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Summary 

An algorithm due to Bai et al. (1996) allows accurate estimates to be made of the traces of certain functions of large 
matrices. We show that, by applying the algorithm in the context of variational data assimilation, it is possible to 
calculate two important measures of the information provided by observations. Specifically, we calculate the entropy 
reduction and degrees of freedom for signal produced by assimilating many thousands of observations in a version of 
the ECMWF four-dimensional variational analysis system. We verify the method by comparing it with explicit 
calculation for a simplified case with few observations. We describe an alternative (more expensive) method for 
calculating degrees of freedom for signal, based on an algorithm by Wahba (1995). We show that the estimate produced 
by this method converges to that produced using Bai et al.’s algorithm as the number of iterations of its minimization 
algorithm is increased. 

1. Introduction 

It is useful to be able to quantify the amount of information provided by an observation or by an observing 
system. In the development of remote-sounding instruments, two popular measures of information content 
are entropy-reduction and degrees of freedom for signal (see, for example, Eyre, 1990; Rodgers, 1996; 
Rabier et al., 2002; Fourrié and Thépaut, 2003). These quantities are typically calculated for small-scale, 
one-dimensional analysis or retrieval systems, for which the covariance matrices of background and 
observation error are small enough to allow explicit matrix manipulations. 

Wahba et al. (1995) presented an algorithm, in the context of generalized cross-validation (Golub et al., 
1979; Wahba and Wendleberger, 1980; Wahba, 1990), for calculating the degrees of freedom for signal for a 
large variational assimilation system. Another algorithm due to Cardinali (personal communication) is 
discussed below. We discuss the relative merits of these algorithms in section 6. 

We know of no calculations of entropy reduction for large-scale analysis systems, although we note that 
algorithms exist (e.g. Liu, 2000; Barry and Pace, 1999) for estimating the log of the determinant of large 
matrices. It is likely that these algorithms could be used to estimate entropy reduction. A particular 
advantage of the method presented here is that estimates of degrees of freedom for signal and entropy 
reduction are produced simultaneously. 

The structure of this paper is as follows. In sections 2 and 3, we briefly review the concepts of entropy-
reduction and degrees of freedom for signal. The reader is referred to Rodgers (2000) for a more complete 
discussion. In section 4, we show that in variational data assimilation, both quantities may be expressed in 
terms of the trace of a function of the Hessian matrix of the analysis cost function, and may consequently be 
estimated using the algorithm of Bai et al (1996). We apply the method to the ECMWF four-dimensional 
data assimilation system (Rabier et al., 2000; Mahfouf and Rabier, 2000; Klinker et al., 2000) in section 5. In 
section 6, we verify the method by applying it to a case for which explicit calculation of entropy reduction 
and degrees of freedom for signal is possible. We show that the estimates produced by the method are correct 
to within the random uncertainty inherent in the algorithm. We also compare our estimate of degrees of 
freedom for signal with that produced by a variant of Wahba et al.’s (1995) algorithm. The final section of 
the paper discusses the utility of the method, and suggests some possibilities for its wider application. 
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2. Entropy reduction 

In information theory, entropy is a real-valued functional that characterizes probability density functions 
(Shannon and Weaver, 1949): 

 ( )2( ) ( ) log ( )H P P P d= −∫ x x x  (1) 

(The logarithm may be taken to any convenient base. Base 2 is conventional, and will be used in this paper. 
For this choice of base, the units of entropy are called “bits”.) 

For a Gaussian distribution, with covariance matrix C, the entropy can be shown to be 2
1( ) log
2

H P = C  

(see, for example, Rodgers 2000). In this case, the entropy may be interpreted as a measure of the volume in 
phase space enclosed by a surface of constant probability. 

