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Part lll: D YNAMICS AND NUMERICAL PROCEDURES

CHAPTER 1 Introduction

Table of contents

1.1 Overview

1.1 OVERVIEW

Since the original demonstration of the efficiency advantage of the semi-Lagrangian semi-implicit method over a
decade ago by André Robert, this numerical integration scheme is being used in an increasing range of atmospheric
models. Most of the applications have been in grid-point models. Shallow-water-equations studies have included
three-time-level versions bjRobert (1981, 1982) andStaniforthand Tempertorn(1986), and two-time-level
schemes byrempertorand Staniforth(1987),Purserand Leslie(1988),McDonaldand Bateg1989), andCoté

and Stanifort{1990). There also have been various applications in baroclinic grid-point models. Three-time-level
sigma-coordinate versions have been present&bingrtet al.(1985) andranguayet al.(1989), and the extension

of the three-time-level approach to a non-hydrostatic coordinate has been demonstfedadimyet al. (1990) .
Batesand McDonald(1982),McDonald (1986),Leslieand Purser(1991), McDonaldand Haugen1992), and
Bateset al. (1993) have developed two-time-level sigma-coordinate schevte3onaldand Hauger{(1993) have
presented the two-time-level extension to a hybrid vertical coordinateGatting (1992) has applied a split two-
time-level semi-Lagrangian scheme in a non-hydrostatic model.

For spectral models, a semi-Lagrangian semi-implicit shallow-water equation model was preseRiéchigy
(1988) for a three-time-level version, and adaptebyéand Staniforth(1988) for a two-time-level scheme. Ba-
roclinic three-time-level spectral model formulations have been demonstraRitthye(1991) for operational nu-
merical weather prediction in a sigma-coordinate model, and recenWilligmsonand Olson(1994) for climate
simulations with a hybrid coordinate model.

In a broader context, the semi-Lagrangian scheme, as incorporated in spectral numerical weather prediction mod-
els, may be considered as an economical variant of the spectral Lagrange-Galerkin r8étrett(\Ware 1991).

Experience at ECMWFSimmongt al.,1989) suggests that the accuracy of medium-range forecasts has steadily
improved with increasing resolution. Consequently, in its four-year plan for the period 1989-1992, ECMWF pro-
posed development of a high-resolution version of its forecast model. A target resolution of a spectral representa-
tion with a triangular truncation of 213 waves in the horizontal and 31 levels in the vertical (T213/L31) was set,
entailing a doubling of the horizontal resolution and an approximate doubling of the vertical resolution in the trop-
osphere compared to the T106/L19 configuration that was operational at th&tmadgnst al., 1989). In view

of the anticipated computer resources, it was clear that major efficiency gains would be necessary in order to attain
this objective. These gains have been provided by the introduction of the semi-Lagrangian treatment of advection
permitting a substantial increase in the size of the time-step, the use of a reduced Gaussian grid giving a further
advantage of about 25%, the introduction of economies in the Legendre transforms, and improvements to the mod-
el's basic architecture.

The layout for the remainder of the document is as followsCh@apter 2 ‘Basic equations and discretizatiove
present the reformulation of the Eulerian model in order to transform the vorticity—divergence formulation into a
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momentum-equation version in preparation for a subsequent semi-Lagrangian vector treatment of the equations of
motion. The vertical discretization of the ECMWF hybrid coordinate on a staggered grid is also considered. The
semi-Lagrangian treatment is discussed in some det&@ihapter 3 ‘Semi-Lagrangian formulationhcluding the
adaptation to accommodate the reduced Gaussian grid. Several important computational details relevant for effi-
cient execution of the high resolution model on a modestly parallel supercomputer are discuSsegter 4
‘Computational details!
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CHAPTER 2 Basic equations and discretization

Table of contents
2.1 Eulerian reformulation of the continuous equations
2.2 Discretization

2.2.1 Vertical discretization

2.2.2 Time discretization

2.2.3 Horizontal grid

2.2.4 Time-stepping procedure

2.2.5 Time filtering

2.2.6 Remarks

2.2.7T, as spectral variable

2.1 BEULERIAN REFORMULATION OF THE CONTINUOUS EQUATIONS
Following Ritchie (1988,1991), the first step in developing a semi-Lagrangian version of the ECMWF spectral

model was to convert the existing Euleriah  —D (vorticity—divergence) model td av - formulation, where
Uand V are the wind images defined by = ucos8 V,= vcos® u ( amd arethe components of the hori-
zontal wind in spherical coordinates, aBd s latitude). In this section we describe the Bulektan — model.

