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CHAPTER 1   Introduction

Table of contents

1.1 Overview

1.1 OVERVIEW

Since the original demonstration of the efficiency advantage of the semi-Lagrangian semi-implicit method

decade ago by André Robert, this numerical integration scheme is being used in an increasing range of atmo

models. Most of the applications have been in grid-point models. Shallow-water-equations studies have in

three-time-level versions byRobert (1981, 1982) andStaniforth and Temperton(1986), and two-time-level

schemes byTempertonand Staniforth(1987),Purserand Leslie(1988),McDonaldand Bates(1989), andCôté

and Staniforth(1990). There also have been various applications in baroclinic grid-point models. Three-time

sigma-coordinate versions have been presented byRobertet al.(1985) andTanguayet al.(1989), and the extension

of the three-time-level approach to a non-hydrostatic coordinate has been demonstrated byTanguayet al.(1990) .

Batesand McDonald(1982),McDonald(1986),Leslieand Purser(1991),McDonaldand Haugen(1992), and

Bateset al.(1993) have developed two-time-level sigma-coordinate schemes,McDonaldand Haugen(1993) have

presented the two-time-level extension to a hybrid vertical coordinate, andGolding(1992) has applied a split two-

time-level semi-Lagrangian scheme in a non-hydrostatic model.

For spectral models, a semi-Lagrangian semi-implicit shallow-water equation model was presented byRitchie

(1988) for a three-time-level version, and adapted byCôtéand Staniforth(1988) for a two-time-level scheme. Ba-

roclinic three-time-level spectral model formulations have been demonstrated byRitchie(1991) for operational nu-

merical weather prediction in a sigma-coordinate model, and recently byWilliamsonand Olson(1994) for climate

simulations with a hybrid coordinate model.

In a broader context, the semi-Lagrangian scheme, as incorporated in spectral numerical weather predictio

els, may be considered as an economical variant of the spectral Lagrange-Galerkin method (Süliand Ware,1991).

Experience at ECMWF (Simmonset al.,1989) suggests that the accuracy of medium-range forecasts has ste

improved with increasing resolution. Consequently, in its four-year plan for the period 1989-1992, ECMWF

posed development of a high-resolution version of its forecast model. A target resolution of a spectral repre

tion with a triangular truncation of 213 waves in the horizontal and 31 levels in the vertical (T213/L31) was

entailing a doubling of the horizontal resolution and an approximate doubling of the vertical resolution in the

osphere compared to the T106/L19 configuration that was operational at the time (Simmonset al.,1989). In view

of the anticipated computer resources, it was clear that major efficiency gains would be necessary in order t

this objective. These gains have been provided by the introduction of the semi-Lagrangian treatment of ad

permitting a substantial increase in the size of the time-step, the use of a reduced Gaussian grid giving a

advantage of about 25%, the introduction of economies in the Legendre transforms, and improvements to th

el's basic architecture.

The layout for the remainder of the document is as follows. InChapter 2 ‘Basic equations and discretization’we

present the reformulation of the Eulerian model in order to transform the vorticity–divergence formulation i
1
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tions of

. The

for effi-
momentum-equation version in preparation for a subsequent semi-Lagrangian vector treatment of the equa

motion. The vertical discretization of the ECMWF hybrid coordinate on a staggered grid is also considered

semi-Lagrangian treatment is discussed in some detail inChapter 3 ‘Semi-Lagrangian formulation’, including the

adaptation to accommodate the reduced Gaussian grid. Several important computational details relevant

cient execution of the high resolution model on a modestly parallel supercomputer are discussed inChapter 4

‘Computational details’ .
2

IFS Documentation Cycle CY23r4 (Printed  19  September  2003)



IFS Documentation Cycle CY23r4

ctral

here

ori-

del.

d ver-

-

Part III: D YNAMICS AND NUMERICAL PROCEDURES

CHAPTER 2   Basic equations and discretization

Table of contents

2.1 Eulerian reformulation of the continuous equations

2.2 Discretization

2.2.1 Vertical discretization

2.2.2 Time discretization

2.2.3 Horizontal grid

2.2.4 Time-stepping procedure

2.2.5 Time filtering

2.2.6 Remarks

2.2.7 as spectral variable

2.1 EULERIAN REFORMULATION OF THE CONTINUOUS EQUATIONS

Following Ritchie (1988,1991), the first step in developing a semi-Lagrangian version of the ECMWF spe

model was to convert the existing Eulerian –D (vorticity–divergence) model to a – formulation, w

and are the wind images defined by , ( and are the components of the h

zontal wind in spherical coordinates, and  is latitude). In this section we describe the Eulerian –  mo

First we set out the continuous equations in coordinates, where is longitude and is the hybri

tical coordinate introduced bySimmonsand Burridge(1981); thus is a monotonic function of the pres

sure , and also depends on the surface pressure  in such a way that

 and .

The momentum equations are

(2.1)

Tv

ζ U V
U V U u θcos= V v θcos= u v

θ U V

λ θ η, ,( ) λ η
η p psurf,( )

p psurf

η 0 psurf,( ) 0= η psurf psurf,( ) 1=

U∂
t∂

--------
1

acos2θ
----------------- U U∂

λ∂
-------- v θ U∂

θ∂
--------cos+

 
 
 

η̇ U∂
η∂

--------+ +

fv–( ) 1
a
--- φ∂

λ∂
------ RdryTv λ∂

∂ pln( )+
 
 
 

+ PU KU+=
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where is the radius of the earth, is the -coordinate vertical velocity ( ), is geopoten

 is the gas constant for dry air, and  is the virtual temperature defined by

where is temperature, is specific humidity and is the gas constant for water vapour. and

represent the contributions of the parametrized physical processes, while and are the hor

diffusion terms.

The thermodynamic equation is

(2.3)

where ( is the specific heat of dry air at constant pressure), is the -coordinate ve

velocity ( ), and  (  is the specific heat of water vapour at constant pressure)

The moisture equation is

(2.4)

In (2.2) and(2.3), and represent the contributions of the parametrized physical processes, while

and  are the horizontal diffusion terms.

The continuity equation is

(2.5)

where  is the horizontal gradient operator in spherical coordinates and  is the horizontal wi

The geopotential  which appears in(2.1) and(2.2) is defined by the hydrostatic equation

(2.6)

while the vertical velocity  in(2.3) is given by

(2.7)

V∂
t∂

-------
1

acos2θ
----------------- U V∂

λ∂
------- V θ V∂

θ∂
------- θ U2 V2+( )sin+cos+

 
 
 

η̇ V∂
η∂

-------+ +

f+ U θcos
a

------------ φ∂
θ∂

------ RdryTv θ∂
∂ pln( )+

 
 
 

+ PV KV+=

a η̇ η η̇ dη dt⁄= φ
Rdry Tv

Tv T 1 Rvap Rdry 1–( )⁄{ }q+[ ]=

T q Rvap PU PV

KU KV

T∂
t∂

-------
1

acos2θ
----------------- U T∂

θ∂
------- V θ T∂

θ∂
-------cos+

 
 
 

η̇ T∂
η∂

-------
κTvω

1 δ 1–( )q+( ) p
---------------------------------------–+ + PT KT+=

κ Rdry cpdry
⁄= cpdry

ω ρ
ω dp dt⁄= δ cpvap

cpdry
⁄= cpvap

∂q
∂t
------

1

acos2θ
----------------- U∂q

∂λ
------ V cosθ∂q

∂θ
------+

 
 
 

η∂q
∂η
------ Pq Kq+= = =

PT Pq KT

Kq

∂
∂t
----- ∂p

∂η
------ 

  ∇. vH
∂p
∂η
------ 

 +
∂

∂η
------ η̇∂p

∂η
------ 

 + 0=

∇ vH u v,( )=

φ

∂φ
∂η
------

Rdry Tv

p
----------------- ∂p

∂η
------=

ω

ω = ∇. vH
∂p
∂η
------ 

  η vH.∇p+d

0

η

∫–
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Expressions for the rate of change of surface pressure, and for the vertical velocity , are obtained by inte

(2.5), using the boundary conditions  at  and at

(2.8)

(2.9)

Since we use  rather than  as the surface pressure variable, it is convenient to rewrite (2.8)

(2.10)

2.2 DISCRETIZATION

2.2.1  Vertical discretization

To represent the vertical variation of the dependent variables , , and , the atmosphere is divide

layers. These layers are defined by the pressures at the interfaces between them (the ‘half-level

these pressures are given by

(2.11)

for . The and are constants whose values effectively define the vertical coo

nate and  is the surface pressure field.

The values of the and for all are stored in the GRIB header of all fields archi

on model levels to allow the reconstruction of the ‘full-level’ pressure associated with each model level (m

of layer) from  ( )by using(2.11) and the surface pressure field.

The prognostic variables are represented by their values at ‘full-level’ pressures . Values for are not e

itly required by the model’s vertical finite-difference scheme, which is described below.

The discrete analogue of the surface pressure tendency equation(2.10) is

(2.12)

where

 . (2.13)

η̇
η̇ 0= η 0= η 1=

∂ psurf

∂t
-------------- ∇. vH

∂p
∂η
------ 

  ηd

0

1

∫–=

η̇∂p
∂η
------ ∂p

∂η
------– ∇. vH

∂p
∂η
------ 

  ηd

0

η

∫–=

psurf( )ln psurf

∂
∂t
----- psurfln( ) 1

ps
----- ∇. vH

∂p
∂η
------ 

  ηd

0

1

∫–=

U V T q
NLEV

pk 1 2⁄+ Ak 1 2⁄+ Bk 1 2⁄+ psurf+=

0 k NLEV≤ ≤ Ak 1 2⁄+ Bk 1 2⁄+

psurf

Ak 1 2⁄+ Bk 1 2⁄+ 0 k NLEV≤ ≤
pk

pk
1
2
--- pk 1 2⁄– pk 1 2⁄++( )= 1 k NLEV≤ ≤

pk pk

∂
∂t
----- psurfln( ) 1

psurf
---------- ∇. vH∆ pk( )

k 1=

NLEV

∑–=

∆ pk pk 1 2⁄+ pk 1 2⁄––=
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entum
From(2.11) we obtain

(2.14)

where  is the divergence at level ,

(2.15)

and

 . (2.16)

The discrete analogue of(2.9) is

(2.17)

and from(2.11) we obtain

(2.18)

where  is given by(2.14).