The entropy-reduction S due to the use by the analysis of one or more observations (represented by the 
vector y) is simply the difference in entropy between the prior and posterior densities: 

 ( ) ( )( ) ( | )S H P H P= −x x y  (2) 

For Gaussian distributions it is easy to show that entropy reduction is invariant under a linear transformation 
of the state vector. To see this, consider the transformation =z Lx  (where L is a non-singular square matrix) 
for a system with prior covariance matrix B and posterior covariance matrix Pa. In terms of x, the entropy 
reduction is: 

 2 2
1 1log log
2 2

aS = −x B P  (3) 

The prior and posterior covariance matrices for z are LBLT and LPaLT, giving an entropy reduction for z of: 

 T
2 2

1 1log log
2 2

aS = −z LBL LP LT  (4) 

We now use the fact that the determinant of a product of square matrices is equal to the product of their 
determinants to write: 

 

( ) ( )
( ) ( )

T T
2 2

T T
2 2 2 2 2 2
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2 2
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2 2
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= −
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= −
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B P

 (5) 

Of particular interest are transformations for which LBLT is the identity matrix. Transformations of this form 
are used in most variational data assimilation systems to define the control variable for the minimization 
algorithm (Courtier et al., 1998; Gauthier et al., 1999; Gustafsson et al., 2001; Lorenc et al., 2000). In this 

case, the entropy reduction is 2
1 log
2

aS = − zP , where is the covariance matrix for the posterior Ta a=zP LP L
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distribution of z. Noting that the logarithm of the determinant of a symmetric matrix is equivalent to the trace 
of its logarithm, we have: 

 ( )( 2
1 trace log
2

aS = − zP )  (6) 

3. Degrees of freedom for signal 

Degrees of freedom for signal may also be defined by means of a transformation L that reduces the prior 
covariance matrix to the identity. For the prior, the components of the transformed state vector z are 
statistically independent, and have unit variance. Each component corresponds to an independent “degree of 
freedom”. 

The transformation L is not uniquely determined, since we may replace L by XTL, where X is an orthogonal 
matrix. In this case, we have . By choosing X to be the matrix of eigenvectors of , 

we simultaneously reduce B to the identity matrix, and  to the diagonal matrix of its eigenvalues. In this 

case, we may interpret the eigenvalues λi as giving the fractional reduction in variance in each of the N 
statistically independent directions corresponding to the N components of the transformed state vector. 
Where an eigenvalue is close to zero, the direction is well observed. The direction is said to be a “degree of 
freedom for signal”. By contrast, where an eigenvalue is close to one, the direction is unconstrained by the 
observations, and is said to be a “degree of freedom for noise”. An indication of the effective number of 
degrees of freedom for signal is given by: 

T T T= =X LBL X X X I a
zP

a
zP

 i
i

d N λ= −∑  (7) 

That is: 

 ( )trace ad N= − zP  (8) 

Note that Wahba et al. (1995) define degrees of freedom for signal as the trace of the so-called influence 
matrix,  (where R is the covariance matrix of observation error, and H is the matrix 
that maps the model state vector to the observed quantities). We show in appendix A that the two definitions 
of degrees of freedom for signal are equivalent. 

1/ 2 T 1/ 2a−=A R HP H R−

4. Estimating S and d in a variational analysis system 

It is well known (Gauthier, 1992; Rabier and Courtier, 1992) that, for a perfect model and correctly specified 
covariance matrices of background and observation error, the covariance matrix of analysis error is equal to 
the inverse of the Hessian matrix of the analysis cost function. Specifically, if the control variable for the 
minimization is defined by the transformation =z Lx  (as noted above, this is usually the case), then 

, where is the Hessian matrix of the cost function with respect to the control variable. 1( )a J −′′=z zP zJ ′′

In this case we have: 

 ( 1
2

1 trace log ( )
2

S − )J ′′= − z  (9) 

and: 
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 ( )( )1traced N J −′′= − z  (10) 

Both quantities require the calculation of the trace of a function of the Hessian matrix. 

An elegant algorithm for estimating the trace of a function of a large matrix is described by Bai et al. (1996). 
The algorithm may be split into two parts. (Details are given in appendix B.) First, it is noted that the trace of 
a matrix C may be estimated using the method of Hutchinson (1989). This method calculates: 

 ( ) Ttrace ≈C u Cu  (11) 

where u is a vector whose elements take the values 1± randomly and independently with probability ½. 