First we set out the continuous equationgin 6, n) coordinates, where  islongitudg and s the hybrid ver-
tical coordinate introduced Byimmonsnd Burridge(1981); thusn(p, pg,s) iSamonotonic function of the pres-
surep , and also depends on the surface prespye in such a way that

r](O, psurf) =0 andn(psurf' psurf) =1.

The momentum equations are

ou 1 ouU oul .ouU
-+ == +VCohB== [+ N5=
ot acosem OA 96 "on
(2.1)
100 0 4
(—fv) + EEPT;‘M RdwTvaf)\(In p)g = Py+Ky
3
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ov,_ 1 v v oV

St col6C w Vcos;eae + sme(U +V )D+nan
; (2.2)
cosfLp ] g
+fu+ 2= [p‘g+ Rd,yTV%(Inp)E: P, + Ky
wherea is the radius of the earth) is the -coordinate vertical velogity:(dn/dt @), is geopotential,

Rgry is the gas constant for dry air, an, is the virtual temperature defined by

Tv = T[1+{Rva;/(Rdry_1)}Q]

where T is temperatureq  is specific humidity am,,, is the gas constant for water vapgur.  P,and
represent the contributions of the parametrized physical processes, whjje Kand are the horizontal
diffusion terms.

The thermodynamic equation is

oT 1 EUOT oTO, .oT KT,
% " acodor 00 aeg o @ e-Dap KT (2:3)
wherek = Rd,y/cpdry (cpdry is the specific heat of dry air at constant pressuse), ipthe -coordinate vertical

velocity (w = dp/dt), andd = vaap/ Coay cpvap is the specific heat of water vapour at constant pressure).

The moisture equation is

E,Jaq aq dg _
= +Vcobo0= N5 = P +K, (2.4)
6t acosor] aelj on

In (2.2)and(2.3), Py and P, represent the contributions of the parametrized physical processes, Khile
and K, are the horizontal diffusion terms.

The continuity equation is

0 (0P, opr, 9 39P0
at@nD H/HOr]D an E]6r]D (2:5)
where O is the horizontal gradient operator in spherical coordinates ard(u, v) is the horizontal wind.

The geopotentiakp which appearg(thl) and(2.2)is defined by the hydrostatic equation

2.6
on pan =9
while the vertical velocityw i§2.3)is given by
n
0
w= —J'DH/HE%%M +vy.Op (2.7)
0
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Expressions for the rate of change of surface pressure, and for the vertical vglocity , are obtained by integrating
(2.5), using the boundary conditions= 0 rpt= 0 and at 1

i ps“” I E/Han 2.8)

0P _ _0p _ op
0

Since we useln(pg,s) ratherthapg,; as the surface pressure variable, it is convenient to rewrite (2.8) as

5P = — I g2 (2.10)
2.2 DISCRETIZATION
2.2.1 Vertical discretization
To represent the vertical variation of the dependent variablesy T , gand , the atmosphere is divided into

NLEV layers. These layers are defined by the pressures at the interfaces between them (the ‘half-levels’), and
these pressures are given by

Pr+1/2 = Axrrat Brs/2Psurt (2.11)
for 0Osk<NLEV.TheA,.;,, andB,,,,, areconstants whose values effectively define the vertical coordi-
nate andpg . is the surface pressure field.

The values of thed, , ,,, anB,,,,, foradlsk<NLEV are storedinthe GRIB header of all fields archived
on model levels to aIIow the reconstruction of the ‘full-level’ presspge  associated with each model level (middle
of layer) fromp, = (pk 1/2F Prs1/2) L<k<NLEV )by using2.11)and the surface pressure field.