Vertical advection of a variable X is now given by

(2.19)

The discrete analogue of the hydrostatic equation(2.6) is

(2.20)

which gives

(2.21)

where is the geopotential at the surface. Full-level values of the geopotential, as required in the mom

equations (2.1) and (2.2), are given by

∂
∂t
----- psurfln( ) 1

psurf
----------Dk∆ pk vk.∇ psurfln( )∆Bk+

 
 
 

k 1=

NLEV

∑–=

Dk k

Dk
1

acos2θ
-----------------

∂Uk

∂λ
----------- cosθ

∂Vk

∂θ
----------+ 

 =

∆Bk Bk 1 2⁄+ Bk 1 2⁄––=

η̇∂p
∂η
------ 

 
k 1 2⁄+

∂ pk 1 2⁄+

∂t
---------------------– ∇. v j∆ p j( )

j 1=

k

∑–=

η̇∂p
∂η
------ 

 
k 1 2⁄+

psurf Bk 1 2⁄( )+
∂
∂t
----- psurfln( ) 1

psurf
----------D j∆ p j v j.∇ psurfln( )∆B j+

 
 
 

j 1=

k

∑+–=

∂ ∂t⁄ psurfln( )

η̇ ∂x
∂η
------ 

 
k

1
2∆ pk
-------------- η̇∂p

∂η
------ 

 
k 1 2⁄+

Xk 1+ Xk–( ) η̇∂p
η∂

------ 
 

k 1 2⁄–
Xk Xk 1––( )+

 
 
 

=

φk 1 2⁄+ φk 1 2⁄–– Rdry Tv( )k

pk 1 2⁄+

pk 1 2⁄–
------------------ln–=

φk 1 2⁄+ φsurf Rdry Tv( )
p j 1 2⁄+

p j 1 2⁄–
-----------------ln

j k 1+=

NLEV

∑+=

φsurf
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where  and, for ,

, (2.23)

The remaining part of the pressure gradient terms in(2.1) and(2.2) is given by

(2.24)

with  given by(2.23) for all .

Finally, the energy conversion term in the thermodynamic equation(2.3) is discretized as

(2.25)

where , , is defined by(2.23) for , and

(2.26)

The reasons behind the various choices made in this vertical discretization scheme are discussed bySimmonsand

Burridge(1981); basically the scheme is designed to conserve angular momentum and energy, for frictionle

iabatic flow.

2.2.2  Time discretization

To introduce a discretization in time, together with a semi-implicit correction, we define the operators

,

where represents the value of a variable at time , the value at time , and the val

. In preparation for the semi-Lagrangian treatment to be developed in section 3, we also introdu

three-dimensional advection operator

(2.27)

φk φk 1 2⁄+ αkRdry Tv( )k+=

α1 ln 2= k 1>

αk 1
pk 1 2⁄–

∆ pk
-----------------

pk 1 2⁄+

pk 1 2⁄–
------------------ 

 ln–=

Rdry Tv∇ pln( )k

Rdry Tv( )k

∆ pk
-------------------------

pk 1 2⁄+

pk 1 2⁄–
------------------ 

 ln ∇ pk 1 2⁄– αk∇ ∆ pk( )+
 
 
 

= =

αk

κTvω
1 δ 1–( )q+( ) p

--------------------------------------- =

κ Tv( )k

1 δ 1–( )qk+
-------------------------------- 1

∆ pk
---------- (

pk 1 2⁄+

pk 1 2⁄–
------------------ln ) D j∆ p j psurf v j.∇ psurfln( )∆B j j+( )

j 1=

k 1–

∑




–




+αk Dk∆ pk psurf vk.∇ psurfln( )∆Bk+( ) } +
psurf

∆ pk
----------- ∆Bk

Ck

∆ pk
----------

pk 1 2⁄+

pk 1 2⁄–
------------------ln+

 
 
 

vk.∇ psurfln( ) }
 
 
 

α1 2ln= αk k 1>

Ck Ak 1 2⁄+ Bk 1 2⁄– Ak 1 2⁄– Bk 1 2⁄+ .–=

δt X X+ X ––( )/ 2∆ t=

∆tt X X+ 2X– X–+( )=

X t X+ t ∆t+( ) X–

t ∆t–( )

A X( ) 1

acos2θ
----------------- U ∂x

∂λ
------ Vcosθ∂x

∂θ
------+ 

  η̇ ∂x
∂η
------+=
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Introducing the semi-implicit correction terms,Eqs. (2.1)–(2.4) become:

(2.28)

(2.29)

(2.30)

(2.31)

where is a parameter of the semi-implicit scheme; the classical scheme (Robert1969) is recovered with .

The semi-implicit correction terms are linearized versions of the pressure gradient terms in(2.1)–(2.2)and the en-

ergy conversion term in(2.3). Thus is a reference temperature (here chosen to be independent of vertica

el), while  and  are matrices such that

, (2.32)

. (2.33)

where the half-level pressures appearing in(2.32)and(2.32)are reference values obtained from(2.11)by choosing

a reference value of , and the coefficients are based on these reference values. The referenc

adopted for the semi-implicit scheme are  and .

The integrated surface pressure tendency equation(2.14) becomes

(2.34)

where

(2.35)

δtU A U( ) fV–
1
a
--- ∂φ

∂λ
------ RdryTv

∂
∂λ
------ p )ln+

 
 
 

=+ +

PU KU+ –
β

2a
------ ∆tt γ[ ]∂T

∂λ
------- RdryT

ref ∂
∂λ
------ psurfln( )+

 
 
 

δtV A V( ) sinθ
a cos2
---------------

θ
U2 V2+( ) fU cosθ

a
----------- ∂φ

∂θ
------ RdryTv

∂
∂θ
------ ln p( )+

 
 
 

+ + + + =

PV KV
βcosθ

2a
--------------- ∆tt γ[ ]∂T

∂θ
------- RdryT

ref ∂
∂θ
------ ln psurf( )+ 

 –+

δtT A T( )
κTvω

1 δ 1–( )q+( ) p
---------------------------------------–+ PT KT

β
2
--- ∆tt τ[ ]D( )–+=

δtq A q( )+ Pq Kq+=

β β 1=

T ref

γ[ ] τ[ ]

γ[ ]T( )k αk
refRdryTk RdryT j ln

p j 1 2⁄+
ref

p j 1 2⁄–
ref

-----------------
 
 
 

j k 1+=

NLEV

∑+=

τ[ ]D( )k κT ref 1

∆ pk
ref

------------ ln
pk 1 2⁄+

ref

pk 1 2⁄–
ref

------------------
 
 
 

D j∆ p j
ref( ) αk

refDk+

j 1=

k 1–

∑
 
 
 
 
 

=

psurf
ref psurf αk

ref

T ref 300 K= psurf
ref 800 hPa=

δt ln psurf( ) 1
psurf
----------D

k
∆ pk vk.∇ ln psurf( ) ∆Bk+

 
 
 

k 1=

NLEV

∑+
β
2
---– ∆tt ν[ ]D=

ν[ ]D 1

psurf
ref

---------- D j∆ psurf
ref

j 1=

NLEV

∑=
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2.2.3  Horizontal grid

A novel feature of the model is the optional use of a reduced Gaussian grid, as described byHortal and Simmons

(1991). Thus, the number of points on each latitude row is chosen so that the local east–west grid length r

approximately constant, with the restriction that the number should be suitable for the FFT ( ).

some experimentation, the ‘fully reduced grid’ option ofHortal and Simmonswas implemented; all possible wav-

enumbers (up to the model’s truncation limit) are used in the Legendre transforms. A small amount of noise

immediate vicinity of the poles was removed by increasing the number of grid points in the three most nor

and southerly rows of the grid (from 6, 12 and 18 points in the original design of the T213 grid to 12, 16 an

points respectively).Courtier and Naughton(1994) have very recently reconsidered the design of reduced Ga

sian grids.

2.2.4  Time-stepping procedure

The time-stepping procedure for the Eulerian – version of the model follows closely that outlined byTem-

perton(1991) for the shallow-water equations. At the start of a time-step, the model state at time is de

by the values of , , , and on the Gaussian grid. To compute the semi-implicit corrections

 values of divergence ,  and  are also held on the grid, where  and

 . (2.36)

The model state at time is defined by the spectral coefficients of , , , and . Legendre trans

followed by Fourier transforms are then used to compute , , , , , , and

at time on the model grid. Additional Fourier transforms are used to compute the corresponding valu

, . , and . The meridional gradients of and are obtained us

the relationships

 .

All the information is then available to evaluate the terms at time on the left-hand sides of(2.28)–(2.31)and

(2.34), and thus to compute ‘provisional’ tendencies of the model variables. These tendencies (together with

of the variables at are supplied to the physical parametrization routines, which increment the tend

with their respective contributions. The semi-implicit correction terms evaluated at time-levels ( ) and

then added to the tendencies. Ignoring the horizontal diffusion terms (which are handled later in spectral

and grouping together the terms which have been computed on the grid,(2.28)–(2.31)and(2.34)can be written in

the form

(2.37)

(2.38)

(2.39)

N 2p3q5r=

U V
t ∆ t–( )

U V T q ln psurf

t ∆ t–( ) D ∂P/∂λ ∂P/∂µ µ sinθ=

P γ[ ]T RdryT
refln psurf+=

t ζ D T q ln psurf

ζ D U V T ∂T /∂µ  lnpsurf ∂ ln psurf( )/∂µ
t

∂U /∂λ ∂V /∂λ ∂T /∂λ ∂q/∂λ ∂ ln psurf( )/∂λ U V

cosθ ∂V
∂θ
------- aD cos2θ ∂U

∂λ
--------–=

cosθ ∂U
∂θ
-------- ∂V

∂λ
------- ζ cos2θ–=

t

t ∆t–( )
t ∆t– t

U+ β∆t
a

--------- ∂ p+

∂λ
---------+ R1=

V+ β∆t
a

--------- cosθ ∂ p+

∂θ
---------+ R2=

T+ β ∆t τ[ ]D++ R3=
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(2.40)

(2.41)

The right-hand sides – are transformed to spectral space via Fourier transforms followed by Gauss

tegration. The curl and divergence of(2.37) and(2.38) are then computed in spectral space, leading to

(2.42)

. (2.43)

Eqs. (2.39), (2.41) and(2.43) can then be combined with the aid of(2.36) to obtain an equation of the form

(2.44)

for each zonal wavenumber  and total wavenumber  , where the matrix

(2.45)

couples all the values of in a vertical column. Once has been found, the calculatio

 and  can be completed, while  and  have already been obtained from(2.40) and(2.42).