Use of this randomized trace estimate reduces the problem of calculating the trace of a function f of a matrix 
C to that of calculating u C . Bai et al. (1996) use the algorithm of Golub and Meurant (1993) and 
Golub and Strakos (1993) for this. The algorithm is based on manipulations of the tri-diagonal matrix that is 
generated by applying the Lanczos algorithm to C with initial vector u. For functions f(λ) whose even 
derivatives have consistent sign, and whose odd derivatives have the opposite sign for all λ lying between 
the smallest and largest eigenvalue of C, it is possible to calculate strict upper and lower bounds for 

. In particular, this property holds for the logarithm and for the inverse. 

T ( ) f u

uT ( ) fu C

Application of Bai et al.’s algorithm to the problem of calculating S and d in a variational analysis system is 
straightforward, and requires only the calculation of Hessian-vector products. These may be calculated using 
the fact that for a strictly quadratic cost function the product of the Hessian with a vector may be calculated 
exactly as a finite difference of gradients. (In practice, the requirement that the cost function should be 
strictly quadratic is not very restrictive. Most variational assimilation systems use a cost function that is 
quadratic, or that may easily be converted to quadratic by modifying a few non-quadratic terms.) 

The computational cost of applying the algorithm in a variational analysis system is overwhelmingly 
dominated by the cost of the gradient calculations required to determine the tri-diagonal matrix. Once this 
matrix has been determined, the cost of the manipulations required to calculate upper and lower bounds for 
degrees of freedom for signal and for entropy reduction is negligible. Bounds on both quantities may be 
determined simultaneously. 

5. Estimates of S and d for the ECMWF 4dVar analysis system 

Figure 1 shows ten estimates of the information content of the ECMWF 4dVar system for an analysis for 1st 
October 2002. (Note that the vertical axis corresponds to a relatively small range of values of entropy.) For 
these calculations, the spectral resolution of the analysis system was T159 with T95 increments, and the 
duration of the 4dVar analysis window was 6 hours. In all other aspects, the analysis system was equivalent 
to the version of the analysis system that became operational on 14th January 2003. The dimension of the 
analysis control vector was 2842383, and the rank of the observation error covariance matrix was 604981. 
The cost function included a Jc term to penalize rapid oscillations in the time evolution of the analysis 
increment for divergence. This term provides a significant amount of information to the analysis, and its 
contribution is included in the estimated entropy reduction. The estimates shown in Figure 1 correspond to 
different sequences of random numbers. Each sequence results in a different estimate of the trace of 
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1

2 )(log −′′zJ , as a result of the random errors introduced by the trace estimator (equation 11). For each 
sequence, Bai et al.’s (1996) algorithm generates upper and lower bounds on the estimated entropy 
reduction. These bounds are shown as a function of the number of Lanczos iterations. One cost-function 
gradient calculation is required for each iteration. Note that the upper and lower bounds converge to within 
the error introduced by the randomization after about 25 iterations. This is less than the number of iterations 
of minimization performed in a typical analysis.  
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Figure 1:  Estimates of Entropy Reduction for the ECMWF 4dVar System. 
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Figure 2: Estimates of Degrees of Freedom for Signal for the ECMWF 4dVar System. 
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If the random error in the estimates of information content is assumed to be Gaussian, we may assign 
confidence intervals for the information content using Student’s t distribution (see, for example, Barlow 
1989). The 95% confidence interval is 60181.7 ± 181.6. 

Figure 2 shows corresponding estimates of the degrees of freedom for signal. Again, the bounds converge 
rapidly and the randomization error is small. The 95% confidence interval is 54619.0 ± 140.4. 

The similar values for S and d may be understood from the spectral properties of . As a result of the 
transformation L, all the eigenvalues of  lie between zero and one, and the vast majority are close to one. 
Writing 

a
zP

a
zP

ii λε −= 1 , we have: 

 i
i

d ε=∑  

and 

 2
1 log (1 )
2 i

i
S ε= − −∑  

For εi close to zero, 2
1 log (1 ) 0.72
2 2 ln 2

i
i

ε
iε ε− − ≈ ≈ . Relatively few terms have εi close to one. These terms 

contribute much more to S than to d, giving a value of S somewhat larger than 0.72d. 

