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1.  Introduction 

 Multisensor validation of precipitation involves comparison of precipitation estimates at 
different scales, e.g., comparison of 20-30 km averages from a satellite to 2-km averages from 
radars to point observations from raingauges, and often to a numerical model output at another 
scale.   A major problem arising when spatial averages of precipitation at one scale are compared 
to averages at another scale is the fact that precipitation variability is scale-dependent (e.g., see 
Fig. 1).     How this variability changes with scale is a function of the inherent characteristics of 
the storm and varies with storm type.  Moreover, even the uncertainty of the estimates depends on 
scale, and it differs from sensor  to sensor. 

 In a recent study, 
Tustison et al. (2001) 
demonstrated the importance 
of accounting for the 
multiscale variability of 
precipitation in QPF 
verification studies and 
showed that typical methods 
used to change the scale of 
observations to the scale of 
the model estimates impose a 
“representativeness error” 
which is nonzero even in 
the case of  “perfect” model 
estimates.   We propose the 

development of a rigorous methodology, which can explicitly account for the scale-dependent 
variability and uncertainty of  precipitation estimates in any study involving comparison or 
merging of  multisensor observations.   

st
d.

 d
ev

., 
σ 

 (m
m

/h
r)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

50

40

30

20

10

0

dB
60 Scale  (km) 

17-AUG-1994 
18:47:16 

Figure 1.  Radar-observed precipitation (left) from the WSR-88D
(NEXRAD) radar KICT in Wichita, Kansas on 17 August 1994, along with
the standard deviation of non-zero precipitation as a function of grid scale. 

 
2.  Background on the proposed methodology: Scale-Recursive Estimation 

 The proposed methodology largely utilizes a stochastic scale-recursive estimation (SRE) 
technique introduced by Chou et al. (1994).  This technique can optimally merge observations of 
a process at different scales while explicitly accounting for their uncertainty and variability at all 
scales.  It requires the specification of a model (called multiscale model) describing how the 
process variability changes with scale.  This multiscale model is defined on an inverted tree 
structure (see Figure 2) and the estimation algorithm is developed along this tree in two steps.  
One step involves the multiscale model in its coarse-to-fine scale form: 

 
X(λ) = A(λ)X(γλ) + B(λ)W(λ)     (1) 

 
where λ is an index to specify the nodes on the tree, γλ represents the node on the tree directly 
above the node specified by λ, X(λ) is the state of the system at scale λ, A(λ) and B(λ) control the 
scale-to-scale variability of the process, and W(λ) is a normally distributed driving noise.  This 
model may be used to describe any process whose coarse-to-fine scale dependence can be 
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expressed in a linear form. The second step of SRE involves the fine-to-coarse scale form of the 
model: 
 

X(γλ) = F(λ)X(λ) + W*(λ).     (2) 
 
The parameters F(λ) and W*(λ) are defined by A(λ) and B(λ) by manipulation of (1) and (2). The 
incorporation of the measurements into the multiscale model is done via the measurement 
equation 
 

Y(λ) = C(λ)X(λ) + V(λ)      (3) 
 
where V(λ) is a normally distributed measurement noise which characterizes the error variance of 
the measuring instrument and C(λ) provides the relation between the observed quantity and the 
state.   

  Equations (1-3) form 
the basic equations for 
the scale-to-scale 
evolution of the process 
and the inclusion of its 
measurements.  Figure 
2 illustrates the inverted 
tree, the scale-to-scale 
composition of the 
process, and how 
measurements are 
placed on the tree for 
inclusion in the 
multiscale estimation. 
 The multiscale 
recursive estimation 
algorithm consists of 
two steps: filtering and 
smoothing.  The 
filtering step uses 

Kalman filtering, incorporating the measurements of the process with (3) and propagating the 
estimates from fine-to-coarse scales with (2).  The second step consists of smoothing in which the 
estimates from step one are merged with those predicted from (1) along the coarse-to-fine path on 
the tree.  This algorithm has the advantage that it is extremely computationally efficient due to its 
recursive nature. This is especially important with large data sets available at many scales, such 
as those available for rainfall (e.g. raingauges, radars, satellites) and for real-time data 
assimilation applications. 

Figure 2. Illustration of the scale-recursive estimation (SRE) technique applied to
precipitation measurements. Sparsely-distributed measurements at one scale (gray
dots), and measurements at a coarser scale (solid dots), are placed on an inverted
quad-tree and merged via filtering and smoothing to obtain estimates at any desired
scale together with the uncertainty of these estimates. 

 
3.  Illustrative Example 

 Suppose one has available radar observations at 2-km resolution and satellite observations at 
16-km resolution, or only a sparse network of raingauge observations but complete coverage of 
the area by a satellite overpass.  How is one to combine these observations for obtaining an 
optimal (in some sense) merged product at one or more desired scales?  This optimally merged 
product can be used to verify a numerical weather model or a precipitation retrieval at the desired 
scale. To demonstrate the use of the multiscale framework, a simple numerical experiment was 
conducted.  



 In all cases, a combination of observations and their uncertainties at 2 km and 16 km were 
provided and optimal estimates at 8km were computed using SRE (see Fig. 3). These estimates 
were then compared to the true 8-km averages (known to us in this constructed example) in terms 

of bias, RMSE, standard deviation 
of the whole field, and mean 
uncertainty of the estimates.  
Different scenarios of available 
observations were tested.  A 
bounded lognormal cascade fitted 
to the 2-km field was used as the 
prescribed multiscale model.  Table 
1 summarizes the results and 
quantifies the potential of the 
method for multisensor validation 
studies.  As was expected,  
increasing the density and 
resolution of available observations 
decreases the RMSE and bias in 
validation (i.e., produces more 
accurate merged fields at 8km) and 
increases the accuracy of the 
merged estimates (smaller 
uncertainty).  More details can be 
found in Tustison et al. (2003). 
 
Several issues must be carefully 
studied before SRE can be used 
with confidence for multisensor 

validation or data merging.  One of those is the sensitivity of SRE to multiscale model selection, 
observational error, and presence of zeros. 

Figure 3. Illustration of the proposed framework for QPF Verification.

 
Table 1.  Case studies illustrating the application of the SRE methodology for merging 
observations at different scales. The mean of the KEAX WSR-88D hourly accumulation field at 
8 km (which was considered the “true” field in this example)  was 1.99 mm, and the standard 
deviation, 3.01mm.  All the values are given in mm.             

SRE estimation at 8 km 
 

Case 
 

Observations Bias RMSE σest  
field 

Mean 
uncertainty 
of estimates 

1 10% sampling at 2 km 0.40 1.13 2.47 0.32 
2 50% sampling at 2 km 0.15 0.48 2.84 0.21 

3 10% sampling at 2 km; 
100 % at 16 km 0.17 0.84 2.80 0.30 

4 50% sampling at 2 km; 
100 % at 16 km 0.10 0.45 2.88 0.21 
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