Finally, a ‘fractional step’ approach is used to implement the horizontal diffusion of vorticity, divergence, tem

ature and specific humidity. A simple linear diffusion of order is applied along the hybrid coordinate surf

(2.46)

where , or . It is applied in spectral space to the values such that if is the spe

coefficient of  prior to diffusion, then the diffused value  is given by

(2.47)

A modified form of(2.47) is also used for the temperature , to approximate diffusion on surfaces of con

pressure rather than on the sloping hybrid coordinate surfaces (Simmons,1987). The operational version of the

model uses fourth-order horizontal diffusion

2.2.5  Time filtering

To avoid decoupling of the solutions at odd and even time steps, a Robert filter (Asselin1972) is applied at each

timestep. The time-filtering is defined by

(2.48)

where the subscript denotes a filtered value, and , and represent values at , and

q+ R4=

ln psurf( )+ β ∆t ν[ ]D++ R5=

R1 R5

ζ+ curl R1,R2( )=

D+ β ∆t ∇2 p++ div R1,R2( )=

I[ ] n n 1+( )
a2

--------------------- Γ[ ]+ 
  Dn

m( )
+

D̃( )n
m

=

m n

Γ[ ] β2 ∆t( )2 γ[ ] τ[ ] RdryT
ref ν[ ]+( )=

NLEV Dn
m( )

+
D+

T+ ln psurf( )+ q+ ζ+

2r

K X 1–( )rK ∇2r X–=

X ζ= D q t ∆t+( ) Xm
n

X Xn
m

Xn
m

1 2∆t K n n 1+( )
a2

--------------------- 
  r

+
 
 
  1–

Xn
m=

T

r 2=( )

X f X ε X f
– 2X– X++( )+=

f X – X X+ t ∆t–( ) t t ∆t+( )
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Because of the scanning structure of the model (seeChapter 4 ‘Computational details’), it is convenient to apply

the time-filtering in grid-point space, and to split(2.48) into two parts:

(2.49)

(2.50)

The ‘partially filtered’ values computed by(2.49)are stored on a grid-point work file and passed from one tim

step to the next. Thus, the information available after the transforms to grid-point space consists of partially fi

values at time together with unfiltered values at time . The filtering of the fields can the

completed via(2.50), which after shifting by one timestep becomes:

. (2.51)

The computations described inSection 2.2.4are performed using these fully filtered values at time a

the unfiltered values at time . Once(2.51)has been implemented, values of are also available to implem

(2.49) for the partially filtered values to be passed on to the next timestep.

2.2.6  Remarks

Ritchie(1988) noted that for a spectral model of the shallow-water equations, the – form and the –

gave identical results (apart from round-off error). In extending this work to a multi-level model,Ritchie(1991)

found that this equivalence was not maintained. This was in fact a result of someanalyticmanipulations in the ver-

tical, used to eliminate between the variables in solving the equations of the semi-implicit scheme, which we

exactly matched by the finite-element vertical discretization of Ritchie’s model.

In the case of the model described here, the corresponding elimination between the variables is purely alg

and the equivalence between the – form and the – form is maintained apart from one small exc

due to the use of the hybrid vertical coordinate. In the – model, the gradients of the geopotential are

puted in grid-point space (from the spectrally computed gradients of , and ), while in the – m

itself is computed and transformed separately into spectral space, where its Laplacian is added into the

gence equation. Since is not a quadratic function of the model variables there is some aliasing, which is d

for the two versions of the model. In practice the differences between the – model and the – mode

found to be very small, and in the case of a pure sigma-coordinate the two models would be algebraically e

lent.

The – model is nevertheless considerably more economical than its – counterpart in terms of the n

of Legendre transforms required. In addition to the transform of referred to above, four Legendre transfor

saved in the treatment of the wind fields using the procedures described byTemperton(1991) for the shallow-water

equations. The number of multi-level Legendre transforms is thereby reduced from 17 to 12 per time-step

2.2.7  as spectral variable

In preparation for a further reduction in the number of Legendre transforms required by the semi-Lagrangia

sion of the model, the modified Eulerian version includes an option to keep the virtual temperature , rathe

the temperature , as the spectral variable. In the time-stepping procedure, Legendre transforms followed

rier transforms are used to compute , and at time on the model grid; the correspondin

X̃ f X ε X f
– 2X–( )+=

X f X f
˜ ε X++=

t ∆t–( ) t t ∆t–( )

X f
– X f

˜ – ε X+=

t ∆t–( )
t X f

–

U V ζ D

U V ζ D
U V φ

T q ln psurf ζ D
φ

φ
ζ D U V

U V ζ D
φ

Tv

Tv

T
Tv ∂Tv/∂µ ∂Tv/∂λ t
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thermodynamic equation(2.3)is then stepped forward in time exactly as before. After the physical parametriza

routines, the ‘provisional’ value of is combined with to compute a provisional value

. The semi-implicit correction terms evaluated at time-levels and are then ad

to the provisional value of , just before the transform back to spectral space.

There are corresponding slight changes in the semi-implicit correction terms. The linearized hydrostatic mat

in (2.28)–(2.29)and(2.36)now operates on rather than on . From the point of view of the semi-impl

scheme,(2.30) has implicitly been replaced by an equation of the form

(2.52)

although as explained above it is not necessary to formulate or compute the missing terms explicitly. Hence(2.39)

is replaced by

(2.53)

and the solution of the semi-implicit equations in spectral space proceeds just as before.

This change of spectral variable results in only insignificant changes to a 10-day model forecast, but permits

economies in the semi-Lagrangian version to be described in the next chapter.

T ∂T /∂µ ∂T /∂λ q ∂q/∂µ ∂q/∂λ

T t ∆t+( ) q t ∆t+( )
Tv t ∆t+( ) t ∆t–( ) Tv t ∆t+( )

Tv t ∆t+( )

γ[ ]
Tv T

δtTv … β
2
---∆tt τ[ ]D( )–=

Tv
+ β∆t τ[ ]D++ R′3=
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Part III: D YNAMICS AND NUMERICAL PROCEDURES

CHAPTER 3   Semi-Lagrangian formulation

Table of contents

3.1 General description

3.2 Finding the departure point

3.3 ‘Non-interpolating’ scheme in the vertical

3.4 Semi-Lagrangian discretization

3.5 Comparison with other schemes

3.6 Time-stepping procedure

3.7 Optimization of vertically non-interpolating scheme

3.8 Modified semi-Lagrangian equations

3.8.1 Momentum equations

3.8.2 Continuity equation

3.8.3 Thermodynamic equation

3.9 Two-time-level semi-Lagrangian scheme

3.10 Numerical coupling of the physical parameterizations to the “dynamical” equations (SLAVEPP)

3.1 GENERAL DESCRIPTION

The general form of the model equations is

(3.1)

where the three-dimensional advection operator was defined in(2.27), L is the linearized part of R and N is the

remainder or “non-linear terms”. An explicit three-time-level semi-Lagrangian treatment of(3.1) is obtained by

finding the approximate trajectory, over the time interval , of a particle which arrives at each

point  at time . Equation(3.1) is then approximated by

(3.2)

where the superscripts , and , respectively denote evaluation at the arrival point , the mid

of the trajectory , and the departure point . Since the mid-point and the departure

will not in general coincide with model grid points,  and  must be determined by interpolation.

It is more economical (and, as discussed later, gives better results in some circumstances; see alsoTanguayet al.,

dX
dt
-------- ∂X

∂t
------- A X( )+ R L N+= = =

A

t ∆t,t– ∆t+[ ]
x
˜

t ∆t+( )

X+ X ––
2∆t

--------------------- R0=

+ 0 – x
˜
, t ∆t+( )

x
˜

α
˜
, t–( ) x

˜
2α

˜
, t– ∆t–( )

X – R0
13

(Printed  19  September  2003)



Part III: ‘Dynamics and numerical procedures’

ired

hich in

sion of

e terms

space

order of

l

ry, but

ree di-

ive es-

r grid.

ed in

ult is

saving,

dimen-

ly

ed in

e two

is not

int
1992) to evaluate the right-hand side of(3.2) as

(3.3)

since only a single interpolation (of the combined field at the point ) is then requ

in order to determine .

The right-hand sides of the time-discretized model equations also contain semi-implicit correction terms, w

the Eulerian model took the form

where the superscripts refer to time-levels, and to a single common grid point. In the semi-Lagrangian ver

the model, the semi-implicit correction terms take the form

(3.4)

and again the terms to be evaluated at the departure point can be added to other right-hand sid

before interpolation. Notice that the evaluation of , and both ways of evaluating , are all centred in

and time.

To obtain accurate results from a semi-Lagrangian integration scheme, it is necessary to choose the

interpolation carefully (see for exampleStaniforthand Côté‚ 1991). In practice it has been found (for the mode

described here) that linear interpolation is adequate for the terms evaluated at the midpoint of the trajecto

that cubic interpolation is essential for the terms evaluated at the departure point. Cubic interpolation in th

mensions is expensive, and fortunately a ‘quasi-cubic’ interpolation (suggested by Courtier) was found to g

sentially equivalent results. The technique can be illustrated by two-dimensional interpolation on a regula

The target point is at . In the first step, four interpolations are performed in the -direction:linear

(rather than the usual cubic) interpolations to the points and , andcubic interpo-

lations to the points and . In the second step, one cubic interpolation is perform

the -direction, to evaluate the field at the target point. The number of ‘neighbours’ contributing to the res

reduced from 16 to 12. The generalization to three dimensions is straightforward and results in a significant

the number of neighbours being reduced from 64 to 32, and the computation being reduced from 21 one-

sional cubic interpolations to 7 cubic plus 10 linear one-dimensional interpolations.

For the reduced Gaussian grid described inSubsection 2.2.3, the mesh is no longer regular. However, it is easi

seen that the extra complication is relatively minor provided that the first step in the interpolation is perform

the -direction.

The order of the interpolation in the vertical is reduced to linear when the evaluation point lies between th

highest model levels, or between the lowest two model levels. Extrapolation beyond the top or bottom levels

allowed.

3.2 FINDING THE DEPARTURE POINT

Extending the procedure ofRobert(1981) to three dimensions, the midpoint and the departure po

 of the trajectory for each arrival point  are found by iteratively solving the equation

R0 1
2
--- R x

˜
2α

˜
, t–( ) R x

˜
, t( )+{ }=

X t ∆t–( ) ∆tR t( )+ x
˜

2α
˜

–( )
X+

∆tt X X+ 2X0– X –+( )=

∆tt X X x
˜
, t ∆t+( ) X x

˜
, t( )–( ) X x

˜
2α

˜
, t– ∆t–( ) X x

˜
2α

˜
, t–( )–( )+=

x
˜

2α
˜

–( )
∆tt X R0

xI α, yJ β+ +( ) x
xI α, yJ 1–+( ) xI α, yJ+2+( )

xI α, yJ+( ) xI α, yJ+1+( )
y

λ

x
˜

α
˜

–( )
x
˜

2α
˜

–( ) x
˜
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(3.5)

where in(3.5) is thethree-dimensional wind field . Since was never explicitly required in th

Eulerian version of the model (seeEqs. (2.18)–(2.19)for the Eulerian discretization of vertical advection), it is nec

essary to construct this field for the trajectory calculations. As is already specified at the upper and lower b

aries ( , at and at ) it would be natural to construct at the half-levels (i.e. vertic

staggered with respect to and ), and indeed a preliminary version of the model was coded that way. Ho

it is more convenient to hold the three velocity components at the same set of points (which also coincide w

arrival points), so the formulation was changed to use at the ‘full’ levels. Thus, the vertical velocity used in(3.5)

is defined by

(3.6)

where   is already defined by(2.18) and

(3.7)

In deriving(3.7)we have used(2.11)together with a formal definition of itself (which again was not require

by the discretized Eulerian dynamics):

(3.8)

where  is a constant pressure (chosen to be 1013.25 ).