5.1 Interpretation 

At first sight, the values of entropy and of degrees of freedom for signal calculated for the full analysis 
system are surprisingly small. On average, each observation contributes only 0.1 bits of information, and 
roughly 10 observations are required for each well-observed degree of freedom. Moreover, only about 2% of 
the degrees of freedom represented by the dimension of the analysis control vector are "for signal". 

The degrees of freedom of the control vector are mostly accounted for by the 5 primary analysis variables: 
vorticity, divergence, temperature, specific humidity and ozone.  However, some of these degrees of freedom 
correspond to gravity-wave oscillations. These are unlikely to be well observed, since gravity waves 
generally have small amplitude in the atmosphere. Discounting gravity waves reduces the observable degrees 
of freedom to 3 variables: a balanced dynamical variable, together with ozone and specific humidity. 

It is likely that the dynamical fields are significantly better observed than the ozone or specific humidity. To 
confirm this, entropy and degrees of freedom for signal were estimated for an analysis in which the assumed 
standard deviations of background error for specific humidity and ozone were multiplied by 10-3. In this case, 
essentially no information was provided to the analysis by observations of humidity or ozone. As a 
consequence, degrees of freedom for signal and entropy were both reduced. However, the reduction was 
small: roughly 6000 degrees of freedom and 9000 bits respectively. This leaves approximately 48000 
degrees of freedom to describe the balanced dynamical flow. This number of degrees of freedom for signal 
could be achieved, for example, by observing the balanced flow to good accuracy everywhere with a vertical 
resolution roughly one third that of the model, and to a horizontal resolution of T48 (roughly 400km). A 
value of 48000 for S corresponds to halving the standard deviation of error in these 48000 degrees of 
freedom (Eyre, 1990). 
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5.2 Example 

As an example of the possible utility of the algorithm, Figure 3 and Figure 4 show the change in entropy 
reduction and degrees of freedom for signal that results from the removal of certain satellite data. The thick 
solid and dotted curves show the same upper and lower bounds as are plotted in Figure 1 and Figure 2. This 
analysis included HIRS data from the NOAA 16 satellite and AMSU-A data from both NOAA 15 and 
NOAA 16. The thin lines show upper and lower bounds for three randomized trace estimates of entropy 
reduction (Figure 3) and degrees of freedom for signal (Figure 4) for an analysis in which data from the 
AMSU-A and HIRS instruments was removed. Clearly, data from these instruments contribute significantly 
to the information content of the analysis. 

0 5 10 15 20 25 30 35 40 45 50

Lanczos Iteration

45000
46000
47000
48000
49000
50000
51000
52000
53000
54000
55000
56000
57000
58000
59000
60000
61000
62000
63000
64000
65000

Bi
ts

No AMSU-A or HIRS
All Observations

 
Figure 3: Estimates of entropy reduction for analyses with all observations (thick lines) and analyses 
with AMSU-A and HIRS data excluded (thin lines). 
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Figure 4: Estimates of degrees of freedom for signal for analyses with all observations (thick lines) and 
analyses with AMSU-A and HIRS data excluded (thin lines). 
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6. Verification of the Method 
6.1 Comparison with Direct Calculation for Few Observations 

To check the correctness of the algorithm, an analysis was performed for which the number of observations 
was drastically reduced, by eliminating all observations outside a 2°×2° area centred on 45°N, 45°W. Only 
40 observations remained, all of them radiances from 5 profiles of the AMSU-A instrument. The Jc term of 
the analysis cost function was also removed. As a consequence, only 40 eigenvalues of the analysis Hessian 
differed from one, and these could be determined to good accuracy using the Lanczos algorithm. Knowledge 
of the full eigenspectrum of the Hessian allows direct calculation of S and d, and in this case gives S=2.2219 
and d=2.3418. 

