blue. 

5. Including Inhomogeneity in the Spectral Method 

The spectral approach to covariance modelling described above has the major disadvantage that the 
correlations it produces are spatially homogeneous. In effect, the method provides full resolution of the 
variation of vertical and horizontal correlation as a function of total wavenumber n, but provides no spatial 
resolution: a single correlation model is applied at all points on the sphere. 

At the opposite end of the spectrum, it is possible to specify vertical and horizontal correlations in the grid-
space of the model, as a function of horizontal location. This approach allows full spatial resolution, but 
provides no spectral resolution. In particular, with this approach, the same vertical correlation matrix is 
applied, regardless of the horizontal scale of the features involved. As mentioned above, this separability of 
vertical and horizontal correlations makes it impossible to specify simultaneously correct correlation 
structures for mass and for wind (Phillips, 1986; Bartello and Mitchell, 1992). 

Clearly, a compromise between the two extremes of spatial and spectral resolution is required. It is well 
know that wavelet methods allow simultaneous resolution of spatial and spectral features, making them 
attractive for use in background covariance modelling. Tangborn and Zhang (2000) demonstrated the use of 
wavelets to provide a basis for the propagation of covariances in a low-rank approximate Kalman filter. 
Their model had a rectangular domain, for which it was straightforward to define an orthogonal wavelet 
basis. The definition of a wavelet basis for the sphere is less trivial. 

There have been several attempts to define orthogonal wavelets on the sphere. Schröder and Sweldens 
(1995) defined wavelets based on an underlying triangulation of the sphere. Goettlemann (1996) and 
Schaffrin et al. (2002) used latitude-longitude grids with varying zonal resolution. Both approaches result in 
complete orthogonal, or bi-orthogonal, bases for the sphere. However, with these bases, it is not possible to 
define finite truncations that are free from special points. That is, given a function represented by a finite set 
of non-zero coefficients, arbitrary rotations of the function on the sphere cannot be represented using the 
same finite basis. In practice, this means that a covariance model constructed using these bases will 
inevitably suffer from some form of discontinuous behaviour at the special points. 

An alternative method for constructing wavelets on the sphere was suggested by Freeden and Windheuser 
(1996). They defined wavelets in terms of convolutions with radial basis functions (i.e. functions of great 
circle distance, r). Such wavelets are free from special points, but are non-orthogonal. The lack of special 
points, and the close connection between the construction of wavelets using convolutions and the 
convolution-based approach used in the current ECMWF background covariance model, makes Freeden and 
Windheuser’s approach attractive for use in constructing a covariance model. 

A finite, non-orthogonal wavelet transform on the sphere is defined by a set of radial basis functions 

{ }( ) ; 1j r j Kψ = … with the property: 

  (5) 2
max

1

ˆ ( ) 1 for 0
K

j
j

n nψ
=

= = …∑ n
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where ˆ ( )j nψ  is the nth coefficient of the Legendre transform of ψ, and where ˆ ( ) 0j nψ = for n>nmax. (Note 

that we have restricted our attention to a finite set of functions with finite series of Legendre coefficients. 
This restriction is not necessary for the theory to apply. It is assumed for convenience.) 

Consider a function f on the sphere whose spectral coefficients are zero for n>nmax. We define the wavelet 
“coefficients” to be the functions defined by convolving f with each of the radial basis functions: 

 for 1j jf f j Kψ= ⊗ = …  (6) 

Now consider the sum:
1

K

j
j

jfψ
=

⊗∑ . Considering the (m,n)th spectral component of the spherical harmonic 

expansion of this sum, we have: 

  (7) 
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=

=

∑ ∑

∑

f

j

The last step in equation (7) is derived using equation (5). We may write equation (7) as: 

 j
j

f fψ= ⊗∑  (8) 

Equations (6) and (7) form a sort of transform pair (strictly, a “resolution of the identity”). They show that 
the functions ( )rjψ  form a particular mathematical construct known as a “tight frame” (see, for example, 

Daubechies, 1992). The existence of a  transform pair is the crucial property that makes the wavelet basis 
useful. Specifically, we choose the functions ( )rjψ  to be both spatially localised, and restricted to a band of 

wavenumbers, n. We can then regard the value of the function fj at a given location on the sphere as 
representing local features of the function f that have a horizontal scale corresponding to the selected band of 
wavenumbers. Equation (8) shows that if we manipulate the functions fj, then the results of these 
manipulations will produce spatially and spectrally localised effects on the corresponding function on the 
sphere.  