The iterative procedure for solving(3.5)is analogous to that used byRitchie(1991) in a -coordinate model. Giv-

en an estimate  after  iterations, the next iteration is given by

(3.9)

where the vertical component of the displacement is found first. The vertical component of on the

hand side of(3.9) is then updated before the horizontal components are found taking into account the sph

geometry followingRitchie (1987, 1988). The first guess is given by

(3.10)

The calculations include approximations to the spherical geometry away from the poles, followingRitchieand

Beaudoin(1994). In agreement with previous work (reviewed byStaniforthand Côté‚ 1991), little sensitivity was

found to the order of interpolation used in the trajectory calculations, and linear interpolation appears to be

ciently accurate. After providing a first guess via(3.10), a single further iteration was found to be adequate.

Once the midpoint of the trajectory has been found, the departure point is immediately obt

(in the horizontal, the backward extension of the trajectory is along a great circle). In the vertical, if the dep

point is then above the first (or below the last) mode level, it is modified to lie on the first (last) level.

α
˜

∆tv
˜

x
˜

α
˜
, t–( )=

v
˜

u, v, η̇( ) η̇

η̇
η̇ 0= η 0= η 1= η̇

u v

η̇

η̇k

1
2
--- η̇∂p

∂η
------ 

 
k 1

2
---–

η̇∂p
∂η
------ 

 
k 1

2
---+

+

∂p
∂η
------ 

 
k

-------------------------------------------------------------------=

η̇∂p/∂η

∂p
∂η
------ 

 
k

∆ pk

∆ηk
---------- psurf

∆ Ak psurf⁄ ∆Bk+

∆ Ak p0 ∆Bk+⁄
---------------------------------------------= =

η

ηk + Ak+/ p0 Bk++=

p0 hPa

σ
α
˜

k( ) k

α
˜

k+1( ) ∆tv
˜

x
˜

α
˜

k( ), t–( )=

η( ) α
˜

k( )

α
˜

0( ) ∆tv
˜

x
˜
, t( )=

x
˜

α
˜

–( ) x
˜

2α
˜

–( )
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In solving(3.9), it is necessary to convert between a displacement in terms of the spatial coordinates and t

responding displacement in terms of ‘grid lengths’, in order to select the correct three-dimensional block of

for the interpolation routine. This is simple in the horizontal, since the mesh length is constant in the -dire

(at a given latitude), and almost constant in the -direction. It is more difficult in the vertical, where the grid

ing changes rapidly, and the conversion algorithm for the vertical displacement makes use of an auxiliary g

fined with high uniform resolution.

3.3 ‘NON-INTERPOLATING ’ SCHEME IN THE VERTICAL

An alternative formulation of the semi-Lagrangian scheme in three dimensions was suggested byRitchie(1991).

Equation(3.1) can be rewritten as

(3.11)

where

and is the horizontal part of the advection operator defined in(2.27). In (3.11), is defined to be a vertical

velocity which would lead to the departure point of the trajectory at time lying exactly on a model le

This model level is chosen to be the one closest to the true departure point. Equation(3.11)is then approximated by

(3.12)

where the superscripts , , respectively denote evaluation at the arrival point , the mid

and the departure point of themodifiedtrajectory. Since the modified departure poin

lies by definition on a model level, no vertical interpolation is required to evaluate . As discussed inSubsection

3.1 above, it is also possible to evaluate the terms on the right-hand side of(3.12) by averaging the values at

and ; in this case no vertical interpolation at all is required. Notice that a separate interpo

is required to evaluate the second term on the right-hand side of(3.12) since the quantity , defined by

(3.13)

where and are respectively the arrival and departure levels of the modified trajectory, is meaningfu

at each grid point.

If the vertical velocity (or the time-step) is sufficiently small, then the modified departure point lies on the

model level as the arrival point, is zero and the treatment of vertical advection becomes purely Eulerian.

eral there is an Eulerian treatment of the advection by the ‘residual vertical velocity’ , which is s

enough to guarantee that the Eulerian CFL criterion for vertical advection is respected. Thus, the ‘non-inte

ing’ scheme maintains the desirable stability properties of the ‘fully interpolating’ scheme.

There is a subtle, but important, difference in the way the iterative scheme(3.9) is implemented to determine the

modified trajectory in the non-interpolating scheme. As before, the first step at each iteration is to update th

λ
θ

dH X
dt

----------- η̇* ∂X
∂η
-------+ R η̇∂X

∂η
-------– η̇* ∂X

∂η
-------+=

dH X
dt

----------- ∂X
∂t
------- AH X( )+=

AH η̇*

t ∆t–( )

X+ X ––
2∆t

--------------------- R η̇∂X
∂η
-------– 

  0

η̇* ∂X
∂η
------- 

  0

+=

+ 0 – x
˜
, t ∆t+( )

x
˜

α
˜
, t–( ) x

˜
2α

˜
, t– ∆t–( )

X –

x
˜

2α
˜
, t–( ) x

˜
, t( )

η̇*

η̇* η+ η––
2∆t

------------------=

η+ η–

η̇*

η̇ η̇*
–( )
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mate of the vertical component of the displacement.The implied updated departure point is then moved to th

est model level. In the second step, the horizontal components are then updated using the winds evaluate

midpoint of themodifiedtrajectory. Notice that this gives a result different from that obtained by simply carry

out the trajectory calculation of the fully interpolating scheme and then projecting the departure point to the n

model level. The modified procedure described above is easily seen to be more consistent by considering

in which the vertical velocity is not zero, but is small enough for themodifiedtrajectory to be horizontal ).

The discretization is then equivalent to a purely two-dimensional semi-Lagrangian scheme, the trajectory

computed using the horizontal wind field evaluated on a single model level.

An incidental advantage of the ‘non-interpolating’ scheme over the ‘fully interpolating’ scheme is that it res

any ambiguities about the treatment of departure points above the top model level or below the bottom mode

the modified departure points automatically lie on the top or bottom level. The treatment of vertical advectio

comes Eulerian, which is well-defined at the top and bottom levels. Thus, the non-interpolating scheme re

the need for artificial ‘nudging’ of the departure points or the extrapolation of quantities to points above or b

the domain of the model levels.

Smolarkiewiczand Rasch(1991) have extended the principle of the ‘non-interpolating’ semi-Lagrangian form

tion to generate a broader class of stable and accurate advection schemes.

3.4 SEMI -LAGRANGIAN DISCRETIZATION

Here we describe in detail only the fully interpolating version of the semi-Lagrangian discretization; the mod

tions necessary for the ‘non-interpolating in the vertical’ version become evident by comparing the right-han

of (3.12) with that of(3.2).

Following Ritchie(1988, 1991), the momentum equations are integrated invectorform to avoid an instability of

the metric term near the poles. Using the notation of(3.2)and defining the horizontal wind vector ,

the semi-Lagrangian equivalent of(2.28)–(2.29) is

(3.14)

where is the vertically directed unit vector and is the horizontal gradient operator in spherical coordi

On the right-hand side of(3.14), and respectively denote the contributions of the physical parametriza

schemes and horizontal diffusion, to be discussed inSubsection 3.6, while the semi-implicit correction terms are

evaluated as in(3.4). For the momentum equations, it was found advantageous to evaluate the time-level

as an average between the values at the departure and arrival points of the trajectory, as in(3.3). The pressure

gradient terms are discretized in exactly the same way as for the Eulerian model (seeSubsection 2.2.1).

Since(3.14)is in vector form, it is important to account for the change in the orientation of the coordinate sy

as the particle follows the trajectory; the manipulations required are as set out byRitchie(1988) and simplified by

Ritchieand Beaudoin (1994).

The thermodynamic and moisture equations(2.30)–(2.31) become

(3.15)

η̇*
0=( )

vH u v,( )=

vH
+ vH

––

2∆t
------------------ fk x vH ∇φ RdryTv∇ln p+ +[ ]0= Pv K v

β
2
---∆tt∇ γ[ ]T RdryTvln psurf+{ }–++

k ∇
Pv K v

t
[ ]0

T+ T––
2∆t

-------------------
κTvω

1 δ 1–( )q+( ) p
---------------------------------------

 
 
 

–

0

+ PT KT
β
2
---∆tt τ[ ]D( )–+=
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(3.16)

In (3.15), the term is discretized as in(2.25), and evaluated at the midpoint of the trajectory, while the sem

implicit correction terms are evaluated as in(3.4).

The -coordinate continuity equation(2.5) can be rewritten as

(3.17)

Setting

and noting that

,

we also have

. (3.18)

Combining(3.17) and(3.18).

. (3.19)

Now introducing the vertical discretization,(3.19) becomes

. (3.20)

the vertical discretization of  having been defined in(2.18).

Changing the prognostic variable to ,

(3.21)

Combining(3.21) with the discrete definition of  given by(2.18),

(3.22)

q+ q––
2∆t

----------------- Pq Kq+=

{ }0

η

d
dt
----- ∂p

∂η
------ 
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∂η
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∂η
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------ 

 + + 0=

∆Bk
dpsurf

dt
-------------- ∆ pkDk η̇ ∂p

∂η
------ 

 
k 1

2
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---–
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where  is given by(2.14).

Noting that

 ,

and including the semi-implicit correction terms, the semi-Lagrangian discretization of the continuity equati

nally becomes

(3.23)

(Since there is no vertical advection term in(3.23), no modification is required for the vertically non-interpolatin

scheme). It is important to bear in mind that each contribution to the sum on the right-hand side of(3.23)involves

a different trajectory. The interpolations for and the semi-implicit correction terms are however

dimensional, since these quantities are independent of vertical level. The term is evaluated at the m

of the trajectory, and requires a three-dimensional interpolation.

In summary, the semi-Lagrangian discretization is given by Equations(3.14)–(3.16)together with(3.23).