Estimates of S and d were calculated for ten different random vectors u. The estimates are shown in Figure 5 
and Figure 6. Thick dashed horizontal lines mark the directly calculated values. Note that the upper and 
lower bounds converge within one or two iterations. Note also that the variance introduced by the 
randomized trace estimate is relatively large for both d and S. For d, this is because the inverse of the 
analysis Hessian in this case is very close to the identity matrix, so that its trace is close to the dimension of 
the control vector, N. The randomized trace calculation estimates the trace of the inverse of the Hessian 
extremely accurately, with a random error of a few parts per million, but this corresponds to a large relative 

error in ( )( )1traced N J −′′= − z . In the case of S, the diagonal elements of the log of the Hessian are close to 

zero, so that the conditions (decay away from the diagonal) required for an accurate estimate of the trace are 
not satisfied. 

The means of the estimated values are 2.3723S =  and 2.6162d = . Assuming that the randomized values of 
S and d have Gaussian distributions with means equal to the directly calculated values, but with unknown 
variances, we may use Student’s t distribution to evaluate the deviations of the sample means from the 
directly-calculated values. The probabilities that deviations at least as large as those obtained could arise by 
chance are 0.642 for S and 0.453 for d. The observed deviations are therefore consistent with the hypothesis 
that S  and d are drawn from distributions with means equal to the directly-calculated values of S and d. 

The value of entropy-reduction for this experiment compares well with that given by Eyre (1990) for a single 
AMSU-A profile. (Eyre gives a value of around 4.36 over sea (op. cit. table 7), but uses a definition of 
entropy that is a factor of two larger than that used in this paper.)  The fact that our 5 profiles do not provide 
significantly more information than his single profile is probably due to a combination of factors. First, the 
profiles are in close proximity. The assumed horizontal correlation of background error introduces a degree 
of redundancy into the information provided by the observations within the scale length of the correlations 
(about 300km for temperature). Second, the variances of background error for temperature used in the 
current ECMWF assimilation system are significantly smaller than those used by Eyre. Third, Eyre (op. cit.) 
uses all 15 AMSU-A channels for his retrieval, whereas an average of 8 channels per profile were used by 
our analysis system for the 5 selected profiles. 
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Figure 5: Estimates of Entropy Reduction for 40 AMSU-A radiances. 
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Figure 6: Estimates of Degrees of Freedom for Signal for 40 AMSU-A radiances. 

6.2 Comparison with an Alternative Method 

Wahba et al. (1995) give an alternative algorithm for estimating the degrees of freedom for signal for a large 
variational analysis system. Their algorithm requires observations to be perturbed by amounts characteristic 
of observation error. In the ECMWF analysis system, it is more convenient to perturb the analysis control 
vector, so we have devised the following variant of Wahba et al.’s method. 

Let us write the analysis as a function of the background and observations: 

 ( )1 T 1( , ) a
a b b

−= +x x y P B x H R y−  (12) 
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Now consider the difference between two analyses with the same observations, but with different 
backgrounds, and x : bx εx+b

 1( , ) ( , ) a
a b a bε ε

−+ − =x x x y x x y P B x  (13) 

Defining , and , we have: ),(),( ⋅⋅=⋅⋅ aa Lxz εε Lxz =

 ( , ) ( , ) a
a b a bε ε+ − = zz x x y z x y P z  (14) 

In particular, we may choose  to be a vector whose elements take the values ±1 randomly and 

independently with probability ½. In this case, Hutchinson’s (1989) estimate for the trace of  is given by:  
εz

a
zP

 ( )T T ( , ) ( ,a
a b a bε ε ε ε= + −zz P z z z x x y z x y)  (15) 

The corresponding estimate of degrees of freedom for signal is: 

 ( )T ( , ) ( ,a b a bd N ε ε≈ − + −z z x x y z x y)  (16) 

The computational cost of this estimate is equivalent to that of two analyses. This is also the case for Wahba 
et al.’s (1995) method. In comparison, the computational cost of the method proposed in section 4 is 
somewhat less than the cost of one analysis. This is because the upper and lower bounds on the randomized 
trace estimate tend to converge to sufficient accuracy in fewer iterations than are required to converge the 
analysis to acceptable accuracy. Moreover, the latter method provides an estimate of entropy reduction for 
negligible additional computational effort. 