Freeden and Windheuser (op. cit.) generated spherical wavelets using a family of radial basis functions 
( )j rψ , derived from a single generator function. This has advantages when considering infinite expansions 

in wavelets on the sphere as it simplifies the mathematics. However, for finite expansions, there is no 
particular advantage to using a single generator function. Instead, we choose to define a set of spectrally 
band-limited functions, ( )j rψ , whose Legendre transforms satisfy: 

 1ˆ ( ) 0 if  or j jn n N n 1jNψ − += < >  (9) 

for some series of cut-off wavenumbers N1...NK. For example, we could choose: 
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Figure 9 shows the spectral coefficents for the functions defined by equation (10). The corresponding 
functions of great-circle distance are shown in Figure 10. (Note that, for clarity, the functions have been 
offset along the vertical axis.) It is clear that, for practical purposes, the functions are spatially localised, with 
functions corresponding to higher bands of wavenumbers having smaller spatial extent than those 
corresponding to low bands of wavenumbers. 
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Figure 9: Spectral coefficients of the wavelet functions defined by equation (10). 
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Figure 10: Functions of great-circle distance corresponding to the functions shown in Figure 9. 
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In a variational analysis system, it is usual to define the background covariance matrix implicitly by 
introducing a new variable, χ, related to the background departure through ( )b− =x x Lχ . The background 

cost function is then: 

 T1
2bJ = χ χ  (11) 

The background error covariance implied by this change of variable is B=LLT. Note in particular that it is 
not necessary for L to be invertible, or even square. 

To define a wavelet-based background covariance model, we define the control vector such that 

( )T T T T
1 2, , , K=χ χ χ χ… , where: 

 ( )1 2 1 2( , ) ( )j j j b bλ φ ψ− −= ⊗ −χ C Σ T x x  (12) 

Here, Σb is the matrix representing the gridpoint variances of background error, and T is the matrix 
representing the balance operator (see the next section of this paper, and also Derber and Bouttier, 1999). 
These matrices are retained from the current specification of the ECMWF analysis control variable. 

 The matrix ( , )j λ ϕC is a vertical covariance matrix. In principle, one such matrix may be specified at each 

grid-point of the spatial representation of 1 2 (j b bψ −⊗ −Σ T x x ) . In practice, it may be necessary to reduce 

the number of matrices to be specified, for example by using the same matrix for several gridpoints. 

The dimension of the control vector is larger than that of the background departure. As noted above, this 
does not matter for the definition of the background error covariance matrix. From the practical point of 
view, we note that each of the functions χj is band limited (assuming that the horizontal variation of the 
covariance matrices is also band-limited). Each may be represented exactly on a Gaussian grid of appropriate 
resolution. Functions corresponding to the largest scales can be represented on coarse grids, so that the total 
dimension of the control vector need not be excessive. 

Using equation (8), we may derive an expression for the background departure as a function of the control 
vector: 

 1 1 2 1 2 ( , )b b j j
j

ψ λ φ−
j − = ⊗  ∑x x T Σ C χ  (13) 

This is of the form ( )b− =x x Lχ , so that the implied background covariance matrix is B=LLT. 

It is clear from equation (13) that the background departure at a given location is determined by the sum of 
convolutions of the functions ( , )j jλ ϕC χ  with the functions ψj. Each convolution corresponds to a local 

averaging of nearby values, by virtue of the spatial localisation of the wavelet functions. Consequently, only 
the covariance matrices Cj(λ,φ) corresponding to nearby points have an influence in determining the 
background departure at a given location. By allowing the covariance matrices to vary with latitude and 
longitude, we achieve spatial variation of the covariances. 

To understand the spectral properties of the covariances implied by equation (13), consider the special case 
in which the covariance matrices Cj(λ,φ) are independent of latitude and longitude. In this case, the 
multiplication commutes with the convolution, and we have: 
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 ( )1/ 2 1 2
b b b j j

j

σ ψ− − = ⊗ j∑Σ T x x C χ  (14) 

Taking the spectral transform, we find that the matrix L that defines the change of variable has spectral 
representation 