3.5 COMPARISON WITH OTHER SCHEMES

The semi-Lagrangian formulation presented above differs in some respects from those proposed by other

Perhaps the most notable difference lies in the treatment of the conversion term in the thermodynamic e

(3.15), and of the right-hand side of the continuity equation(3.23). Both involve terms of the form ,

which in our scheme are computed in a purely Eulerian fashion. This may appear somewhat inconsistent;

McDonaldand Haugen(1993) state as a specific design objective of their scheme that the operator s

not appear explicitly. The alternative approach, also taken byWilliamsonand Olson(1994), is to use the continuity

equation in its semi-implicit semi-Lagrangian form to derive a consistent equation forpredicting , which

can then be used to eliminate the terms. In the -coordinate system,Bateset al. (1993) andMcDonald

and Haugen(1992) used a similar approach to derive a prognostic equation for . A possible disadvantage o

an approach is that (or ) then follows an independent evolution, no longer satisfying a diagnostic

tionship of the form(2.18). Our ‘Eulerian’ treatment of the terms avoids this disadvantage and se

to work well, but further study is required to determine whether this difference in formulation is important o

Another aspect of our semi-Lagrangian discretization of the continuity equation, which differs from that in

models, concerns the definition of the trajectory; in our scheme this is the same (three-dimensional) trajec

used for the other variables. In the continuous form of the equation,(3.19), the advective part of the total derivative

may be regarded either as two-dimensional or as three-dimensional (since is zero). Ho

the vertically discretized form,(3.20), is well-defined only at discrete model levels, implying that for consisten

the semi-Lagrangian discretization(3.23)should be based on horizontal trajectories. Correcting this inconsiste

in our scheme by computing horizontal trajectories for the continuity equation, based on the horizontal wind a

model level, made very little difference to the results, and for the time being we have allowed the inconsiste

remain. (As discussed later, in the case of the ‘vertically non-interpolating’ scheme the modified trajectori

nearly always horizontal anyway.) In the case of the fully interpolating scheme, recomputing the trajectorie

∂ ln psurf( )/∂t

∆Bk

k 1=

NLEV

∑ 1=

ln psurf( )+ ∆Bk ln psurf( )– 2∆t
∂ ln psurf( )

∂t
------------------------ vk.∇ln psurf+

 
 
 

0
β∆t

psurf
ref

---------- ∆tt ∆ p j
ref D j( )

j 1=

NLEV

∑
 
 
 
 
 

–+

k 1=

NLEV

∑=

ln psurf( )–

{ }0

ω
v.∇ln psurf

v.∇

η̇∂p/∂η
v.∇ln psurf σ

σ
η̇∂p/∂η σ

v.∇ln psurf

dp dt⁄ ∂ psurf/∂η
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resents a significant expense;Bateset al. (1993) andMcDonaldand Haugen(1992) used a simple projection o

the three-dimensional trajectory onto the model level of the arrival point. In our model this approach resu

poor mass conservation, thoughBateset al.(1993) came to the opposite conclusion. Again, the importance or o

erwise of these differences in formulation is not yet firmly established.

3.6 TIME -STEPPING PROCEDURE

The general outline of the time-stepping procedure for the semi-Lagrangian version is similar to that describ

the Eulerian model inSubsection 2.2.4. Thus at the start of a timestep, the model state at time is defi

by the values of , , , and on the Gaussian grid. To complete the semi-implicit corrections

values of , and are also held on the grid. The model state at time is defined b

spectral coefficients of , , , and . Legendre transforms followed by Fourier transforms are

used to compute , , , , , , , , and at time on the model gr

additional Fourier transforms are used to compute the corresponding values of , ,

. Since and the horizontal gradients of and are no longer required on the model grid

multi-level Legendre transform and three multi-level Fourier transforms are saved in comparison with the Eu

version.

Since the advection of moisture is handled by the semi-Lagrangian discretization(3.16), the horizontal gradients

of are only needed in order to compute the horizontal gradients of the virtual temperature (which in

are required to compute the term in(3.14)). If is chosen as the spectral variable as inSubsection 2.2.7,

these gradients are available directly, and there is then no need to transform (or ) to the mode

The number of multi-level Legendre transforms per time-step is further reduced to 10. In passing, all the ingre

are then in place for a semi-Lagrangian treatment in which the moisture field is never transformed to spectra

(Williamsonand Rasch, 1994), and only 8 multi-level Legendre transforms are required per time-step (comp

with 17 in the original –  Eulerian model).

After the transforms to the model grid, all the information is then available to compute the trajectories for eac

point, and to evaluate the ‘dynamical’ contributions to the semi-Lagrangian discretization. Ignoring for a mo

the contributions of the physical parametrization schemes and of the horizontal diffusion, each equation is

of the form

. (3.24)

or

(3.25)

depending on whether the terms are averaged between the end points of the trajectory or evaluated at

points. In(3.24)and(3.25), the terms represent the semi-implicit corrections; includes contributions f

time-levels  and , while  includes contributions from time-levels    and .

In the first part of the calculation for equations of the form(3.24), the combined field is com-

puted, and the value of this combined field at each departure point is then found by interpolation. A

the (uninterpolated) value of results in a provisional value of at each grid point, incorporating a

terms in(3.24)except for . The calculation for equations of the form(3.25)proceeds similarly, except that two

interpolations are required, one for  at , and one for  at

t ∆t–( )
U V T q ln psurf

t ∆t–( ) D ∂p/∂λ ∂p/∂µ t
ζ D T q ln psurf

D U V T ∂T /∂µ q ∂q/∂µ ln psurf ∂ ln psurf( )/∂µ t
∂T /∂λ ∂q/∂λ

∂ ln psurf( )/∂λ ζ U V

q Tv

∇φ Tv

∂q/∂µ ∂q/∂λ

ζ D

X+ x
˜

( ) X – x
˜

2α
˜

–( ) ∆t R0 x
˜

2α
˜

–( ) R0 x( )
˜

+{ } S– x
˜

2α
˜

–( ) S+ x
˜

( )+ + +=

X+ x
˜

( ) X – x
˜

2α
˜

–( ) 2∆tR0 S– x
˜

2α
˜

–( ) S+ x
˜

( )+ + +=

R0

S S–

t ∆t–( ) t S+ t t ∆t+( )

X+ ∆tR0 S–+ +

x
˜

2α
˜

–( )
∆tR0 X+

S+

X – S–+ x
˜

2α
˜

–( ) 2∆tR0 x
˜

α
˜

–( )
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A provisional value is now available at each grid point for each variable, and is used together with

same grid point to compute an ‘Eulerian’ tendency. These fields and their tendencies are then supplied to th

ical parametrization routines, which increment the tendencies with their respective contributions, just as in th

erian version (except that, to avoid extra interpolations, the terms have been included in the supplied dyn

tendencies). If  is chosen as the spectral variable, a provisional value of  is computed at this point

The contributions from the  terms at time  are now added in, resulting in a set of equations of the for

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where the right-hand sides include all the terms which have been computed on the grid, and re

if is the spectral variable. Equations(3.26)–(3.30)have exactly the same form asEqs. (2.37)–(2.41)of the

Eulerian model and are solved in exactly the same way, by first transforming to spectral space. After findi

new spectral coefficients at time , horizontal diffusion is also applied in the same way as for the Eu

version.

The implementation of the time-filtering for the semi-Lagrangian model is identical to that for the Eulerian ver

as described inSubsection 2.2.5

3.7 OPTIMIZATION OF VERTICALLY NON -INTERPOLATING SCHEME

In the ‘vertically non-interpolating’ scheme, the departure point of each modified trajectory lies on a model

For the set of arrival points on each model level, it is of interest to determine the frequency distribution of th

responding departure points. The results of an experiment run to collect these statistics led to a significant

zation of the code for the vertically non-interpolating scheme.

The statistics were obtained from a 10-day forecast using the model in its operational configuration: T213,

els, with a 15-minute timestep. The results are summarized inTable 3.1, which shows that the vast majority

(99.67% overall) of modified trajectories are horizontal; no departure point was ever more than three mode

away from its corresponding arrival point.

The implication of these results is that a great deal of redundant calculation was being performed in the ve

non-interpolating scheme. For each horizontal modified trajectory, the interpolation of the horizontal winds

trajectory calculation itself becomes two-dimensional rather than three-dimensional, as do the interpolat

‘right-hand side’ terms at the mid point of the trajectory, while the additional interpolations to calculate term

the form in(3.12)are not required at all. Consequently, special routines were written to perf

interpolations which are two-dimensional everywhere except at a set of ‘flagged’ points where they become

dimensional, and similarly to perform two- or three-dimensional interpolations at the flagged points while ski

X+ X –

S–

Tv Tv
+

S– t

U+ β∆t
a

---------∂ p+

∂λ
---------+ Q1=

V+ β∆t
a

---------cosθ∂ p+

∂θ
---------+ Q2=

T+ β∆t τ[ ]D++ Q3=

q+ Q4=

ln psurf( )+ β∆t ν[ ]D++ Q5=

Q1 Q5– Tv
+

T+ Tv

t ∆t+( )

η̇* ∂X /∂η( )0
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ly non-
all other points. The use of these special routines reduced the ‘semi-Lagrangian overhead’ for the vertical

interpolating scheme by about 30%.

Asterisks indicate less than 0.005% frequency

TABLE 3.1 FREQUENCY DISTRIBUTION(%) OF DEPARTURE POINTS IN THE‘VERTICALLY NON-INTERPOLATING’
SCHEME

Arrival
level

Departure levels

1–6 100.00

7–9 100.00 *

10 99.99 0.01 *

11 99.96 0.04 *

12 99.89 0.11 *

13 99.76 0.24 * *

14 99.60 0.40 * *

15 99.43 0.57 * *

16 99.28 0.72 *

17 99.16 0.83 0.01

18 99.08 0.92 *

19 99.05 0.94 0.01

20 99.05 0.94 0.01 *

21 99.09 0.91 * *

22 99.14 0.85 0.01 *

23 99.22 0.78 *

24 99.31 0.69 *

25 99.44 0.56 *

26 99.60 0.40 *

27 99.78 0.22 *

28 99.92 0.08 *

29 99.99 0.01

30 100.00 *

31 100.00

k k k 1± k 2± k 3±
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3.8 MODIFIED SEMI -LAGRANGIAN EQUATIONS

3.8.1  Momentum equations

The momentum equations are treated in vector form (Eq.(3.14)). Following Rochas (1990) and Temperton (1997

the Coriolis terms can be incorporated in the semi-Lagrangian advection. Thus, the advected variable b

where is the earth’s rotation and is the radial position vector, while the Coriolis terms

dropped from the right-hand side. As described by Temperton (1997), this reformulation is beneficial provide

the spherical geometry is treated accurately in determining the departure point and in rotating the vectors to a

for the change in the orientation of the coordinate system as the particle follows the trajectory.

The discretization of the momentum equations in the notation of Eq.(3.1) is then:

(3.31)

(3.32)

(3.33)

where is the gas constant for dry air, is a reference temperature, is geopotential and is the line

hydrostatic integration matrix defined in Eq. (2.32) of Ritchie (1995).

In component form, is just where is the earth’s radius and is latitude. Since the lati

of the departure point is known, the term in the advected variable is computed analytically rathe

interpolated. An alternative semi-implicit treatment of the Coriolis terms has also been developed (Tem

1997).

3.8.2  Continuity equation

Modelling flow over mountains with a semi-Lagrangian integration scheme can lead to problems in the form

spurious resonant response to steady orographic forcing. The mechanism was clarified by Rivest et al.

Strictly speaking, the problem has little to do with the semi-Lagrangian scheme itself; rather, it is a result

long time steps permitted by the scheme, such that the Courant number becomes greater than 1. Recently

and Tanguay (1996) proposed a modification to the semi-Lagrangian scheme which alleviates the prob

turned out that their suggestion was easy to implement in the ECMWF model, and had additional benefits b

improving the forecast of flow over orography.