The prognostic variables are represented by their values at ‘full-level’ presgyres . Valggs for ~ are not explic-
itly required by the model’s vertical finite-difference scheme, which is described below.

The discrete analogue of the surface pressure tendency eddations

NLEV
0 _ 1
iMPad) = 5= > DRy (212)
k=1
where
Apy = Pys1/2— Pr-1/2 - (2.13)

IFS Documentation Cycle CY23r4 (Printed 19 September 2003)



F20- Part Ill: ‘Dynamics and numerical procedures’

From(2.11)we obtain

NLEV
d U1 O
5N Pour) = = O0——DyApy + (V.0 pgy ) ABy O (2.14)
[OMsurf O
=1
whereD, is the divergence at ledel
U oV
Dy = — E@—Mco AL (2.15)
acos— A 08
and
ABy = Byi1/2—By_1/2 - (2.16)
The discrete analogue (#.9) is
5 K
opQ Pr+1/2
pucl o g A O.(v:Ap; 2.17
H-IanELu/z ot z (vi&Py) @17)
i=1
and from(2.11)we obtain
K
Etla_pm ~Psurf Bk+(1/2) (ln psurf) + Z D_D Apj + (V .OIn psurf)ABJE (2-18)
anl:L+1/2 ot y l|:| surf O
l =
where d/0t(Inpg,s) Iis given by2.14)
Vertical advection of a variable X is now given by
. 0X[] _ op0 opQ O
= Xy - X0 2.19
%MEL ZAPKD%GHELM/Z( k1= X+ E]aﬂq 1/2 K l)D ( )
The discrete analogue of the hydrostatic equdfds) is
Py +
Oer1/2=Pc_1/2 = _Rdry(Tv)klnk—l/z (2.20)
Pk-1/2
which gives
NLEV
p.
Dr12 = Pour Z Rey(T,)In L1222 (2.21)
o Pj-1/2
J=k+

where@,,; is the geopotential at the surface. Full-level values of the geopotential, as required in the momentum
equations (2.1) and (2.2), are given by
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G = Prrot O Ry (T, (2.22)

wherea,; = In2 and, fok>1 ,

pk—1/2 [Pk+l/2[]
a, = 1- , 2.23
K Apy Dpk v2H ( )

The remaining part of the pressure gradient terng®.i) and(2.2) is given by

Rary (T _ DI Pk+1/2

0
Ray(T HINP), = Apy E Opy_ 1/ZH]pk—1/2+akD(Apk)E (2.24)

with a, given by(2.23)for all .

Finally, the energy conversion term in the thermodynamic equgiBhis discretized as

KT, w _
(1+@-1Da)p

@E’

K(Ty), O Pk+1/2
1+(d-1)q, OApk E( Pr_ 1/2)1'21([3 AP * Psur(Vj- 01N Py AB ;) (2.25)

psurf[|

IO +
+Gk(DkApk + psurf(vk din psurf)ABk)} B" mBk Apk p:z i:zE(Vk Oln psurf)}[l
wherea; = In2 ,a, , is defined b§2.23)for k> 1, and
Ck = Ak+1/ZBk—1/2_Ak—l/ZBk+l/2' (226)

The reasons behind the various choices made in this vertical discretization scheme are disc8ssetbiand
Burridge (1981); basically the scheme is designed to conserve angular momentum and energy, for frictionless ad-
iabatic flow.

2.2.2 Time discretization

To introduce a discretization in time, together with a semi-implicit correction, we define the operators
3,X = (X"=Xx)l2nt,

A X = (X7 =2X +X7)

where X represents the value of a variable at time X, the value at (ftme\t) ,>éand the value at
(t—At). In preparation for the semi-Lagrangian treatment to be developed in section 3, we also introduce the
three-dimensional advection operator

