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Summary

Targeted dropsonde data have been assimilated using the operational ECMWF 4D-Var system for 10 cases of the NORth Pacific
EXperiment (NORPEX) campaign, and their impact on analyses and corresponding forecasts has been investigated. The 10 fastest
growing “analysis” singular vectors have been used to define a sub-space of the phase space where initial conditions are expected to
be modified by the assimilation of targeted observing. A linear combination of this vector basis is the pseudo-inverse, that is the
smallest perturbation with the largest impact on the forecast error. The dropsonde-induced analysis difference has been decomposed
into three initial perturbations, two belonging to the sub-space spanned by the leading 10 SVs and one to its complement. Differences
and similarities of the three analysis components have been examined, and their impact on the forecast error compared with the impact
of the pseudo-inverse.

Results show that, on average, the dropsonde-induced analysis difference component in the sub-space spanned by the leading 10 SVs
and the dropsonde-induced analysis difference component along the pseudo-inverse directions are very small (6% and 15%,
respectively, in terms of total energy norm). In the only case where dropsonde data were exactly released in the area identified by the
SVs, the different components of the dropsonde-induced analysis difference and the pseudo-inverse had consistent impacts on the
forecast error. It is concluded that the poor agreement between the dropsonde location and the SV maxima is the main reason for the
relatively small impact of the NORPEX targeting observations on the forecast error.

1. Introduction

Rapidly developing cyclones that form towards the end of the Atlantic and Pacific storm-tracks are sometimes difficult
to forecast. The sparsity of observational data over the oceans can result in analysis errors which may grow rapidly in the
ensuing forecast. Following the first ideas discussed at a workshop in 1995 (Snyder 1996), several field experiments have
been carried out to observe atmospheric circulations in traditionally data sparse regions and to assess whether the
assimilation of extra observations in a target area can improve forecast quality in a downstream verification area. Field
experiments include the Fronts and Atlantic Storm Track Experiment (FASTEX, Thorpe and Shapiro 1995), the Pacific
Experiment (NORPEX, Langland et al 1999), the California Landfalling Jets Experiment (CALJET, Emanuel et al 1995,
Ralph et al 1998) and the Winter Storm Reconnaissance Experiment (WSR99, Szunyogh et al 2000, and WSR00,
Szunyogh et al 2001). Results based on the 18 cases from the Winter Storm Reconnaissance programs (Szunogh et al
1999, Toth et al 2002), for example, indicated forecast improvement in 60-70% of the cases, during which the surface
pressure root-mean-square errors inside a preselected verification areas have been measured to decrease by 10%.
Similarly, results based on 4 FASTEX cases (Montani et al 1999) reported a 15% average decrease of the root-mean-
square forecast error for the 500 and 1000 hPa geopotential height fields.

One of the key problems is that it is not obvious where best to deploy the dropsonde data. Several approaches to
identifying the sensitive regions have been proposed and used in targeting campaigns: the Sensitivity Vectors (Rabier et
al. 1996, Langland et al. 1996 and 1999, Gelaro et al. 1998), the Ensemble Transform Technique (ETT, Bishop and Toth
1999) and the Singular Vector (SV) technique (Buizza and Montani 1999; Gelaro et al. 1999). The reader is referred to
published literature (e.g. Palmer et al., 1998) for a discussion of similarities and differences among these techniques.
Targeting techniques also include the Quasi-Inverse linear method (Pu et al., 1997 and 1999) and the Ensemble
Transform Kalman Filter (ETKF, Bishop et al., 2001, the ETKF had been used operationally as targeting guidance during
the 2000, 2001 and 2002 WSR missions).

This study explores the forecast impact results from the assimilation of targeting dropsondes during the Pacific
EXperiment (NORPEX), one of the first experiments designed to investigate the possible benefits of real time targeting.
NORPEX took place in mid-January and February 1998 with dropsondes deployed by NOAA and U.S. Air Force aircraft
to improve 1-3 day forecasts over the west coast of United States. Two targeting techniques were used during NORPEX:
the first one based on the ETKF implemented at NCEP and the second one based on SVs computed at NRL. In the ETKF
an index of analysis sensitivity computed from an ensemble of forecasts determines the target locations, while in the SV
technique, target locations are defined by an index based on the weighted average of the initial-time SVs computed to
maximize total energy inside the verification area.

The comparison between the two types of forecast, one starting from analysis generated with targeted dropsondes and
one without, indicates that targeting was successful only in 7 out of 10 NORPEX cases (see Section 3). The fact that
targeting does not always reduce the forecast error may be due to many possible reasons: a wrong definition of the target
area, an inconsistency between the assimilation procedure and the definition of the target area (one of the weaknesses of
the “energy norm” SV targeting technique is that it does not take into account the characteristics of the data assimilation
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system used to assimilate targeted observations), a non-optimal assimilation of the targeted observation, and model
errors.

This paper reports results from data-assimilation and forecast experiments designed to investigate possible reasons of the
small positive impact on the forecast error obtained for the selected NORPEX cases. SVs are used only as a diagnostic
tool to investigate the impact on the forecast error of targeted dropsonde data and, thus, the strengths and weaknesses of
a targeting technique based on SVs are not discussed, nor the efficiency of the ETKF and SV targeting techniques is
compared. After this introduction, Section 2 describes the NORPEX campaign and the SV-based diagnostic technique.
Results from analysis and forecast experiments are discussed in Section 3 and 4. Conclusions are drawn in section 5.