Although computationally more expensive, the algorithms represented by equation 16 and described by 
Wahba et al. (1995) have some advantage over the method proposed in section 4. Variational data 
assimilation uses an iterative procedure to calculate the analysis. In the case that the iterative procedure is 
stopped before full convergence has been achieved, the analysis will not be given by equation 12, but will in 
fact be a complicated nonlinear function of the background and observations. In addition, the analysis cost 
function may itself contain non-quadratic terms that lead to a nonlinear relationship between the analysis and 
the background and observations. Despite these nonlinearities, it is still possible to calculate the expression 
on the right hand side of equation 16 (or the equivalent expression involving A, given by Wahba et al., 1995, 
equation 3.9), and define an effective number of degrees of freedom for signal as: 

 ( )T ( , ) ( ,a b a bd N E ε ε ) = − + − z z x x y z x y�  (17) 

where E denotes expectation. 

It is interesting to consider the evolution of as the minimization proceeds. If the starting point for the 

minimization is the background, then initially we will have 

d�

( , ) ( , )a b a bε ε+ −z x x y z x y z= , so that 0d =� . 
During subsequent iterations, both the perturbed analysis and the unperturbed analysis will move towards the 
observations, and away from their respective backgrounds. This will decrease the norm of the difference 

between them. The tendency will be for ( ) ( )( )a ba bE ε ε + − z x ,yTz x x ,yz to decrease and for  to increase. 

Effectively, the iterations of the minimization algorithm act to transfer information from the observations to 
the analysis. 

d�
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The estimate of d calculated using the algorithm described in section 4 corresponds to the value of d that 
would be obtained for a fully converged minimization.  We suggest that the difference between this estimate 
and  might provide a useful diagnostic to determine whether an analysis system performs enough iterations 
to extract most of the information from the observations. (Wahba (1987) has suggested that generalized 
cross-validation might also be used for this purpose.) 

d�

Figure 7 shows estimates of d for the case shown in Figure 1 and Figure 2, calculated using equation 15 with 
a particular choice of random vector. The estimates are shown as a function of the number of iterations of the 
conjugate gradient algorithm that was used to determine the perturbed and unperturbed analyses. (For this 
experiment, the minimization algorithm’s objective stopping criterion was suppressed, so that a prescribed 
number of iterations would be performed.) The estimated value of d increases with the number of iterations 
used for the minimizations, eventually saturating after 50 to 100 iterations. The dashed horizontal line shows 
the estimate of d (after the upper and lower bounds have converged) calculated using the algorithm presented 
in section 4 for the same choice of random vector. This estimate of d is roughly 2% larger than the value 
estimated using equation 15 with either 100 or nearly 200 iterations. It is likely that this discrepancy results 
from the different effects of rounding errors in the two algorithms, rather from a lack of convergence of the 
perturbed and unperturbed analyses. After nearly 200 iterations the norm of the gradient of the cost function 
for both analyses had been reduced by more than 12 orders of magnitude, indicating that the analyses 
themselves were very accurately determined. 
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Figure 7: Estimates of degrees of freedom for signal using equation 16, as a function of the number of 
iterations. The dashed line shows the converged estimate given by the algorithm described in section 4 

6.3 Another approach 

Another approach to calculating degrees of freedom for signal has been developed by Cardinali (personal 
communication). She approximates the covariance matrix of analysis error as: 
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  (18) T

1 1

K L
a

i i i i
i i= =

≈ −∑ ∑P u u w Tw

T

i

using the method described by Fisher and Courtier (1995). Here, K and L are in the range of a few tens to a 
few hundreds. 

Given this approximation, we may write the influence matrix as: 

  (19) T

1 1

K L

i i i i
i i= =

≈ −∑ ∑A u u w w� � � �

where u R and . It is straightforward and fast to calculate the individual elements of 
this approximation. In particular, the individual elements of the diagonal may be determined. Cardinali 
(personal communication) interprets these elements as indicating the importance of individual observations 
to the analysis. The sum of these diagonal elements is an approximation to the degrees of freedom for signal. 
The disadvantage of this approach is that it is difficult to determine the accuracy to which the degrees of 
freedom for signal are determined. We suggest that the methods presented in this paper might be used to 
determine the mean error of the diagonal elements estimated using Cardinali’s method. 