1 0X VcosﬂaXD 0X

A(X
0= acogel OA 060 ﬂan

(2.27)
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Introducing the semi-implicit correction terni&ys. (2.1312.4) become:

d
3,U+A(U)—fV += [p)\+Rdry a)\lnp)%—
(2.28)
oT f 0
PutKy - Z_Ba Att%\/]a +Ray T T a)\(m psurf)D
SV +AV) + 2 (U2 v 4 U +C°SSD0‘(§ Ray Ty a%(ln p)g =
a COSe Ep O (2.29)
coH oT )
Py + Ky ~B22 A Gy19T + Ry T (10 py]
KT,w B
OT+A(MT)—-————¥ = P_+K-—-E A ([T]D 2.30
t ( ) (l+(6—1)q)p T T 2 tt([ ] ) ( )
5:a+A(Q) = Pg+K, (2.31)

wheref3 is a parameter of the semi-implicit scheme; the classical scibert1969) is recovered witp = 1

The semi-implicit correction terms are linearized versions of the pressure gradient téerig+#(R2.2) and the en-

ergy conversion term if2.3). ThusT'™ is a reference temperature (here chosen to be independent of vertical lev-
el), while [y] and[t] are matrices such that

NLEV ref

: O
(VI = o Ry Ty + Z Ry, T; InG-ar 220, (2.32)
i 5 j-1/2
E 1 ref E
([T]D)k - ref I:e;rl/ZD Z(D Apref) +a‘r(ef kD- (2.33)
DApk [bk 124 B

where the half-level pressures appearin(Rii32)and(2.32)are reference values obtained fr@@11)by choosing
areference valwfn;'ffrf ab.,s .andthe coefficien{§f are based on these reference values. The reference values
adopted for the semi-implicit scheme &€’ = 300 K i, = 800 hPa

The integrated surface pressure tendency equiibn) becomes

NLEV
01 O
By(In Pyyr) + Z =D, A Pt (Vi D In pgye) AB 0= — 2 Ay[vID (2.34)
Dpsurf 0
k=1
where
NLEV
1
V1D = = ) DA (2.35)
psurf o
j=1
8
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2.2.3 Horizontal grid

A novel feature of the model is the optional use of a reduced Gaussian grid, as descritt@dabyand Simmons

(1991). Thus, the number of points on each latitude row is chosen so that the local east—-west grid length remains
approximately constant, with the restriction that the number should be suitable for theNFETZ"395" ). After
some experimentation, the ‘fully reduced grid’ optiorttdrtal and Simmonwas implemented; all possible wav-
enumbers (up to the model’s truncation limit) are used in the Legendre transforms. A small amount of noise in the
immediate vicinity of the poles was removed by increasing the number of grid points in the three most northerly
and southerly rows of the grid (from 6, 12 and 18 points in the original design of the T213 grid to 12, 16 and 20
points respectively)Courtier and Naughtor(1994) have very recently reconsidered the design of reduced Gaus-
sian grids.

2.2.4 Time-stepping procedure

The time-stepping procedure for the Euleridth V —  version of the model follows closely that outliffezirby
perton(1991) for the shallow-water equations. At the start of a time-step, the model state &t tihd) is defined
by the valuesofU V¥ T g anth p,,s onthe Gaussian grid. To compute the semi-implicit corrections, the
(t—A1) values of divergencB @P/OA andP/ou  are also held on the grid, wheresing and

f
P = [V]T + RdryTreIn Psurt - (2-36)

The model state attime  is defined by the spectral coefficienlsd T q , Inapd,; . Legendre transforms
followed by Fourier transforms are then usedto compgteD U V T 9T/op  Inpg,; i pg,, 1)/ Op

at time t on the model grid. Additional Fourier transforms are used to compute the corresponding values of
OU/ON, OV/ON . 0T/0A , 0q/0A andd(In pg,s)/0A . The meridional gradients bf and are obtained using
the relationships

ov _ 2, 0U
cosf)% = aD cose—a)\

ou _ oV 2
CO@E = ( cos®

All the information is then available to evaluate the terms at time  on the left-hand sid228j(2.31)and