2. Targeting in data-sparse mid-latitude regions

2.1 The NORPEX campaign

In Winter 1997-1998, heavy precipitation occurred over parts of California, probably associated with maximum intensity
of El Niño towards the end of January. During this period, the atmospheric circulation was dominated by a strong jet-
level wind with storms releasing large amounts of rain over the California coast. One of the primary goals of the
NORPEX campaign was to improve the short range forecast in a specified forecast verification area (FVA) of the -
Western American Coast. During the 27 days of the NORPEX experiment, 3 NOAA and 2 US Air Force aircraft
released almost 700 dropsondes over the eastern Pacific, with a horizontal separation of 100 to 250 km. The dropsondes
provided vertical profiles of temperature, wind, humidity and pressure from the aircraft level (300-400 hPa) to the
surface. These observations were mainly released at 00 UTC and were distributed in real time via the Global
Telecommunication Service network to meteorological centres.

Some inconsistencies were found in the humidity values discouraging their use in the analyses (Jaubert et al. 1999), and
thus only wind and temperature measurements have been assimilated. In the assimilation, the same observation error as
far radiosondes is assigned to the dropsondes. Targeted observations were released in areas identified by NRL and NCEP
using two different techniques: NRL targets were defined using the first 4 SVs computed with the NOGAPS model with
a fixed verification area (FVA, 30-60N, 100-130W) and with a 2-day optimization time interval (Langland et al. 1999),
while NCEP targets were defined applying the ETKF technique to NCEP and ECMWF global ensemble forecasts, with a
flow-dependent verification area and with variable lead times (1 to 2 days; Toth et al. 1999, Szunyogh et al. 2000). At
ECMWF, data from 10 NORPEX campaigns with initial states at 00UTC of 7, 9 , 11, 15, 18, 20, 22, 25, 26 and 27 of
February 1998 were received. These ten cases,  chronologically numbered from 1 to 10, are investigated in this work.

2.2 Singular vector based diagnostics

SVs identify perturbations with the fastest growth during a finite time interval, called the optimization time interval. SVs
can grow from the analysis time t=0 to the optimization time interval (“analysis SVs”), or from an initial to a final
forecast (“forecast SVs”). Either type of SVs forms an orthogonal basis at the initial and final times with respect to the
chosen metric. The Appendix briefly summarizes the SV mathematical definition.

At ECMWF, “analysis” SVs have been used routinely to define the initial perturbations of the Ensemble Prediction
System (EPS, Buizza and Palmer 1995, Molteni et al. 1996). The rationale of this choice was that the analysis error
component along the leading SVs dominates the forecast error. At the time of writing (September 2002), the SVs used to
define the perturbed analysis of the ECMWF EPS are computed with a T42L40 resolution (spectral triangular truncation
T42 with 40 vertical levels) and with a 48 hour optimization time interval.

The use of the SVs in targeting applications is the natural extension of published results (Buizza et al., 1997, Gelaro et
al., 1998) showing that the correction of the initial conditions with a perturbation defined by the leading SVs can
significantly improve the forecast skill inside a chosen FVA. More specifically, a linear combination of the leading SVs
can be used to define the pseudo-inverse initial perturbation that can correct the most of the forecast error inside the FVA.
The pseudo-inverse is computed from the forecast error projection onto the evolved SVs inside the FVA (Appendix A).
The forecast error reduction induced by the pseudo-inverse initial perturbation can be used as an upper bound forecast
error reduction that can be achieved by adding a small perturbation to the initial conditions (Buizza and Montani 1999).
For this reason, the pseudo-inverse initial perturbation is used as a reference initial perturbation in this study.

It should be pointed out that during real-time targeting experiments “forecast” SVs growing from 24 or 36 hour forecast
are used instead of “analysis” SVs to allow a sufficient lead-time for flight preparation. By contrast, “analysis” SVs are
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used in this study as a diagnostic tool for an a-posteriori assessment of the impact of targeted observations in 10
NORPEX cases. As shown by Gelaro et al. (1999), “analysis” SVs are more appropriate than “forecast” SVs for
diagnosing forecast behavior and investigating possible reasons of success and failure of targeting experiments. The
reader is also referred to Buizza and Montani (1999) for a discussion on the similarities among “analysis” and “forecast”
SVs computed with different lead times.

The “analysis” SVs (hereafter simply called SVs) have been computed with a T63L31 model version with simplified dry
(i.e.without any moist process included in the tangent and adjoint model version) physics (Buizza 1994), with a 48-hour
optimization time period and with the final-time total energy optimized inside a fixed FVA defined by the coordinates:
30-60N and 100-130W (that is the area used by NRL during the real-time experiment). Note that the same resolution
T63L31 is used in the 4D-Var data-assimilation experiments to compute the analysis increments (see Section 3).

Computer resources limit to few tens the number of SVs that can be routinely computed in a reasonable amount of time.
Figure 1 shows the percentage of forecast error that projects onto a different number of leading SVs. Results show that
this percentage is fast increasing up to 44% (on average) for the first 10 vectors, whilst it increases only by another 3%
(on average) by adding the next 10 leading SVs. This suggests that using 10 SVs is a good compromise between a
realistic representation of the fast-growing error component and the high SV computational cost. It is worth mentioning
that during the NORPEX campaign only 4 SVs were used to identify sensitive regions (Langland et al. 1999).