Although Ritchie and Tanguay start by introducing a change of variables in the semi-implicit time discretiz

this is not necessary and a slightly different derivation is presented here. The continuity equation is written

form

(3.34)

where represents right-hand-side terms. The total derivative on the left-hand side is discretized in a

Lagrangian fashion, and the final form of the discretized equation involves a vertical summation.

v
˜ H 2Ω

˜
r
˜

×+ Ω
˜

r
˜

X v
˜ H 2Ω

˜
r
˜

×+=

L ∇
˜

γTv RdryT ref psurfln+( )–=

N ∇
˜

φ RdryTv∇
˜

pln+( )– L–=

Rdry T ref φ γ

2Ω
˜

r
˜

× 2Ωacosθ 0( , ) a θ
2Ω

˜
r
˜

× X

d
dt
----- psurfln( ) RHS[ ]=

RHS[ ]
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Now split  into two parts:

(3.35)

where the time-independent part  depends on the underlying orography :

(3.36)

and  is a reference temperature. This choice gives

(3.37)

so that is (to within an additive constant) the value of appropriate for an isothermal state at res

underlying orography.

Using(3.35) and(3.36),

(3.38)

The second term on the right-hand side is computed in an Eulerian manner and transferred to the right-ha

of the continuity equation(3.34), which becomes

(3.39)

The new advected variable is much smoother than the original, since the influence of the underlying orograp

been subtracted out; hence, the semi-Lagrangian advection is presumably more accurate.

3.8.3  Thermodynamic equation

As mentioned above, the semi-Lagrangian treatment of the continuity equation is improved by changing t

vected variable to a smoother quantity which is essentially independent of the underlying orography. A s

modification has been implemented in the thermodynamic equation, borrowing an idea from the treatment

izontal diffusion. To approximate horizontal diffusion on pressure surfaces, thereby avoiding spurious wa

over mountain tops in sigma or hybrid vertical coordinates, the diffused quantity is , with

(3.40)

where the subscript ‘ref’ denotes a reference value which is a function only of model level. For the purposes

semi-Lagrangian advection is replaced by a time-independent value as in Eq.(3.36)above, to define a

“temperature”  which depends only on the model level and the underlying orography:

(3.41)

psln

psurfln l∗ l'+=

l∗ φsurf

l∗ φsurf–( ) RdryT( )⁄=

T

∇φsurf RdryT∇l∗+ 0=

l∗ psurfln

d
dt
----- psurfln( )( ) dl'

dt
------

1

RdryT
---------------v

˜ H ∇
˜

φsurf⋅ 
 –=

dl'
dt
------ RHS[ ] 1

RdryT
---------------v

˜ H ∇
˜

φsurf⋅+=

T Tc–( )

Tc psurf
p∂

psurf∂
-------------- T∂

p∂
------- 

 
ref

psurfln=

psurfln

Tb

Tb psurf
p∂

psurf∂
-------------- T∂

p∂
------- 

 –
ref

φsurf RdryT( )⁄⋅=
24

IFS Documentation Cycle CY23r4 (Printed  19  September  2003)



 Chapter 3 ‘Semi-Lagrangian formulation’

cludes

e-level

cheme,

ure is
The semi-Lagrangian advection is now applied to the quantity , while a compensating expression

(3.42)

appears on the right-hand side of the equation and is computed in an Eulerian fashion (note that this time it in

a vertical advection term).

3.9 TWO-TIME -LEVEL SEMI -LAGRANGIAN SCHEME

Formally, a two-time-level scheme may be written in the notation of Eq.(3.2) as:

(3.43)

where

 is the value at the “arrival” gridpoint at

 s the value interpolated at the “departure” point at time ;

 and  are the linear terms defined similarly;

 are the non linear terms, obtained by extrapolation in time to

(3.44)

The displacement equation becomes

(3.45)

where the three-dimensional wind field  is also extrapolated in time:

(3.46)

The iterative scheme and first-guess for solving(3.45) are exactly analogous to those for solving(3.5).

The choices for the variables and for the interpolation schemes remain exactly as for the three-tim

scheme.

The semi-implicit equations to be solved in spectral space have the same form as for the three-time-level s

except that  is replaced by .

In principle a two-time-level scheme should have no computational mode, and a time-filtering proced

no longer needed.

3.9.1  Stable Extrapolation Two-Time-Level Scheme (SETTLS)

T Tb–( )

v
˜ H– ∇Tb⋅ η̇

Tb∂
η∂

---------–

XA
+ XD

––

∆t
----------------------

1
2
--- LD

– LA
++( ) 1

2
--- ND

* NA
*+( )+=

XA
+ X x

˜
t ∆t+,( )= t ∆t+( )

XD
– X x

˜
α
˜

t,–( )= t

LA
+ LD

–

N * t 1
2
---∆t+ 

 

N * 3
2
---N t( ) 1

2
---N t ∆t–( )–=

α
˜

∆tV
˜

* x
˜

1
2
---α

˜
– t 1

2
---∆t+, 

 =

V
˜

*

V
˜

* 3
2
---V

˜
t( ) 1

2
---V

˜
t ∆t–( )–=

X

∆t ∆t 2⁄

2∆t
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An alternative second-order accurate scheme to solving(3.45)can be derived by expanding the position vector

of the parcel of air as a Taylor series around the departure point of the semi-Lagrangian trajectory:

(3.47)

Here subscript AV indicates some average value along the semi-Lagrangian trajectory.

Substituting the time derivative of  by the velocity vector , we find

(3.48)

This equation describes an uniformly accelerated movement. The trajectories can no longer be consid

straight lines on a plane or as arcs of a great circle in spherical geometry as is traditionally done in semi-Lagr

schemes and the position of the middle point of the trajectory is no longer an average between the depart

the arrival points.

To proceed, one has to estimate the quantity

(3.49)

To estimate(3.49)the first possibility explored was to use an average along the trajectory of the explicit esti

of the r.h.s. of the momentum equations as the horizontal part of expression(3.49) and the expression

(3.50)

for the vertical part.

After exploring many other possibilities, the following estimate was adopted:

(3.51)

using the departure point of the semi-Lagrangian trajectory corresponding to the present time step instea

departure point of the trajectory corresponding to the previous time step. Here D means the position at time

parcel of air which will arrive to gridpoint A at time t+∆t.

This estimate assumes that the total time derivative of the velocity is constant with time, following Durran’s

gestion of “extrapolating along the trajectory”, but the estimate uses only the arrival and departure points

present trajectory and is therefore compatible with the semi-implicit treatment of the evolution equations

scheme should therefore be also stable according to linear stability analysis and has accordingly been nam

ble Extrapolation Two-Time-Level Scheme” or SETTLS.

Substituting(3.51) into (3.48) we obtain:

R

RA

t ∆t+

RD

t
∆t d

dt
-----R

D

t

⋅ ∆t2

2
-------- d2

dt2
------- R( )

AV

⋅+ +≈

R V

RA

t ∆t+

RD

t
∆t V D

t
⋅ ∆t2

2
-------- d

dt
----- V( )

AV

⋅+ +≈

d
dt
----- V( )

AV

d
dt
----- W( )

AV

WA
t WD

t ∆t––
∆t

-----------------------------≈

d
dt
----- V( )

AV

d
dt
----- V( )

t ∆t
2
------–

V A

t
V D

t ∆t–

–
∆t

--------------------------≈ ≈
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(3.52)

and a similar expression can be used in every evolution equation to treat the non-linear terms of the r.h.s.

3.10 NUMERICAL COUPLING OF THE PHYSICAL PARAMETERIZATIONS TO THE “ DYNAMI-

CAL” EQUATIONS (SLAVEPP)

Due to the diffusive nature of the mostly parabolic equations in the physics the contributions of the physic

rameterizations are computed separately from the “dynamical” equations. The coupling of these two parts c

the SLAVEPP(Semi-LagrangianAveraging ofPhysicalParameterizations)method which is described and dis

cussed in detail byWedi (1999).

In equation(3.14)-(3.16)the contribution of the physical parameterizations are denoted as indicating an

uation of the parameterizations at the arrival point only. In the two time level scheme as described in sect3.9

this is replaced by a partly second order accurate coupling of the parameterizations in time and space, w

achieved by evaluating part of the “physics” at the arrival point and the remainder at the departure point of the

Lagrangian trajectory. Due to the different nature of the parameterized processes the contributions of rad

convection and cloud parameterization are averaged “along” the semi-Lagrangian trajectory while the co

tions of vertical diffusion and parameterized gravity waves are taken at the arrival point only. Equation(3.43)be-

comes then

(3.53)

Part of the implicit calculations of the physical parameterizations use the following tendency:

, (3.54)

with equation(3.43) modified to yield

(3.55)

The “~” denotes that only provisional values of the dynamic fields are available because semi-implicit corr

terms are still to be computed (see section3.6). Therefore is used for the linear terms. Equatio

(3.54)describes local tendencies, which are computed subtracting the new provisional explicit values

the dynamic fields (at the arrival point) from their values at the previous time step. The parameterizati

the time step  are computed at the arrival point as shown in the following equation:

RA

t ∆t+

RD

t ∆t
2
------ 2V

t
V

t ∆t–

–[ ]D V A

t
+( )⋅+=

P

XA
+ XD

––

∆t
----------------------

1
2
--- LD

– LA
++( ) 1

2
--- ND

* NA
*+( ) 1

2
--- PD rad conv cloud+ +,

– PA rad conv cloud+ +,
++( ) PA vdif, gwdrag+

++ + +=

DA
˜ X̃A Dyn,

+
XA

––

∆t
---------------------------------=

X̃ A Dyn,
+

X D
––

∆t
----------------------------------

1
2
--- LD

– L̃A
+

+( ) 1
2
--- ND

* N A
*+( )+=

LA
+ L̃A

+
≈ LA

–=

X̃ A Dyn,
+

X A
–

t ∆t+
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(3.56)

where the “first guess” predictor of the model variables at the arrival point at time step is c

puted from the tendency of the “dynamics”, the tendency of the parameterizations of radiation, convectio

clouds at the previous time-stept and the tendency of vertical diffusion and gravity waves at :

. (3.57)

denotes an explicit interaction of the parameterizations of cloud and convection.The parameter

has been introduced in order to achieve a better balance between the physical parameterizations when

guess” predictor is computed.

PA
+ PA rad,

+ X A
–( )

PA vdif,
+ XA

– DA
˜ PA rad,

+, ,( )
PA gwdrag,

+ XA
– DA

˜,( )
PA conv,

+ XA predict,
+ output( )Fconv,( )

PA cloud,
+ XA predict,

+ input( )Fconv,( )

+

+

+

+

=

X +
A predict, t ∆t+

t ∆t+

X +
A predict, X̃A Dyn,

+
αP+ D rad, conv cloud+ +

–
∆t PA vdif, gwdrag+

+ ∆t+=

Fconv α 0.5=
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Part III: D YNAMICS AND NUMERICAL PROCEDURES

CHAPTER 4   Computational details
Implementing a high-resolution model, which must run operationally within a given elapsed time on a given

puter system, presents a number of interesting technical challenges. In this section we present some of the

tational details which enabled the goal of implementation to be achieved.