(2.34) and thus to compute ‘provisional’ tendencies of the model variables. These tendencies (together with values
of the variables aft —At) are supplied to the physical parametrization routines, which increment the tendencies
with their respective contributions. The semi-implicit correction terms evaluated at time-levets ( t)and are
then added to the tendencies. Ignoring the horizontal diffusion terms (which are handled later in spectral space),
and grouping together the terms which have been computed on thé2i@)}(2.31)and(2.34)can be written in

the form

+

+,BAtIp _
UT+E= 5= = R, (2.37)
+ BAL o3P _
V' + 3 cod 30 - R, (2.38)
T +BAt[1]D" = R, (2.39)
9
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q9" =Ry (2.40)

(In pgur)” +B AL [V]ID" = Ry (2.41)

The right-hand sidesR; Rg are transformed to spectral space via Fourier transforms followed by Gaussian in-
tegration. The curl and divergence(®f37)and(2.38)are then computed in spectral space, leading to

" = curl (R,Ry) (2.42)

D" +B At O°p" = div(R, R,). (2.43)

Egs. (2.39)(2.41)and(2.43)can then be combined with the aid®f36)to obtain an equation of the form
n(n+1 + d
{0+ 2mfor )" = ©F (2.44)

for each zonal wavenumben and total wavenunmber , where the matrix

[F] = BAAO([YI[T] + Ryy T"*V]) (2.45)
couples all the NLEV values qur:" )+ in a vertical column. Oné" has been found, the calculation of
T" and (In py,y" canbe completed, whilg" add  have already been obtaine¢Rfriiyand(2.42)

Finally, a ‘fractional step’ approach is used to implement the horizontal diffusion of vorticity, divergence, temper-
ature and specific humidity. A simple linear diffusion of ordar is applied along the hybrid coordinate surfaces:

Ky = —(-1)"KO* X (2.46)

where X = { ,D orq . Itis applied in spectral space to {tte+ At) values such théhif is the spectral
coefficient of X prior to diffusion, then the diffused valXg is given by

1

_ O a
Xy = 1+ 20t Kg‘(”—;’l)gg xm (2.47)
a

A modified form of(2.47)is also used for the temperatufe , to approximate diffusion on surfaces of constant
pressure rather than on the sloping hybrid coordinate surf&esr(ons;1987). The operational version of the
model uses fourth-order horizontal diffusibn= 2)

2.2.5 Time filtering

To avoid decoupling of the solutions at odd and even time steps, a RobertAszlin1972) is applied at each
timestep. The time-filtering is defined by

X; = X+e (X7 —2X +X7) (2.48)

where the subscript  denotes afiltered value, a0d X , XAd represent va(ties/st) t (t +aht) ,

10
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respectively.

Because of the scanning structure of the model Glaspter 4 ‘Computational detail¥’ it is convenient to apply
the time-filtering in grid-point space, and to sf#fit48)into two parts:

Xt = X +&(X7—2X) (2.49)

X, = X, +ex’ (2.50)

The ‘partially filtered’ values computed {.49)are stored on a grid-point work file and passed from one time-
step to the next. Thus, the information available after the transforms to grid-point space consists of partially filtered
values at timeg(t —At) together with unfiltered values at time . The filtering oftthé\t) fields can then be
completed vig2.50) which after shifting by one timestep becomes:

X7 = X; +€ X, (2.51)

The computations described $ection 2.2.4re performed using these fully filtered values at tirfte- At) and
the unfiltered values attime . On(&51)has been implemented, values ¥, are also available to implement
(2.49)for the partially filtered values to be passed on to the next timestep.

2.2.6 Remarks

Ritchie(1988 noted that for a spectral model of the shallow-water equationsithe/ - formaddie - form
gave identical results (apart from round-off error). In extending this work to a multi-level mRdehie (1991)

found that this equivalence was not maintained. This was in fact a result ofatahgicmanipulations in the ver-

tical, used to eliminate between the variables in solving the equations of the semi-implicit scheme, which were not
exactly matched by the finite-element vertical discretization of Ritchie’s model.