SV growth is measured using a total energy norm, which is the most commonly used metric in predictability studies
(Palmer et al., 1998). As a consequence, the SVs (and the pseudo-inverse) are computed without any knowledge of the
characteristics of the data assimilation system used to generate the analysis (e.g. observation and background covariance
matrices). Thus, there is no guarantee that the pseudo-inverse perturbation is similar to the modification induced by the
assimilation of the extra targeted observations. In the adaptive observation problem, information about the analysis errors
distribution can have a significant impact on targeting location and optimal sampling of the observations. Ehrendorfer
and Tribbia (1997) suggested a way to link SV structures and data-assimilation system by using as initial norm an
estimate of the analysis errors covariance matrix (Hessian). Barkmeijer et al (1999) computed Hessian SVs and
compared their characteristics with the routinely computed total energy SVs. Their results did not show any significant
change in the percentage of forecast error explained by the leading SVs, however, the structure can be different
(Leutbecher et al. 2002).

In this study, the leading 10 SVs define the sub-space where initial conditions are expected to be modified by the
assimilation of dropsonde observations. The net effect of assimilating dropsonde data is represented by the difference
between the analyses computed with and without them. Hereafter, this difference is named the dropsonde-induced
analysis difference. In order to understand the role of targeted observations on the forecast error, the relationships
between the dropsonde-induced analysis difference, the SV sub-space and the pseudo-inverse have been investigated.
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Figure 1: Percentage of the forecast error that projects onto the leading evolved SVs as a function of the
number of singular vectors, averaged over the 10 NORPEX cases.
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3.  Methodology: sv-based diagnostics and forecast error

Two data-assimilation experiments have been performed: a control experiment, experiment C, with all the observations
operationally used at ECMWF in which no dropsonde data were assimilated, and experiment D with NORPEX
dropsonde observations also included. Both experiments used the ECMWF 4D-Var data-assimilation system (Rabier et
al. 2000, Mahfouf and Rabier 2000, Klinker et al. 2000) in a configuration with a T319L31 (T319 spectral triangular
truncation with 31 vertical levels) high-resolution model integrations with full physical parametrization and T63L31 low-
resolution minimizations with simplified physics (Mahfouf 1999). During the assimilation, the high-resolution 6-hour
forecast is compared with all available observations over a six hour period whilst the analysis increments are computed at
a T63L31 resolution. The C and the D analyses have been generated via a continuous data-assimilation, and 2 day
forecast have been performed  for the 10 NORPEX cases.

For any NORPEX case, let fc and fd be the 48 hour forecasts started from the initial analyses a0
c and a0

d, respectively,
and let ac and ad be the C and D analyses verifying the 48 hour forecasts (t=0 is the targeting time). The C and D forecast
errors are given by:

(1)

with both forecast errors computed with respect to the C analysis since

(2)

and the forecast error is little sensitive to using either of the two verifying analyses. ||..|| denotes the total energy norm
(see Appendix A).

Define δa as the T63 truncation of the analysis difference da=a0
c -a0

d inside the area T centred on the region where the
dropsondes were released (Pacific, 20-60N, 140-240E), expressed in terms of upper-air vorticity, divergence and
temperature, and surface pressure components. The T63 spectral truncation and the exclusion of the specific humidity
components make δa comparable to the SVs and the pseudo-inverse. The geographical restriction to the area T
guarantees that, for each case, the dropsonde-induced analysis perturbation δa is mostly determined by the dropsondes
released on that precise day. Results discussed in the following sections will indicate that approximating da with δa has a
negligible impact on forecast error evolution inside the FVA in 9 out of the 10 cases.

Three different initial perturbations have been defined by decomposing the analysis perturbation δa in two different ways
to allow the forecast error impact investigation of the dropsonde-induced analysis difference and its relationship with the
leading SVs and the pseudo-inverse initial perturbation. The first initial perturbation has been defined by decomposing δa
as

(3)

where δa|| and δa⊥ are the components parallel and orthogonal to the phase-space direction defined by the pseudo-
inverse initial perturbation δp (see Appendix A). δa|| defines the first initial perturbation.

The other two initial perturbations have been defined by decomposing δa as

(4)

where δaSV is the projection of δa onto the sub-space defined by the leading 10 SVs and is its projection onto the
complement sub-space. Note that, since the SVs and the pseudo-inverse perturbation are defined only in terms of the
model’s upper-level vorticity, divergence, temperature and surface pressure, the same applies to δa, δa||, δaSV and .

The pseudo-inverse δp, the three initial perturbations δa||, δaSV, and δa have been subtracted from the C analysis
to define five perturbed initial conditions:

ec f c ac–=

ed f d ac–=

da ac ad– ac«=

δa δa δa⊥+=

δa δaSV δa
SV

+=

δaSV

δa
SV

δa
SV
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(5)

from each of which forecast experiments (number similarly) have been run to assess the impact of each perturbation on
the forecast error in the FVA:

• forecasts f1 and fc are compared to assess the impact of the pseudo-inverse perturbation;

• forecasts f2 and fc are compared to assess the impact of the δa component along the pseudo-inverse;

• forecasts f3, and fc are compared to assess the impact of the δa component that belongs to the sub-space defined
by the leading 10 SVs and  its complement;

• forecasts f4 and fc are compared to assess the impact of the dropsonde-induce perturbation δa. Forecast results are
discussed in terms of the relative forecast error

(6)

where each forecast error ||ej|| is measured by the square root of the total energy norm inside the FVA (vertically
integrated). The relative forecast error RE() is the change (in percentage) of the forecast error with respect to the control
forecast: a negative RE(fj ) indicates that fj  has a smaller error than the control forecast.