Table of contents

4.1 Scanning structure

4.2 Multitasking

4.3 Performance

4.4 Analysis of CPU time

4.5 The IFS model

4.1 SCANNING STRUCTURE

Each timestep of the model integration procedure consists of three scans.

At the beginning of the timestep, the model fields at time are specified in grid-point form (as describ

Subsection 2.2.6of Chapter 2 ‘Basic equations and discretization’, these fields are ‘partially time-filtered’). The

grid-point values of the model variables are contained in a ‘grid-point work-file’, held on a secondary storag

vice and organized as a random-access file with one record for each latitude row. Meanwhile, the model fi

time are specified in spectral form, all the spectral coefficients being held in central memory. The first sca

sists of Legendre transforms to compute the Fourier coefficients of the model variables at time on each l

row, the results being written out to a ‘Fourier work-file’, again organized with one record for each latitude

During the first scan, latitude rows are processed in north/south pairs with the members of each pair being e

tant from the equator, in order to make use of the symmetries of the Legendre polynomials (see for examplTem-

perton,1991). Once this first scan has been completed, the spectral coefficients are no longer required

central memory arrays can be released for use during the next scan.

The second scan steps through the latitude rows, starting at the row nearest the North Pole and proceedin

wards. At each row, the corresponding records of the grid-point values at time and the Fourier coeffi

at time are read in. Fourier transforms then provide grid-point values of the fields (together with any req

horizontal derivatives) at time . At this juncture, the time-filtering of the fields at time is comple

while ‘partially time-filtered’ fields at time are also computed and written out to the grid-point work-file re

for the next timestep.

The grid-point calculations for the present timestep continue using the time-filtered values at and t

filtered values at time . The right-hand sides of the equations, discretized in semi-Lagrangian form as de

in Chapter 3, are computed with terms being grouped separately depending on whether they will be evalua

the departure point, the midpoint or the arrival point of the trajectory. The results of these calculations, to

with the horizontal wind components and the vertical velocity , are then stored in a ‘rotating buffer’ which

tains values for a number of consecutive latitude rows. The grid-point calculations described so far corresp

t ∆t–

t
t

t ∆t–( )
t

t t ∆t–( )
t

t ∆t–( )
t

η̇
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the southernmost row contained in this buffer. Next, the focus of the computation returns to the central row

buffer. Values of the wind fields and the right-hand sides of the equations are now available at a sufficient d

to the north and south of the central row for the trajectory calculations to be performed and for the semi-Lagr

timestep to be implemented, thus furnishing provisional values at . As described inSection 3.4, the con-

tributions from the physical parametrization schemes can then be incorporated to complete the calculation

right-hand sides   ofEqs. (3.26)–(3.30).

These right-hand sides are now Fourier transformed and the coefficients are written out to another Fourie

file, again organized with one record for each latitude row but this time with a special structure which will b

ploited in the third scan. The computation then proceeds southwards to the next pair of ‘southernmost’ and ‘c

rows, the values computed for the new southern row overwriting those in the buffer for the previous norther

row, which are no longer required.

At the start of the second scan, there is clearly an initialization phase during the first few rows when only th

part of the above calculations can be done. Similarly, at the end of the scan there is a ‘winding-down’ phase

which the first part of the calculations has already been done, and only the second part is required. The sam

structure is also used to run the Eulerian version of the model, but in this case the width of the ‘rotating buffe

be reduced to that for a single latitude row.

The third scan performs direct Legendre transforms to obtain the provisional spectral coefficients at time

from the Fourier coefficients computed in the second scan, using Gaussian quadrature. The calculation p

one zonal wavenumber at a time. Here we make use of the special structure of the Fourier work-file; althou

file was written row by row, it can be read in ‘transposed’ fashion, wavenumber by wavenumber. The direc

endre transforms first exploit the symmetries of the Legendre polynomials, and then complete the calculati

ing highly efficient matrix multiplication routines. To see how this is achieved, notice that since a single Leg

transform can be written as a matrix/vector multiplication of the form , a set of simultaneous transf

for the same zonal wavenumber but for different variables and model levels can be written as

which is indeed in the form of a matrix multiplication . A similar technique could have been u

in the first scan, and this has been incorporated in the latest version of the model.

After the transformation to spectral space, the semi-implicit equations are solved and the horizontal diffu

implemented as described inSection 3.4, thus completing the calculation of the spectral coefficients at ti

. At the end of the third scan, the whole model has been advanced by one timestep.

4.2 MULTITASKING

Currently the model is run on a ‘modestly parallel’ supercomputer (specifically, a Cray Y-MP C90 with 16 pr

sors), and multitasking is an important aspect of the strategy to make the best use of the available compute

We have chosen to rely mainly on high-level ‘macrotasking’, i.e., dividing the computation into large indepe

units of work, each of which is assigned to one of the processors. Here only a brief outline will be given; add

details and discussion are provided byDent (1992).

In the first scan, the unit of work is a pair of latitude rows. Each pair is independent of all the others, and a s

dynamic scheduling technique can be used: as each processor becomes free, a new pair of rows is assig

In the second scan, the unit of work is a single latitude row. For the semi-Lagrangian version, the calculatio

each row are no longer independent of those for all the other rows. The trajectory calculations and semi-Lag

t ∆t–( )

Q1 Q5–

t ∆t+( )

y
˜

P[ ]x
˜

=

y
˜

1y
˜

2… y
˜

N{ } P[ ] x
˜ 1x

˜ 2…x
˜ N{ }=

Y[ ] P[ ] X[ ]=

t ∆t+( )
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advection algorithm for the central row of the rotating buffer can only be carried out once the required calcul

have been completed for all the neighbouring rows, and somewhat complex logic is required to control the

tasking during this scan.

In the third scan, the unit of work is a single zonal wavenumber. Each wavenumber is independent of all the

and the scheduling technique used in the first scan can again be used. The work content of each wavenumb

from a maximum at to a minimum at the largest value of (the ‘tip’ of the triangular truncation),

the dynamic scheduling technique is effective in spreading the work over available processors.

4.3 PERFORMANCE

The following performance figures relate specifically to the operational version of the model run at horiz

resolution T213 with 31 levels on the 16-processor Cray Y-MP C90. With the model time-step set at 15 m

the total CPU time per forecast day would be about 1.5 hours on a single processor, the corresponding elap

(excluding the post-processing) being 7 minutes when the work is shared amongst 16 processors. This re

a sustained computation speed of about 3.5 gigaflops floating-point operations per second). The m

requirements are 49 Mwords of central memory plus 70 Mwords of secondary storage. Multitasking using 16

essors provides a speed-up factor of 13 compared with using a single processor. A typical operational 10-d

cast, including all the post-processing, takes 2 hours of elapsed time.

4.4 ANALYSIS OF CPU TIME

In developing a high-resolution spectral model, the cost of the transforms (particularly the Legendre trans

may be a cause for concern (e.g.Côtéand Staniforth, 1990). In the case of a semi-Lagrangian model, it is clea

important that the gain obtained through the use of longer time steps is not outweighed by the extra cost of th

Lagrangian scheme. In view of these concerns, it is of interest to analyse the CPU time required for our

Table 4.1shows the percentage breakdown for the Eulerian version, for the fully interpolating semi-Lagra

scheme and for the vertically non-interpolating scheme, at T213/L31 resolution.

This analysis suggests that the spectral method is still perfectly viable at this resolution, and that considerab

er resolutions can be achieved before the cost of the transforms becomes a matter for serious concern. The

of the semi-Lagrangian scheme, particularly the non-interpolating version, is also quite modest; for the prese

olution it permits a timestep of 15 minutes compared with 3 minutes for the Eulerian version, and the res

reduction in the CPU time for the forecast is about a factor of four. The semi-Lagrangian overhead is in fact s

TABLE 4.1 ANALYSIS OF CPUTIME (%)

Eulerian
Fully

interpolating
semi-Lagrangian

Vertically non-
interpolating

semi-Lagrangian

Dynamics 21 15 17

Physics 53 42 45

FFT 6 3 4

Legendre
transforms

20 13 14

Semi-Lagrangian 27 20

m 0= m

3.5x109
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less than suggested by the figures inTable, since there is a simultaneous reduction in the number of transfo

compared with the Eulerian scheme. Comparing the two variants of the semi-Lagrangian scheme, the over

time for the non-interpolating version is 8.5% less than that for the fully interpolating version.

4.5 THE IFS MODEL

On 2nd March 1994, the model code described above was replaced in operations by the IFS (‘Integrated F

ing System) model, developed in collaboration with Météo-France (where it is known as ARPEGE; seeCourtier

et al. (1991) for an account of this project). The new code includes all the features required for three- and

dimensional variational data assimilation (Thépautand Courtier, 1991;Rabierand Courtier, 1992), and for deter-

mining optimal unstable perturbations for ensemble prediction (Buizzaet al. 1993). The computational structure

of the forecast model component of the system is similar to that described above but includes further improv

in efficiency, notably the matrix-multiplication treatment of the Legendre transforms in the first scan as well

third scan (seeSubsection 4.1above), and the option to combine several latitude rows together (for example

the poles of the reduced grid) resulting in longer vectors.
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	3.1 General description
	The general form of the model equations is
	(3.1)
	where the three-dimensional advection operator was defined in (2.27), L is the linearized part of...
	(3.2)
	where the superscripts , and , respectively denote evaluation at the arrival point , the mid-poin...
	It is more economical (and, as discussed later, gives better results in some circumstances; see a...
	(3.3)
	since only a single interpolation (of the combined field at the point ) is then required in order...
	The right-hand sides of the time-discretized model equations also contain semi-implicit correctio...
	where the superscripts refer to time-levels, and to a single common grid point. In the semi-Lagra...
	(3.4)
	and again the terms to be evaluated at the departure point can be added to other right-hand side ...
	To obtain accurate results from a semi-Lagrangian integration scheme, it is necessary to choose t...
	For the reduced Gaussian grid described in Subsection 2.2.3, the mesh is no longer regular. Howev...
	The order of the interpolation in the vertical is reduced to linear when the evaluation point lie...

	3.2 Finding the departure point
	Extending the procedure of Robert (1981) to three dimensions, the midpoint and the departure poin...
	(3.5)
	where in (3.5) is the three-dimensional wind field . Since was never explicitly required in the E...
	(3.6)
	where is already defined by (2.18) and
	(3.7)
	In deriving (3.7) we have used (2.11) together with a formal definition of itself (which again wa...
	(3.8)
	where is a constant pressure (chosen to be 1013.25 ).
	The iterative procedure for solving (3.5) is analogous to that used by Ritchie (1991) in a -coord...
	(3.9)
	where the vertical component of the displacement is found first. The vertical component of on the...
	(3.10)
	The calculations include approximations to the spherical geometry away from the poles, following ...
	Once the midpoint of the trajectory has been found, the departure point is immediately obtained (...
	In solving (3.9), it is necessary to convert between a displacement in terms of the spatial coord...