 ( )1 1/ 2 1/ 2 1/ 2 1/ 2
1 1 2 2

ˆ ˆ ˆ, , ,b
−=L T Σ C Ψ C Ψ C Ψ… K K  (15) 

where  is the diagonal matrix of coefficients ˆ
jΨ ˆ ( )j nψ . For a given wavenumber, n, the implied covariance 

matrix for the variable  is: ( )1/ 2
b b
− −Σ T x x

  (16) 2

1

ˆ ( )
K

j
j

nψ
=
∑ C j

Now, from equation (5), we have 2ˆ ( ) 1j
j

nψ =∑ . Hence, equation (16) represents an interpolation in 

wavenumber of the matrices Cj. For the particular functions defined in equation (10), the interpolation is 
piecewise linear. Hence we see that, for the special case of spatially invariant covariance matrices, the 
wavelet Jb is equivalent to a version of the current formulation of the ECMWF covariance model in which 
the vertical correlation matrices, Vn, and the coefficients defining the horizontal structure functions, hn, are 
piecewise linear functions of wavenumber n. 

To demonstrate the potential of the wavelet Jb formulation described above, we interpolated the matrices 
Cj(λ,φ) to given latitudes and longitudes, and then constructed effective vertical correlation matrices and 
horizontal structure functions using equation (16). This allows straightforward comparison with the current 
homogeneous covariance model. Figure 11 shows the effective wavenumber-averaged vertical correlation 
matrix for a point over north America. The corresponding matrix for a point in the equatorial Pacific ocean is 
shown in Figure 12. Clear differences in boundary-layer structure and tropopause height are apparent. 

  
Figure 11: The effective wavenumber-averaged vertical 
correlation matrix for vorticity over north America 
implied by the wavelet Jb covariance model. 

Figure 12: As Figure 11, but for a point in the equatorial 
Pacific ocean. 
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The ability of the wavelet Jb formulation to produce inhomogeneous horizontal correlations is demonstrated 
in Figure 13, which shows the effective horizontal structure functions for points over north America and over 
the equatorial Pacific. The length scale for horizontal correlation is clearly larger in the equatorial Pacific 
than over north America.  

 
Figure 13: Effective horizontal structure functions for vorticity for a point over north America and a 
point in the equatorial Pacific. 

6. Incorporating Flow-Dependent Dynamical Balance in the Background 
Covariance Model 

Derber and Bouttier (1999) showed that an effective multivariate covariance model for a variational analysis 
could be produced by applying a univariate covariance model to suitably transformed model variables. 
Specifically, restricting attention to vorticity, divergence, surface pressure and temperature, they applied a 

univariate covariance model to the variables ( )( ), , ,bal u s uu
D p Tζ , defined as: 

 
( )
( )

( )

( )
( ) ( )

( ) ( ) ( ) ( )( )

bal

bal balu

bal bal div uu

s s bal bal s div us u

D D PD
T T P T DT
p p P p Dp

ζζ
ζ
ζ

ζ

=
−=
− −=
− −=

 (17) 

Here, Pbal is a pseudo-geopotential, determined by a statistical regression between spectral coefficients of 
vorticity and geopotential. Dbal, Tbal and (ps)bal are determined by statistical regressions with Pbal, and Tdiv and 
(ps)div are determined by statistical regression with Du. 

The change of variable defined by equation (17) is invertible. For example, for temperature, we have: 

 ( )( ) ( )u bal bal div uT T T P T Dζ= + +  (18) 
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Now, since Tu, ζ and Du are assumed to be uncorrelated, the covariance matrix for temperature is given by 
the sum of the covariance matrices for Tu, Tbal and Tdiv. The covariances for the latter two variables are 
determined by the action of the assumed functional (balance) relationship between Tbal and vorticity, and 
between Tdiv  and Du, on the covariance matrices for vorticity and for Du. 

Derber and Bouttier (op. cit.) defined Pbal using linear regression. However, they restricted the regression 
matrix to be tri-diagonal with respect to the spherical harmonic representations of the vorticity and 
geopotential fields. The coefficients they derived through regression were, in fact, highly similar to those of 
the corresponding linear balance equation, so that use of analytical linear balance rather than regression 
would make little difference to the implied covariance model. Given this fact, it is interesting to ask whether 
alternative analytical expressions, which are more accurate than linear balance, might be of use in the 
covariance model. 

A particular improvement over the linear balance equation is provided by the non-linear balance equation 
(see, for example, Haltiner and Williams, 1980). This defines a balanced geopotential as: 

 ( )2 . .balP ψ ψ ψ∇ = −∇ ∇ + ×v v k vf  (19) 

Here, vψ denotes the rotational wind. The nonlinear balance equation is equivalent to the linear balance 
equation in the case that the rotational wind is everywhere orthogonal to its gradient. It is equivalent to 
gradient wind balance for circular flow. The nonlinear term in equation (19) becomes important in regions of 
strong acceleration or curvature. As such, it is expected that use of the nonlinear balance equation in the 
covariance model should result in improved analyses in dynamically active regions, such as jet entrances and 
exits. 