3.1  Impact on the forecast error of the initial perturbation δa and role of specific humidity

First, the impact of approximating da by δa is investigated. Figure 2 shows the relative forecast error of the forecast fd

started from the D analysis (a0
d=a0

c-da) and of the forecast f4 started from the control analysis plus the truncated and
localized dropsonde-induced analysis perturbation (a0

4=a0
c-δa). Note that the difference between RE(f4) and RE(fd) is

very small (smaller than 0.02 for 5 cases and between 0.02 and 0.04 for 4 cases) for all but one case, case number 3, for
which the difference is 0.15. Figure 2 also indicates that the time evolution of the T63 upper-air vorticity, divergence and
temperature and surface pressure components of the dropsonde-induced analysis difference are dominant with respect to
the small-scales (>T63) and to the specific humidity component. This is not surprising since in this study the analysis

a0
1 a0

c δ– p=

a0
2 a0

c δa–=

a0
3 a0

c δaSV–=
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3 a0

c δa
SV
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f
3
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Figure 2: Normalized forecast error RE() with error measured in terms of a vertically integrated total-
energy norm, and normalized by the control forecast error and averaged over the FVA (Eq. (6)) for the 10
NORPEX cases. Black column , RE(fd), white column, RE(f4) and grey column, RE(fq ) show the impact of
different components of the drop-induced analysis increments: superscript (d) states for full drop-induced
analysis increments, (4) for the drop-induced analysis increments inside T at T63 resolution and (q) as (4)
but with the humidity field of D analysis (details in par. 3).



Forecast skill of targeted observations: a singular vector based diagnostic

6  Technical Memorandum No.400

increments are computed at T63 resolution, while the higher T319 resolution is used only when the model trajectory and
the observations are compared at the observation point.

Another perturbed analysis, a0
q, has been defined to investigate whether neglecting the specific humidity in δa is the

main reason for the difference between RE(f4) and RE(fd) in case 3. The analysis a0
q is defined by replacing the humidity

field of a0
4 with the a0

d humidity field (i.e. a0
q includes δa and the humidity analysis perturbation induced by the

assimilation of the dropsonde data). Figure 2 shows that RE(fq) is very similar to RE(fd), with differences smaller than
2% for all cases including case 3, suggesting that the difference between RE(f4) and RE(fd) for this case is indeed due to
the lack of humidity component in δa. The fact that the assimilation of temperature and wind profiles from targeted
observations can induce changes in the specific humidity field is not surprising. In fact, although dropsondes specific
humidity is not directly assimilated at ECMWF, mass and wind observations can generate humidity increments due to
the dynamical link between temperature and humidity induced by the virtual temperature and by the action of the
simplified linearized physics used in the minimization.

3.2  Impact on the forecast error of the initial perturbations δaSV and

Initial perturbations δaSV and have been defined in Section 3 to investigate the relationship between the dropsonde-
induced analysis perturbation and the SVs. The following ψ index

(7)

can be used to measure the relative amplitude of the analysis component projecting onto the leading 10 SVs.

Table1 shows that on average ψ≅6% with peak value of ψ=9% for cases 1 and 6. This indicates, that the projection of the
dropsonde-induced difference onto the sub-space defined by the leading ten SVs is small (less than one tenth of the total
analysis difference).

Table 1: Amplitude of δaSV relative to the dropsonde-induce perturbation

Case 1 2 3 4 5 6 7 8 9 10

ψ(%) 9 5.5 4.6 6.5 6.4 9 6.3 2.7 4.8 4
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Figure 3: Normalized forecast error RE() with error measured in terms of a vertically integrated total-energy
norm, and normalized by the control forecast error and averaged over the FVA (Eq. (6)). Black column,
RE(f4), white column, RE( ) and grey column RE(f 3) show the impact of different components of the drop-
induced analysis increments: superscript (4) states for the drop-induced analysis increments inside T at T63
resolution, (3) for the drop-induced analysis increments projecting onto the SVs sub-space and ( ) for its
complement (details in par. 3).
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Figure 3 shows the relative forecast error RE(f4) (started from a0
4=a0

c-δa), RE(f3) (started from a0
3=a0

c-δaSV) and
RE( ) (started from a0

3=a0
c- ). In five cases (2, 4, 5, 8 and 10) RE(f4)~RE( ) which indicates the

component of the dropsonde-induced analysis perturbation determines the impact of δa on the forecast error. For three
other cases (3, 6, and 9) RE(f4)~RE(f3), i.e. the impact of δa on the forecast error is determined by δaSV, while for the
last two cases (1 and 7) both components have a comparable contribution.

Overall, these results indicate that, the component of the dropsonde-induced perturbation along the leading 10 SVs, δaSV
dominates the forecast evolution only in 3 cases, while the complement perturbation dominates in 5 cases.
Moreover, the relative forecast impact modulo (|RE(f3)|) is not much related to the amplitude ψ; one would have
expected larger |RE(f3)| for larger ψ, but only case 6, with maximum amplitude, shows the largest forecast impact
over the 10 cases. Impact on the forecast error of the pseudo-inverse δp and δa||

Figure 4 shows the relative forecast error RE(f4) (started from a0
4=a0

c-δa), RE(f1) (started from a0
1=a0

c-δp) and RE(f2)
(started from a0

2=a0
c-δa||) for the 10 campaigns. RE(f1)<0 indicates that the pseudo-inverse δp always induces a

forecast error reduction, and being RE(f1)<RE(f4) indicates that the pseudo-inverse δp always corrects the forecast error
more than δa. The fact that RE(f1)<0 is qualitatively in agreement with the result expected if the pseudo-inverse time
evolution was linear, but it should be pointed out that there is a disagreement between the average forecast error
reduction <RE(f1)>=10% (Fig. 4) and the forecast error projection onto the leading 10 SVs that is on average 44% (Fig.
1). This discrepancy indicates that non-linear processes have an important impact on the time evolution of the pseudo-
inverse. Other possible reasons for this disagreement can rely on the simplified physical processes described in the
tangent and adjoint model version used to computed the SVs (e.g. moist processes and radiation are not included)
(Buizza and Montani 1999, Gilmour et al 2001).