	3.3 ‘Non-interpolating’ scheme in the vertical
	An alternative formulation of the semi-Lagrangian scheme in three dimensions was suggested by Rit...
	(3.11)
	where
	and is the horizontal part of the advection operator defined in (2.27). In (3.11), is defined to ...
	(3.12)
	where the superscripts , , respectively denote evaluation at the arrival point , the midpoint and...
	(3.13)
	where and are respectively the arrival and departure levels of the modified trajectory, is meanin...
	If the vertical velocity (or the time-step) is sufficiently small, then the modified departure po...
	There is a subtle, but important, difference in the way the iterative scheme (3.9) is implemented...
	An incidental advantage of the ‘non-interpolating’ scheme over the ‘fully interpolating’ scheme i...
	Smolarkiewicz and Rasch (1991) have extended the principle of the ‘non-interpolating’ semi-Lagran...

	3.4 Semi-Lagrangian discretization
	Here we describe in detail only the fully interpolating version of the semi-Lagrangian discretiza...
	Following Ritchie (1988, 1991), the momentum equations are integrated in vector form to avoid an ...
	(3.14)
	where is the vertically directed unit vector and is the horizontal gradient operator in spherical...
	Since (3.14) is in vector form, it is important to account for the change in the orientation of t...
	The thermodynamic and moisture equations (2.30)–(2.31) become
	(3.15)
	(3.16)
	In (3.15), the term is discretized as in (2.25), and evaluated at the midpoint of the trajectory,...
	The -coordinate continuity equation (2.5) can be rewritten as
	(3.17)
	Setting
	and noting that
	,
	we also have
	. (3.18)
	Combining (3.17) and (3.18).
	. (3.19)
	Now introducing the vertical discretization, (3.19) becomes
	. (3.20)
	the vertical discretization of having been defined in (2.18).
	Changing the prognostic variable to ,
	(3.21)
	Combining (3.21) with the discrete definition of given by (2.18),
	(3.22)
	where is given by (2.14).
	Noting that
	,
	and including the semi-implicit correction terms, the semi-Lagrangian discretization of the conti...
	(3.23)
	(Since there is no vertical advection term in (3.23), no modification is required for the vertica...
	In summary, the semi-Lagrangian discretization is given by Equations (3.14)–(3.16)together with (...

	3.5 Comparison with other schemes
	The semi-Lagrangian formulation presented above differs in some respects from those proposed by o...
	Another aspect of our semi-Lagrangian discretization of the continuity equation, which differs fr...

	3.6 Time-stepping procedure
	The general outline of the time-stepping procedure for the semi-Lagrangian version is similar to ...
	Since the advection of moisture is handled by the semi-Lagrangian discretization (3.16), the hori...
	After the transforms to the model grid, all the information is then available to compute the traj...
	. (3.24)
	or
	(3.25)
	depending on whether the terms are averaged between the end points of the trajectory or evaluated...
	In the first part of the calculation for equations of the form (3.24), the combined field is comp...
	A provisional value is now available at each grid point for each variable, and is used together w...
	The contributions from the terms at time are now added in, resulting in a set of equations of the...
	(3.26)
	(3.27)
	(3.28)
	(3.29)
	(3.30)
	where the right-hand sides include all the terms which have been computed on the grid, and replac...
	The implementation of the time-filtering for the semi-Lagrangian model is identical to that for t...

	3.7 Optimization of vertically non-interpolating scheme
	In the ‘vertically non-interpolating’ scheme, the departure point of each modified trajectory lie...
	The statistics were obtained from a 10-day forecast using the model in its operational configurat...
	The implication of these results is that a great deal of redundant calculation was being performe...
	Table 3.1 Frequency distribution (%) of departure points in the ‘vertically non-interpolating’ sc...
	1–6
	100.00
	7–9
	100.00
	*
	10
	99.99
	0.01
	*
	11
	99.96
	0.04
	*
	12
	99.89
	0.11
	*
	13
	99.76
	0.24
	*
	*
	14
	99.60
	0.40
	*
	*
	15
	99.43
	0.57
	*
	*
	16
	99.28
	0.72
	*
	17
	99.16
	0.83
	0.01
	18
	99.08
	0.92
	*
	19
	99.05
	0.94
	0.01
	20
	99.05
	0.94
	0.01
	*
	21
	99.09
	0.91
	*
	*
	22
	99.14
	0.85
	0.01
	*
	23
	99.22
	0.78
	*
	24
	99.31
	0.69
	*
	25
	99.44
	0.56
	*
	26
	99.60
	0.40
	*
	27
	99.78
	0.22
	*
	28
	99.92
	0.08
	*
	29
	99.99
	0.01
	30
	100.00
	*
	31
	100.00
	Asterisks indicate less than 0.005% frequency


	3.8 Modified semi-Lagrangian equations
	3.8.1 Momentum equations
	The momentum equations are treated in vector form (Eq. (3.14)). Following Rochas (1990) and Tempe...
	The discretization of the momentum equations in the notation of Eq. (3.1) is then:
	(3.31)
	(3.32)
	(3.33)
	where is the gas constant for dry air, is a reference temperature, is geopotential and is the lin...
	In component form, is just where is the earth’s radius and is latitude. Since the latitude of the...

	3.8.2 Continuity equation
	Modelling flow over mountains with a semi-Lagrangian integration scheme can lead to problems in t...
	Although Ritchie and Tanguay start by introducing a change of variables in the semi-implicit time...
	(3.34)
	where represents right-hand-side terms. The total derivative on the left-hand side is discretized...
	Now split into two parts:
	(3.35)
	where the time-independent part depends on the underlying orography :
	(3.36)
	and is a reference temperature. This choice gives
	(3.37)
	so that is (to within an additive constant) the value of appropriate for an isothermal state at r...
	Using (3.35) and (3.36),
	(3.38)
	The second term on the right-hand side is computed in an Eulerian manner and transferred to the r...
	(3.39)
	The new advected variable is much smoother than the original, since the influence of the underlyi...

	3.8.3 Thermodynamic equation
	As mentioned above, the semi-Lagrangian treatment of the continuity equation is improved by chang...
	(3.40)
	where the subscript ‘ref’ denotes a reference value which is a function only of model level. For ...
	(3.41)
	The semi-Lagrangian advection is now applied to the quantity , while a compensating expression
	(3.42)
	appears on the right-hand side of the equation and is computed in an Eulerian fashion (note that ...


	3.9 Two-time-level semi-Lagrangian scheme
	Formally, a two-time-level scheme may be written in the notation of Eq.(3.2) as:
	(3.43)
	where
	is the value at the “arrival” gridpoint at
	s the value interpolated at the “departure” point at time ;
	and are the linear terms defined similarly;
	are the non linear terms, obtained by extrapolation in time to
	(3.44)
	The displacement equation becomes
	(3.45)
	where the three-dimensional wind field is also extrapolated in time:
	(3.46)
	The iterative scheme and first-guess for solving (3.45) are exactly analogous to those for solvin...
	The choices for the variables and for the interpolation schemes remain exactly as for the three-t...
	The semi-implicit equations to be solved in spectral space have the same form as for the three-ti...
	In principle a two-time-level scheme should have no computational mode, and a time-filtering proc...
	3.9.1 Stable Extrapolation Two-Time-Level Scheme (SETTLS)
	An alternative second-order accurate scheme to solving (3.45) can be derived by expanding the pos...
	(3.47)
	Here subscript AV indicates some average value along the semi-Lagrangian trajectory.
	Substituting the time derivative of by the velocity vector , we find
	(3.48)
	This equation describes an uniformly accelerated movement. The trajectories can no longer be cons...
	To proceed, one has to estimate the quantity
	(3.49)
	To estimate (3.49) the first possibility explored was to use an average along the trajectory of t...
	(3.50)
	for the vertical part.
	After exploring many other possibilities, the following estimate was adopted:
	(3.51)
	using the departure point of the semi-Lagrangian trajectory corresponding to the present time ste...
	This estimate assumes that the total time derivative of the velocity is constant with time, follo...
	Substituting (3.51) into (3.48) we obtain:
	(3.52)
	and a similar expression can be used in every evolution equation to treat the non-linear terms of...


	3.10 Numerical coupling of the physical parameterizations to the “dynamical” equations (SLAVEPP)
	Due to the diffusive nature of the mostly parabolic equations in the physics the contributions of...
	In equation (3.14)-(3.16) the contribution of the physical parameterizations are denoted as indic...
	(3.53)
	Part of the implicit calculations of the physical parameterizations use the following tendency:
	, (3.54)
	with equation (3.43) modified to yield
	(3.55)
	The “~” denotes that only provisional values of the dynamic fields are available because semi-imp...
	(3.56)
	where the “first guess” predictor of the model variables at the arrival point at time step is com...
	. (3.57)
	denotes an explicit interaction of the parameterizations of cloud and convection.The parameter ha...
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	CHAPTER 4 Computational details
	Implementing a high-resolution model, which must run operationally within a given elapsed time on...
	Table of contents
	4.1 Scanning structure
	4.2 Multitasking
	4.3 Performance
	4.4 Analysis of CPU time
	4.5 The IFS model

	4.1 Scanning structure
	Each timestep of the model integration procedure consists of three scans.
	At the beginning of the timestep, the model fields at time are specified in grid-point form (as d...
	The second scan steps through the latitude rows, starting at the row nearest the North Pole and p...
	The grid-point calculations for the present timestep continue using the time-filtered values at a...
	These right-hand sides are now Fourier transformed and the coefficients are written out to anothe...
	At the start of the second scan, there is clearly an initialization phase during the first few ro...
	The third scan performs direct Legendre transforms to obtain the provisional spectral coefficient...
	which is indeed in the form of a matrix multiplication . A similar technique could have been used...
	After the transformation to spectral space, the semi-implicit equations are solved and the horizo...

	4.2 Multitasking
	Currently the model is run on a ‘modestly parallel’ supercomputer (specifically, a Cray Y-MP C90 ...
	In the first scan, the unit of work is a pair of latitude rows. Each pair is independent of all t...
	In the second scan, the unit of work is a single latitude row. For the semi-Lagrangian version, t...
	In the third scan, the unit of work is a single zonal wavenumber. Each wavenumber is independent ...

	4.3 Performance
	The following performance figures relate specifically to the operational version of the model run...

	4.4 Analysis of CPU time
	In developing a high-resolution spectral model, the cost of the transforms (particularly the Lege...
	Table 4.1 Analysis of CPU time (%)
	Dynamics
	21
	15
	17
	Physics
	53
	42
	45
	FFT
	6
	3
	4
	Legendre
	transforms
	20
	13
	14
	Semi-Lagrangian
	27
	20
	This analysis suggests that the spectral method is still perfectly viable at this resolution, and...


	4.5 The IFS model
	On 2nd March 1994, the model code described above was replaced in operations by the IFS (‘Integra...
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