In the case of the model described here, the corresponding elimination between the variables is purely algebraic,

and the equivalence between thé V — form andg¢h® - form is maintained apart from one small exception
due to the use of the hybrid vertical coordinate. IntheVV — model, the gradients of the geopgiential are com-
puted in grid-point space (from the spectrally computed gradients @f , Inapd,¢ ), whilethtie - model

¢ itself is computed and transformed separately into spectral space, where its Laplacian is added into the diver-
gence equation. Sinag  is not a quadratic function of the model variables there is some aliasing, which is different
for the two versions of the model. In practice the differences betweeftie — modelddd Me — model were

found to be very small, and in the case of a pure sigma-coordinate the two models would be algebraically equiva-
lent.

The U -V modelis nevertheless considerably more economical thdnids — counterpart in terms of the number
of Legendre transforms required. In addition to the transform of  referred to above, four Legendre transforms are
saved in the treatment of the wind fields using the procedures descrifenhipertor{1991) for the shallow-water
equations. The number of multi-level Legendre transforms is thereby reduced from 17 to 12 per time-step.

2.2.7 T, as spectral variable

In preparation for a further reduction in the number of Legendre transforms required by the semi-Lagrangian ver-
sion of the model, the modified Eulerian version includes an option to keep the virtual tempé&rature  , rather than
the temperaturel | as the spectral variable. In the time-stepping procedure, Legendre transforms followed by Fou-
rier transforms are used to compuiie 0T, /ol ad, /oA atttme on the model grid; the corresponding val-

11
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ues of T ,0T/0p andT/dA are then computed using the corresponding valugs a6/d L 000N . The
thermodynamic equatiqi2.3)is then stepped forward in time exactly as before. After the physical parametrization
routines, the ‘provisional’ value off (t + At) is combined wit{(t + At) to compute a provisional value of
T,(t + At) . The semi-implicit correction terms evaluated at time-le(éls At) aptt + At) are then added
to the provisional value of ,(t + At) , just before the transform back to spectral space.

There are corresponding slight changes in the semi-implicit correction terms. The linearized hydrostatipfhatrix
in (2.28)+2.29)and(2.36) now operates onT,, rather than dn . From the point of view of the semi-implicit
scheme(2.30)has implicitly been replaced by an equation of the form

8T, = .. — gAtt([r] D) (2.52)

although as explained above it is not necessary to formulate or compute the missing terms explicitly24&@ce,
is replaced by

T, +BAt[T]D" = R} (2.53)

and the solution of the semi-implicit equations in spectral space proceeds just as before.

This change of spectral variable results in only insignificant changes to a 10-day model forecast, but permits useful
economies in the semi-Lagrangian version to be described in the next chapter.

12
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3.3 ‘Non-interpolating’ scheme in the vertical

3.4 Semi-Lagrangian discretization

3.5 Comparison with other schemes

3.6 Time-stepping procedure

3.7 Optimization of vertically non-interpolating scheme

3.8 Modified semi-Lagrangian equations
3.8.1 Momentum equations
3.8.2 Continuity equation
3.8.3 Thermodynamic equation

3.9 Two-time-level semi-Lagrangian scheme

3.10 Numerical coupling of the physical parameterizations to the “dynamical” equations (SLAVEPP)

3.1 GENERAL DESCRIPTION

The general form of the model equations is

dx _ 9Xx - R =
Gt S et FAX) =R =L+N (3.1)

where the three-dimensional advection oper&or  was defin@ddi) L is the linearized part of R and N is the
remainder or “non-linear terms”. An explicit three-time-level semi-Lagrangian treatmégBt1gfis obtained by
finding the approximate trajectory, over the time interMal At,t + At] , of a particle which arrives at each grid
point x attime(t + At) . Equatio(B.1)is then approximated by

2 -2 -R (3.2)

where the superscripts 0, and |, respectively denote evaluation at the arriva{ point At) , the mid-point
of the trajectory(x — g, t) , and the departure pofmt—2g, t —At) . Since the mid-point and the departure point
will not in general coincide with model grid pointx,” ard must be determined by interpolation.