To quantify the relationship between the pseudo-inverse δp and the analysis difference δa two other indices have been
defined. The first index ρ is the ratio between δa|| and the norm of δp

(8)

where <.,.> denotes the inner product defined in terms of the total energy norm. Positive (negative) ρ values indicate that
δa|| points along the same (opposite) direction as the pseudo-inverse. If ρ=1, then δa|| has the same amplitude as the
pseudo-inverse perturbation. The second index is the angle α between the two vectors δp and δa

(9)
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Figure 4: Normalized forecast error RE() with error measured in terms of a vertically integrated total-energy
norm, and normalized by the control forecast error and averaged over the FVA (Eq. (6)). Black column, RE(f4),
white column, RE(f1) and grey column RE(f2 ) show the impact of different components of the drop-induced
analysis increments: superscript (4) states for the drop-induced analysis increments inside T at T63 resolution,
(1) for pseudo-inverse perturbation and (2) for the drop-induced analysis increments projecting onto pseudo-
inverse  (details in par. 3).
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Table 2 shows that ρ is smaller than 0.1 and α is close

to 90˚ for all but four cases (3, 4, 6 and 7): cases 6 and 7 which have |ρ|>0.5, and cases 3 and 4 which have 0.5>|ρ|>0.1.
Table 2 indicates that the dropsonde-induced analysis difference δa has a small component along the pseudo-inverse and
almost perpendicular direction. In other words, the dropsonde-induced difference and the pseudo-inverse perturbation are
similar in 2 cases (number 6 and 7) and different or very different in the other 8 cases.

Figure 4 shows the impact on the forecast error of δa|| and δp. Consider first the four cases with |ρ|>0.1 and smaller α
(cases 3, 4, 6 and 7). Results show that for cases 6 and 7, characterized by the largest positive ρ (ρ=0.60 and 0.58,
respectively), RE(f2)~RE(f1). For case number 4 (ρ=0.14), RE(f2)~0.2*RE(f1), while for case number 3 (ρ=−0.28),
RE(f2) is about three-times smaller and has the opposite sign of RE(f1). For the other 6 cases characterized by |ρ|<0.1
there is no correspondence between ρ  and the forecast error impact of δa|| and δp.

Despite the fact that clear cut conclusions cannot be drawn from this set of results, the indication is that δa and δp have a
similar impact on the forecast error when a large enough fraction of the dropsonde-induced analysis difference δa
projects onto the pseudo-inverse δp, say when ρ>0.58 (2 out of 10 cases). Results also show that there is still a certain
degree of agreement when 0.14<|ρ|<0.58 (2 out of 10 cases), but that no relationship can be found when |ρ|<0.1.

3.3  Dropsonde location

The results discussed in the previous sections have indicated that the dropsonde-induced analysis difference has a small
component on the sub-space spanned by the leading SVs, and that, on average, there is a very little agreement between
the dropsonde induced analysis difference and the pseudo-inverse. One possible reason of this disagreements could be
that the dropsondes were released in areas that did not coincide with the area of maximum concentration of the
(“analysis”) SVs used in this study both to define δaSV and δp. The “analysis” SV which sample a very similar area as the
“forecast” SV (compare Fig 10 in this paper with Fig 5 of Majumdar et al., 2002), can be used to map the general
location of maximum sensitivity of the real-time leading SVs.

The agreement between the locations of maximum SV concentration and the dropsonde has been quantified by the DLE
(Dropsonde Location Efficiency) index defined by the sum of the SV energy (weighted mean of total energy) at the
observations locations divided by the sum of the SV energy over the area T. Large DLE values indicate that grid points

Table 2: Amplitude and angle between the vectors δa and δp

Case 1 2 3 4 5 6 7 8 9 10

ρ 0.05 -0.07 -0.28 0.14 -0.05 0.60 0.58 0.08 -0.01 0.04

α˚ 86˚ 100˚ 113˚ 61˚ 99˚ 38˚ 44˚ 65˚ 92˚ 81˚
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Figure 5: Modulo of the relative forecast error |RE(f3)| versus DLE (Dropsonde Location Efficiency, see text
for definition). Labels indicate the NORPEX campaign number and the regression Y=0.63X+0.008 is the
solid line.
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with high average SV concentration are sampled (DLE=1 if the dropsondes sampled the whole area identified by the
leading SVs, and DLE=0 if the dropsondes have been released outside the area sampled by the SVs). Figure 5 shows a
scatter plot of the moduli of RE(f3) as a function of DLE . The moduli of RE(f3) are strongly correlated with DLE. In
fact, although the small sample size, the high correlation found (0.81) is significantly different from zero (p-value less
than 0.01). The regression line has a significant positive slope, 0.63, while the intercept is not significant (p-value=0.14).
In conclusion, the data show a clear relationship. On average, dropsondes sample 2.3% of the area of maximum
concentration identified by the “analysis” SVs, and in the most successful campaign case number 6 (Fig 5), DLE has a
maximum value of 8%. From the scatter plot it can be seen that the impact of δaSV is large for cases with large DLE.
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Figure 6: Case 5, initial state 00GMT of the 18th of February 1998, 500 geopotential height fields. a) δa
perturbation, contours every 2 m. b) Difference between the 2-day forecast absolute-error of f4 and fc started
from a0