1/ 2
i i

−= Hu� 1/ 2
i

−=w R Hw�

7. Summary and concluding remarks 

An algorithm has been presented that allows accurate estimates to be obtained for the entropy reduction and 
degrees of freedom for signal in a large-scale variational analysis system. There are several obvious 
applications for the method. An objective calculation of the information provided by different observing 
systems would provide valuable information to designers of new observing systems or special observing 
campaigns. Many satellite data require thinning before they can be assimilated. This is done partly to reduce 
the spatial correlation of observation errors, but also has a large impact on the computational cost of the 
analysis. Knowledge of the information content provided by the observations should help in choosing 
appropriate thinning densities. For some instruments, such as the space-borne Doppler wind lidar of the 
European Space Agency’s ADM-Aeolus mission (Stoffelen et al. 2003), there is a trade-off between the 
accuracy of individual measurements and their spatial resolution. The information content could be a useful 
tool in determining the optimum trade-off.  

It is worth noting that the diagnostics presented in this paper depend strongly on the equivalence between the 
inverse of the analysis Hessian and the covariance matrix of analysis error. This equivalence holds only if the 
covariance matrices of background and observation error are correctly specified. (In the case of 4dVar, 
model error is also neglected.) Incorrectly specified covariance matrices are likely to give misleading 
estimates of S and d. Moreover, it should be noted that the introduction of new observations into the analysis 
system is likely to change the characteristics of background error, necessitating a re-tuning of the 
background error covariance matrix. This re-tuning may significantly change the estimated information 
content of the new observations. In fact, the need for a re-tuning of the background error covariance matrix is 
an indication of temporal redundancy in the information provided by the observations: assimilation of the 
new observations during the preceding analysis cycle has reduced the background errors for the current 
cycle, and as a consequence, has reduced the impact of the new observations on the current cycle. 
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In section 5.1, we attempted to interpret degrees of freedom for signal and entropy for the full analysis 
system in terms of an effective resolution for the well-observed component of the analysis. However, these 
global numbers are difficult to interpret, and are likely be of limited practical use. Of much greater interest is 
the comparative information content of different observation types, and the degree to which there is 
redundancy between the information provided by different types of observation. We calculated in section 5.2 
the change in entropy and degrees of freedom for signal caused by the removal of data from the AMSU-A 
and HIRS instruments. In a future paper we intend to conduct a systematic investigation of the information 
content of all the observation types currently used in the ECMWF analysis system. 

There are several other uses for Bai et al.’s (1996) algorithm. Golub and von Matt (1997) describe how it 
may be used to calculate the generalised cross-validation function (Golub, Heath and Wahba, 1979). A 
second possible application of the algorithm is in maximum-likelihood parameter estimation. Dee (1995) 
considers a covariance matrix S that is a function of a few parameters α. He shows that the maximum 
likelihood estimate for S(α), given a sample v drawn from a zero-mean normal distribution with covariance 
matrix S is given by the parameters that minimize the function: 

 vαSvαSα )()(log)( 1T −+=f  

Both terms on the right hand side of this expression may be evaluated using Bai et al.’s (1996) algorithm. 
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Appendix A: Equivalence of Two Definitions for Degrees of freedom for signal 

The covariance matrix of analysis error for the control variable may be written as: 

( )
( )

1T 1 T T

1T T 1 1

a −−

−− − −

= +

= +

zP L H R H L L L

L H R HL I
 

where H and R have their conventional meanings, and where LTL=B-1, the covariance matrix of background 
error. (B is assumed to be non-singular.) 

Now consider the eigendecomposition . We have: T T 1 1 T− − − =L H R HL VΛV

( ) 1 Ta −= +zP V Λ I V . 

That is, the eigenvalues µ of  are related to the eigenvalues λ of a
zP T T 1 1− − −L H R HL  by: 

1
1i

i

µ
λ

=
+

. 