It is more economical (and, as discussed later, gives better results in some circumstances Tsegabet al.,

13
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1992) to evaluate the right-hand sidg2PR) as
R® = 2{R(x~29, 1) +R(x, 1) (33)

since only a single interpolation (of the combined fiXdt — At) + AtR(t) at the pinrt 29) ) is then required
in order to determineX”

The right-hand sides of the time-discretized model equations also contain semi-implicit correction terms, which in
the Eulerian model took the form

A X = (X"=2X%+ X))

where the superscripts refer to time-levels, and to a single common grid point. In the semi-Lagrangian version of
the model, the semi-implicit correction terms take the form

A X = (X(%, t+A1) =X (%, 1)) + (X(¥—2q, t—At) - X(x—2q, t)) (3.4
and again the terms to be evaluated at the departure (inPg) can be added to other right-hand side terms
before interpolation. Notice that the evaluation/gf X , and both ways of evaIuRt(i’ng , are all centred in space

and time.

To obtain accurate results from a semi-Lagrangian integration scheme, it is necessary to choose the order of
interpolation carefully (see for examp8taniforthand Co6t¢ 1991). In practice it has been found (for the model
described here) that linear interpolation is adequate for the terms evaluated at the midpoint of the trajectory, but
that cubic interpolation is essential for the terms evaluated at the departure point. Cubic interpolation in three di-
mensions is expensive, and fortunately a ‘quasi-cubic’ interpolation (suggested by Courtier) was found to give es-
sentially equivalent results. The technique can be illustrated by two-dimensional interpolation on a regular grid.
Thetarget pointis atx, + a, y; +B) .Inthefirst step, four interpolations are performed i the  -dirdiiiza
(rather than the usual cubic) interpolations to the poifts + o, y;_;) o a, y;.,) cabit interpo-
lations to the points(x, + a, y;) anfk, +a, y;,;) .Inthe second step, one cubic interpolation is performed in
the y -direction, to evaluate the field at the target point. The number of ‘neighbours’ contributing to the result is
reduced from 16 to 12. The generalization to three dimensions is straightforward and results in a significant saving,
the number of neighbours being reduced from 64 to 32, and the computation being reduced from 21 one-dimen-
sional cubic interpolations to 7 cubic plus 10 linear one-dimensional interpolations.

For the reduced Gaussian grid describe&iisection 2.2,3he mesh is no longer regular. However, it is easily
seen that the extra complication is relatively minor provided that the first step in the interpolation is performed in
the A -direction.

The order of the interpolation in the vertical is reduced to linear when the evaluation point lies between the two
highest model levels, or between the lowest two model levels. Extrapolation beyond the top or bottom levels is not
allowed.

3.2 HNDING THE DEPARTURE POINT

Extending the procedure étobert(1981) to three dimensions, the midpoirfx —q) and the departure point
(x—2q) of the trajectory for each arrival poirt are found by iteratively solving the equation
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g = Aty(x-q. 1) (3.5)
where v in(3.5)is thethreedimensional wind field(u, v, h) . Sinceny  was never explicitly required in the
Eulerian version of the model (s&gs. (2.18K2.19)for the Eulerian discretization of vertical advection), itis nec-
essary to construct this field for the trajectory calculations.fAs is already specified at the upper and lower bound-
aries (n = 0, atn =0 and af = 1 )it would be natural to construgt  at the half-levels (i.e. vertically
staggered with respectta  amd ), and indeed a preliminary version of the model was coded that way. However,
it is more convenient to hold the three velocity components at the same set of points (which also coincide with the
arrival points), so the formulation was changed to use  at the ‘full’ levels. Thus, the vertical velocity (365 in

is defined by

1. 9p0 Nilsln
L n@—$+%anﬁk+ﬂ
Nk = - (3.6)
ot
wherendp/an is already defined K%.18)and
[ﬁ_pD _ é_BI_( _ AAk/ psurf+ABk (37)

ono ~ An, ~ PTAAS po+ 4By

In deriving (3.7) we have usef?.11)together with a formal definition ofy  itself (which again was not required
by the discretized Eulerian dynamics):

N+ = Ake/Pot By (3.8)

where p, is a constant pressure (chosen to be 10h®a5 ).