4 and C analyses and valid on the 20 February 1998 at 00 UTC. Contour every 6 m. c) δaSV
perturbation, contours every 0.4 m. d) Difference between the 2-day forecast absolute-error of f3 and fc,
contour every 6 m. e) Difference between the 2-day forecast absolute-error of and fc, contour every 6 m.
Shaded contours are negative.
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4. Case studies

A detailed discussion of two cases is reported hereafter to give the reader a visual and more complete picture of the
relationship between the dropsonde-induced perturbation δa, the pseudo-inverse δp and the three defined initial
perturbations δaSV, and δa||. Cases number 5 and 6 have been selected because for both of them δa has a positive
impact on the forecast error (i.e. it reduces the forecast error RE(f4)<0, see Fig. 2) but the impact depends on the
evolution of different components. For case 5, the forecast error reduction (see Fig. 3) is due mainly to the evolution of
the dropsonde-induced analysis component while for case 6 the opposite is true (see discussion in Section 3.2).
Furthermore, case 5 can be seen as a typical case with a small and negative projection along the pseudo-inverse (ρ=−
0.05, see Section 3.3) and case 6 as a typical case with a large positive projection (ρ=0.6). All maps and their
corresponding discussion refer to the 500 hPa geopotential height field.

4.1  Case number 5 (18th of February)

On the 18th of February, 17 dropsondes were released in a flight mission from Honolulu. Figure 6a shows the dropsonde-
induced analysis difference δa, and Fig. 6c shows the component δaSV in the sub-space spanned by the leading SVs. This
comparison shows that δa and δaSV are different (ψ=6.4%, see Table 1) and δa is characterized by a 5-times deeper
structure. It is interesting to compare the error of the 48-hour forecast started from the perturbed initial conditions and
valid on the 20th of February at 00GMT. Figure 6 shows the forecast absolute-error difference between |e4| and |ec| (Fig
6b), |e3| and |ec| (Fig 6d), and and |ec| (Fig 6e). The first thing to note is that the pattern and the intensity of the
absolute-error differences shown in Figs. 6b and 6e are very similar and both rather different from Fig. 6d. This confirms
the results shown in Fig. 3 that for this case, the evolution of δa and has a similar positive impact (i.e. it decreases
it) on the forecast error, while δaSV acts to increase it. The impact on the forecast error inside the FVA has been
quantified by computing the normalized difference between the root-mean-square error (rmse) [i.e. (rmsej -rmsec)/rmsec,
for j=3, 3 and 4], whose value is -9% for j=4 (Fig. 6b), 3% for j=3 (Fig. 6d) and -12% for j=3 (Fig. 6e).
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Figure 7: Case 5, initial state 00GMT of the 18th of February 1998, 500 geopotential height fields. a) δp
perturbation, contours every 1.2 m. b) Difference between the 2-day forecast absolute-error of f1 and fc started
from a0

1 and C analyses and valid on the 20 February 1998 at 00 UTC. Contour every 10 m. c) δa||
perturbation, contours every 0.08 m. d) Difference between the 2-day forecast absolute-error of f2 and fc,
contour every 1 m. Shaded contours are negative.
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Figure 7a shows δp and Fig. 7c shows δa||. These two initial perturbations are (by construction) identical in shape but
have opposite sign and very different magnitude, δa|| being about 15-times smaller (ρ=−0.05, see Table 2). Note that the
pseudo-inverse (Fig. 7a) is very different from the dropsonde-induced analysis difference δa (Fig. 6a) and from δaSV
(Fig. 6c). Figure 7 shows the absolute-error difference between |e1| and |ec|, and |e2| and |ec|. Figure 7b shows that the
pseudo-inverse reduces the forecast error over the whole FVA (grey shaded contours) whilst δa|| slightly increases the
forecast error (Fig 7d), in agreement with the fact that ρ is negative and with the RE() results shown in Fig. 4. The
normalize difference between the rmse is -35% for f1 (Fig. 7b) and 2% for f2 (Fig. 7d).

Figure 8a shows the area of maximum SV concentration, defined as the average of the SV total energy weighted by the
amplification factor, and the dropsondes’ locations. It can be seen that the dropsondes sample only a small region of the
downstream part of the area of maximum SV concentration. For this case, DLE=2.3% (Fig 5).

4.2 Case number 6 (20th of February)

On the 20th of February, 40 dropsondes were released from Hawaii and west of Cape Mendocino. The western flight
track was selected by NRL and the eastern track by NCEP. Sondes were deployed on the anticyclonic shear side of the
upper level jet, with a good definition of gradients across the lower tropospheric baroclinic zone (R. H. Langland 2001,
personal communication). Figures 9 and 10 are the equivalent of Figs. 6 and 7 but for this case. Figure 9a shows that δa
is characterized by an elongated pattern in the subtropical steering flow, with a first positive maximum centred on the
dateline, a dipole structure around 150˚W and a final maximum close to the eastern border of the target area T. Figure 9c
shows that δaSV is smaller in amplitude than δa (contours are 10 times smaller than in Fig. 9a) with one maximum east of
the dateline in correspondence with the first δa maximum and an elongated dipole structure close to the east border of the
target area T. Consider now the 48-hour forecast valid on of the 22nd of February at 00GMT . The differences between
the absolute-errors |e4|-|ec| ( Fig.9b) and |e3|-|ec| are very similar (Fig. 9d), and both dissimilar to |e3|-|ec| (Fig. 9e). The

Figure 8: Singular vector location (defined as the average total energy weighted by the amplification factor)
and dropsondes’ locations for (a) case 5 (18 February) and (b) case 6 (20 February).
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normalized differences of the rmse inside the FVA are -31% for f4 (Fig. 9b), -22% for f3 (Fig. 9d) and -8% for f3 (Fig.
9e).