Derber and Bouttier’s formulation includes a regression between divergence and Pbal. The effect of this 
regression is to produce inflow into surface cyclonic flow, and corresponding outflow aloft. It is possible to 
augment this simple relationship with analytical expressions for the balanced divergence. One possibility is 
to use the quasi-geostrophic omega equation: 

 
2

2 2
0 2( )f

p
σ ω∂
∇ + = − ∇

∂
Q2 .  (20) 

Here, we use the Q-vector form of the omega equation (Hoskins et al., 1978). As with the nonlinear balance 
equation, we expect the use of the quasi-geostrophic omega equation to improve the covariance model in 
dynamically active regions. 

Figure 14 shows the ageostrophic flow at 300hPa for 12UTC on 27 August 2001 calculated from the 
ECMWF operational analysis, together with the ageostrophic flow on a nearby model level, diagnosed using 
the nonlinear balance equation and quasi-geostrophic omega equation. The resemblance between the two 
plots is striking. 
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Figure 14: The ageostrophic flow at 300hPa for12UTC on  27 August2001, calculated from the ECMWF 
operational analysis (top), and the ageostrophic flow on model level 33 (near 300hPa) diagnosed using 
the nonlinear balance equation and quasi-geostrophic omega equaton. 

It is desirable to retain a linear relationship between the background departures and the analysis control 
vector, since this allows the analysis problem to be expressed in terms of a quadratic cost function, for which 
efficient minimization algorithms exist. To retain linearity, both the nonlinear balance equation and the 
quasi-geostrophic omega equation may be linearised about the background state. The corresponding 
modification to Derber and Bouttier’s balance formulation was implemented operationally in the ECMWF 
analysis system in January 2003. 

Wind increments at model level 31 (approximately  228hPa) resulting from a single height observation at 
300hPa are shown in Figure 15. For reference, contours of the 250hPa geopotential height field are shown. 
The top panel shows the effect of including the nonlinear balance equation and the quasi-geostrophic omega 
equation in the background error covariance model. There is a strengthening of the increments in the jet-
entrance region. 

The temperature and divergence increments due to the same observation are shown in Figure 16 and Figure 
17 respectively. 

 

60 



FISHER, M.: BACKGROUND ERROR COVARIANCE MODELLING 

 
Figure 15: Wind increments on model level 31 (near 228hPa) resulting from a single height observation 
at 300hPa. Top panel: balance operator includes linearizations about the background of the nonlinear 
balance equation and the quasi-geostrophic omega equation. Bottom panel: Derber and Bouttier’s 
(1999) balance operator. 

 
Figure 16: Temperature increments for the same case as is shown in Figure 15. 
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Figure 17: Divergence increments for the same case as is shown in Figure 15 and Figure 16. 

Summary 

Background error covariance modelling necessarily requires a number of compromises to be made in order 
to produce a computationally viable model. The lack of access to the true background state requires either 
that we untangle information about the statistics of background error from innovation statistics, or that we 
derive statistics for a surrogate quantity. Both approaches require assumptions to be made, for example about 
the statistical properties of observation error. In this paper, we presented a method for generating surrogate 
fields of background error from an ensemble of analyses. We showed that the statistical properties of fields 
generated in this way differ significantly from forecast differences produced using the popular NMC method. 
We argue that this difference is partly a result of the tendency of the NMC method to produce fields whose 
statistics are characteristic of longer forecasts than are typically used to provide background fields in an 
analysis system. 

The spectral approach to modelling background error covariances was discussed. It was noted that the 
apparent inability of the spectral method to model anisotropic and inhomogeneous covariances is a 
significant shortcoming. However, we showed that this apparent inability could be overcome by the use of 
horizontal coordinate transformations and by the use of spherical wavelet techniques. The possibility of 
using vertical coordinate transformations to improve the specification of vertical correlations was mentioned. 

A spherical wavelet transform that is free from polar discontinuities was presented. A method for 
constructing a wavelet-based covariance model was discussed, and the ability of the method to produce 
spatially varying vertical and horizontal correlations was demonstrated. 
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Finally, the possibility of including non-linear, analytical balances in the covariance model was 
demonstrated. 
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