Next, consider the eigenvalues ν of the influence matrix 1/ 2 T 1/ 2a− −=A R HP H R . If y is the eigenvector 
corresponding to ν, then: 

1/ 2 T 1/ 2a ν− − =R HP H R y y  

Now let . Rewriting the eigenvector equation in terms of x gives: T T 1/ 2− −=x L H R y

T T 1 1 a ν− − − =zL H R HL P x x . 

In terms of the eigendecomposition of L H , this is: T T 1 1− −R HL−

( ) 1 T ν−+ =VΛ Λ I V x x . 

There are two possible ways in which this equation may be satisfied. The first possibility is that x is 
identically zero. In this case, the corresponding vector y lies in the nullspace of A, so that 0=ν . 
Alternatively, we must have 1iν iλ λ= + for some eigenvalue iλ of T T 1 1− − −L H R HL . 

If the dimension M of A is smaller than the dimension N of T T 1 1− −L H R HL− , then some eigenvectors of the 
latter matrix cannot be written in the form . Let us consider one such eigenvector. T T 1/ 2− −=x L H R y

We have:  

T T 1 1 λ− − − =L H R HL x x  

Now let . Then 1/ 2 T 1− −=y R H L x T T 1/ 2 λ− − =L H R y x . Clearly, we must have 0λ = to avoid contradicting the 
assumption that x cannot be written in the form . T T 1/ 2− −H R y=x L
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We have shown that for , either 1i = …N 0iλ =  (in which case 1iµ = ), or there exists an eigenvalue jν of A 

such that 1j iν µ= − . Likewise, for , either 1j = …M 0=jν , or ( )1 1j i i iν λ λ µ= + = − for some i. 

In particular, we may conclude that (
1 1

1
M N

)j i
j i
ν µ

= =

= −∑ ∑ . That is, ( ) ( )trace trace aN d= − =zA P . 
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Appendix B: A Brief Description of Bai et al.’s (1996) Algorithm 

Hutchinson’s (1989) randomized trace estimate is defined as t , where u is a vector whose elements 
take the values randomly and independently with probability ½. Writing this in terms of elements of A 
and u, we have: 

AuuT=
1±

,

.

ij i j
i j

ii ij i j
i i j

t A u u

A A u u
≠

=

= +

∑

∑ ∑
 

The first sum on the right hand side is the trace of A. The second sum is a random variable with zero mean 
and variance . For a large matrix whose entries decay with distance from the diagonal, this variance 

is small compared with the trace, and t is an accurate and unbiased estimate of the trace. 

22 ij
i j

A
≠
∑

To evaluate u , we write A in terms of its eigen-decomposition, A=QΛQT: T ( )f A u

TT T

T

2

( ) ( )
( )
( ) ,i i

i

f f
f
f uλ

=

=

=∑

u A u u Q Λ Q u
u Λ u� �

�
 

where u Q . T= u�

The sum may be regarded as a Riemann-Stieltjes integral: 
max

min

2( ) ( )i i
i

f u f
λ

λ

dλ λ µ=∑ ∫�  

where µ(λ) is a staircase function with steps of height 2~
iu at each of the eigenvalues λi. 

Expressing  as an integral allows it to be evaluated using Gauss-type quadrature rules. Bai et al. 
(1996) show that the weights and nodes for the quadrature rules may be calculated from the tri-diagonal 
matrix Tj of coefficients that is generated during the Lanczos algorithm. Specifically, for Gauss quadrature: 

T ( )fu A u

[ ]
max

min

2( ) ( )i i
i

f d w f R
λ

λ

λ µ θ= +∑∫ f  

where θi are the eigenvalues of Tj, and wi are the first elements of the corresponding eigenvectors. R[f] is the 
residual error. The sign of the residual error is known for functions whose even derivatives are all of one 
sign, and whose odd derivatives are all of the opposite sign. Related quadrature rules, with different residual 
errors, are given by similar formulae involving the eigenvalues and the first elements of the eigenvectors of 
slightly modified tri-diagonal matrices. The calculations performed for this paper used Gauss quadrature to 
provide upper bounds on S and d, and Gauss-Radau quadrature to provide lower bounds. 
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