Figure 10a shows the pseudo-inverse and Fig. 10c shows the analysis component along the pseudo-inverse. The two
patterns are identical in shape and sign but have different amplitude, δa|| being about 2-times smaller (ρ=0.60, see Table
2). Note that for this case the pseudo-inverse δp (Fig. 10a) and the dropsonde-induced analysis difference δa (Fig. 9a)
have both a maximum, east of the dateline, and that δp (Fig. 10a) and δaSV (Fig. 9c) are very similar in shape. Figure 10b
shows the difference between |e1| and |ec|, and Fig. 10d shows the difference between |e2| and |ec|. These forecast error
differences are very similar in shape, with normalized rmse differences inside the FVA of -27% for f1 (Fig. 10b) and -
17% for f2 (Fig. 10d).

Figure 8b shows the area of maximum SV concentration and the dropsondes’ locations. The dropsondes sample one of
the two maxima of the SV location. Compared to case 5 (Fig. 8a), there is better agreement between the dropsondes’
locations and the area of maximum SV location (DLE=8%, Fig 5).
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Figure 9: Case 6, initial state 00GMT of the 20th of February 1998. a)δa perturbation, contours every 5
m. b) Difference between the 2-day forecast absolute-error of f4 and fc started from a0

4 and C analyses
and valid on the 22 February 1998 at 00 UTC.Contours every 4 m. c) δaSV perturbation, contours every
0.5 m. d) Difference between the 2-day forecast absolute-error of f3 and fc, contours every 4 m. e)
Difference between the 2-day forecast absolute-error of and fc, contour every 4 m. Shaded contours
are negative.
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5. Conclusions

Targeted observations are designed to reduce initial uncertainties in the target region T and to reduce the forecast error
inside the forecast verification area (FVA). However, mixed forecast results have been obtained from the assimilation of
targeted observations during 10 cases of the NORPEX field experiment. Results have in fact indicated that on average the
assimilation of targeted data lead to ~2% reduction of the forecast error measured in terms of integrated total-energy,
with a peak reduction of 9%(for 2 of the 10 cases). These results cannot be directly compared to the 10% average value
obtained by Szunyogh et al (2000) and to the 15% obtained by Montani et al (1999) because they were based on a single-
level fields and not on vertically integrated measures as here. Moreover, Szunyogh et al (2000) and Montani et al (1999)
results refer to 1999 while this study refers to 1998, and the two years are known to be characterized by very different
circulation regimes. 1998 was associated with El Niño and characterized by a predominantly zonal flow with a very
strong upper level jet; 1999 was ours El Niña year, characterized by a blocked circulation over the West Pacific, a deep
trough over Japan and a more pronounced ridge centred on the  Pacific.

This paper has investigated possible reasons for the small or negative impact of the targeted observations using a SV-
based diagnostic technique. Singular vectors (SVs) identify the phase-space directions along which perturbation growth
is maximized during a finite-time interval, and can be used to define a set of diagnostic tools and concepts. For each case,
the leading 10 “analysis” SVs, that is, SVs evolving from the analysis time and growing during a 48-h time interval to
maximize the total energy norm inside the forecast verification area (FVA), have been computed with a T63L31
resolution model (spectral triangular truncation T63 and 31 vertical levels). The choice of a T63L31 resolution is a
compromise between the need of resolving small scales and the limitation of computer usage. The FVA has been set to be
30-60N and 100-130W.

In the first part of this work, the percentage of forecast error explained by a variable number of leading singular vectors
has been computed. Results have shown that 44% of the forecast error inside the FVA can be explained by using the 10
leading SVs, and that the use of further 10 SVs only adds a further 3% to this percentage. Following this result, only the
leading 10 SVs have been used to define the pseudo-inverse initial perturbation which can correct the most of the forecast
error inside the FVA. The fact that the leading 10 SVs define dynamically important directions has been confirmed as the
pseudo-inverse initial perturbation when added to the control analysis has always reduced the forecast error (on average
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Figure 10: Case 6, initial state 00GMT of the 20th of February 1998. a) δp perturbation, contours every 1 m. b)
Difference between the 2-day forecast absolute-error of f1 and fc started from a0

1 and C analyses and valid on
the 22 February 1998 at 00 UTC. Contours every 3 m. c) δa|| perturbation, contours every 0.5 m. d) Difference
between the 2-day forecast absolute-error of f2 and fc, contours every 3 m. Shaded contours are negative.
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10% when forecast error is measured in terms of vertically integrated total-energy, see also Buizza et al 1997 and Gelaro
et al 1998). The pseudo-inverse initial perturbation has been used as a reference in this study.

To investigate the relationship between the dropsonde-induced analysis difference δa, the leading 10 SVs and the
pseudo-inverse δp, three initial perturbations have been defined: the dropsonde-induced analysis difference component
that belongs to the sub-space defined by the first 10 leading SVs (δaSV), its complement ( ) and the δa component
along the pseudo-inverse (δa||). Three indices have been defined to measure the similarity between the five initial
perturbations δa, δaSV , , δa|| and δp. All these initial perturbations have been defined in terms of the model’s
vorticity, divergence and temperature and surface pressure fields, thus excluding the humidity field. Changes in the
humidity fields due to the assimilation of wind and temperature from dropsondes have been shown not to affect the
forecast error in all but case number 3, for which humidity increments were shown to have increased the forecast error by
15%. Once the initial perturbations had been defined, 48-hour forecasts were run from the perturbed initial conditions
and the forecast were compared.

Results have shown that on average only 6% of the dropsonde-induced perturbation δa projects onto the sub-space
spanned by the leading 10 SVs (ψ~6%, see Table 1), with two cases characterized by a 9% maximum projection. In other
words, on average 94% of the dropsonde-induced perturbation δa lies in the sub-space orthogonal to the 10 leading SVs.
Considering the impact on the forecast error it has been sown that δaSV is dominant in 3 and is dominant in 5 out
of 10 cases. Moreover, no strong relation has been found between the amplitude of the dropsonde-induced component
along the leading singular vectors and the percentage of forecast error variation inside the FVA.

Results have also indicated that in 6 out of 10 cases less than 8% of the dropsonde-induced perturbation projects onto the
pseudo-inverse (ρ<0.08, see Table 2), in two cases the projection was ~25% and in two other cases it was ~60%
(0.14<ρ<0.60, see Table 2). Consistently, the two vectors have been almost orthogonal (α~90) in 6 out of 10 cases. In the
two cases with the largest projections (ρ=0.58 and ρ=0.60) the forecast error reduction induced by the pseudo-inverse
and the dropsonde-induced perturbation have been very similar.

One of the reasons of the small projection of the dropsonde-induced analysis perturbation onto the leading 10 SVs is the
limited degree of overlap between the region spanned by the dropsondes and the region of maximum SV concentration.
Only case number 6 which is characterized by the largest agreement between the SV and the dropsonde location (Fig 5
and 8) show the closest agreement between the forecast error reduction obtained by correcting the initial condition by the
pseudo-inverse and by the dropsonde-induced analysis perturbation (Fig. 4).

In four cases, the pseudo-inverse and the analysis component along it had different sign. In particular, case number 3
with a quite large DLE (4%) and ρ (−28%) had opposite forecasts impact because of the opposite sign of the two
perturbations.

This can be due to the fact that the effect of the observations on the analysis depends on properties of the assimilation
system that are not considered when computing the leading total-energy SVs (e.g. the analysis error covariance matrix
which defines the weight the background and the observation have in the analysis). A way to include properties of the
data-assimilation system into a SV computation was suggested by Barkmeijer et al (1999) who proposed to use an
analysis error matrix in the generalized SV computation. Gelaro et al (2001) indeed showed that using this norm leads to
an increased similarity between the phase-space of the system spanned by data-assimilation and the by the leading SVs
during targeted cases, but no conclusions were drawn on the impact on the forecast error.

A promising new way to use analysis error information to define target areas has been proposed by Baker and Daley
(2000) and Doerenbecher and Bergot (2001) and is based on the forecast sensitivity to the observations. Such a technique
determines when the forecast is sensitive to the background field or to the observations or to both, avoiding mis-
sampling and inefficient use of extra observations. Work along this line should be encouraged.
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Appendix A

A.1 Scalar product and energy norm

Consider the linear space N of vectors x whose elements xj are the upper-level vorticity, divergence, temperature and
logarithm of surface pressure at different latitude, longitude and vertical coordinates. The total energy norm is defined as

where E=diag(Ej) is a total energy weight matrix (Buizza and Palmer 1995) and xj is the j-th component of the state
vector x.

A.2 Local projection operator

The local projection operator W is defined as

where λ and ϕ are the latitude and longitude coordinates, x is a state vector and w(τ) is the following weight function

The local projection operator acts as a smoothed mask. In this work the mask frame is defined by (λ1=20˚N, λ2=60˚N)
and (ϕ1=140˚E, ϕ2=240˚E)1, and the two couple of coordinate (λ1=30˚N, λ2=60˚N) and (ϕ1=230˚E, ϕ2=260˚E) define
the geographical domain that coincide with the Forecast Verification Area (FVA, see text).

A.3 Singular vectors definition

Let x0 be a vector representing a model initial state and x its 48 hour linear evolution

L being the tangent model forward propagator. Using the local projection operator W, the total energy norm can be
computed  inside a specific area (local energy):

The singular vectors are an orthogonal set of m vectors υi =Lυ0
i (orthonormal at the initial time) that maximize the ratio

between the final-time local energy norm inside the FVA and the initial total energy norm. The singular vectors υi are
ordered  with  decreasing  singular value σi

In this study, m=10 singular vectors are computed using a simplified linear scheme simulating surface drag and vertical
diffusion at T63  resolution and 31 model  levels.
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A.4 Pseudo-initial perturbation

Denote by δec  the projection of the forecast error ec onto the first 10 singular vectors,

the pseudo-inverse initial perturbation is defined as the initial perturbation that evolves linearly into δec. This
perturbation can be written in terms of the initial time singular vectors as follows,

δec W ec EW υ j,〈 〉
υ j

σ j
2

-----

j 1=

10

∑=

δp W ec EW υ j,〈 〉
υ j
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σ j
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