The iterative procedure for solvir{§.5)is analogous to that used Bytchie(1991) in a o -coordinate model. Giv-
en an estimateg(k) aftek iterations, the next iteration is given by

g™ = aty(x-g", v) (3.9)

where the vertical(n) component of the displacement is found first. The vertical compongﬂ? of on the right-
hand side 0f3.9) is then updated before the horizontal components are found taking into account the spherical
geometry followingRitchie (1987, 1988). The first guess is given by

a@ = aty(x, t) (3.10)

The calculations include approximations to the spherical geometry away from the poles, folRirghge and
Beaudoin(1994). In agreement with previous work (reviewed3tganiforthand C6t€1991), little sensitivity was

found to the order of interpolation used in the trajectory calculations, and linear interpolation appears to be suffi-
ciently accurate. After providing a first guess (@4.0) a single further iteration was found to be adequate.

Once the midpoint(x —g) of the trajectory has been found, the departure(poii2g) is immediately obtained
(in the horizontal, the backward extension of the trajectory is along a great circle). In the vertical, if the departure
point is then above the first (or below the last) mode level, it is modified to lie on the first (last) level.
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F20- Part Ill: ‘Dynamics and numerical procedures’

In solving (3.9), it is necessary to convert between a displacement in terms of the spatial coordinates and the cor-
responding displacement in terms of ‘grid lengths’, in order to select the correct three-dimensional block of points
for the interpolation routine. This is simple in the horizontal, since the mesh length is constaniin the -direction
(at a given latitude), and almost constantin éhe -direction. Itis more difficult in the vertical, where the grid spac-
ing changes rapidly, and the conversion algorithm for the vertical displacement makes use of an auxiliary grid de-
fined with high uniform resolution.

3.3 ‘NON-INTERPOLATING ’ SCHEME IN THE VERTICAL

An alternative formulation of the semi-Lagrangian scheme in three dimensions was suggeRttmthisy(1991).
Equation(3.1) can be rewritten as

dy X PRL)S *0X

W TR .
where
dy X X
o ot A0

and Ay, is the horizontal part of the advection operator defingd.2i7) In (3.11), r']* is defined to be a vertical
velocity which would lead to the departure point of the trajectory at tfineAt) lying exactly on a model level.
This model level is chosen to be the one closest to the true departure point. EqB4tigis then approximated by

0X X
2At EP nango f Egr]DO (3.12)
where the superscriptst Q =  respectively denote evaluation at the arrival (RQibt- At) , the midpoint
(x—q, t) and the departure pointx —2g, t—At) of tineodifiedtrajectory. Since the modified departure point
lies by definition on a model level, no vertical interpolation is required to evalMate . As discusSeloisection

3.1 above, it is also possible to evaluate the terms on the right-hand sigie1@) by averaging the values at
(x—2qg, t)and(x, t) ; in this case no vertical interpolation at all is required. Notice that a separate interpolation
is required to evaluate the second term on the right-hand sf@el@jsince the quantitﬂ* , defined by

+

r_n —-n
n AT (3.13)

where n* andn~ are respectively the arrival and departure levels of the modified trajectory, is meaningful only
at each grid point.

If the vertical velocity (or the time-step) is sufficiently small, then the modified departure point lies on the same
model level as the arrival poinr't],* is zero and the treatment of vertical advection becomes purely Eulerian. In gen-
eral there is an Eulerian treatment of the advection by the ‘residual vertical veIc()Qityh*) , Which is small
enough to guarantee that the Eulerian CFL criterion for vertical advection is respected. Thus, the ‘non-interpolat-
ing’ scheme maintains the desirable stability properties of the ‘fully interpolating’ scheme.

There is a subtle, but important, difference in the way the iterative scfi@®)ds implemented to determine the
modified trajectory in the non-interpolating scheme. As before, the first step at each iteration is to update the esti-
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mate of the vertical component of the displacement.The implied updated departure point is then moved to the clos-
est model level. In the second step, the horizontal components are then updated using the winds evaluated at the
midpoint of themodifiedtrajectory. Notice that this gives a result different from that obtained by simply carrying

out the trajectory calculation of the fully interpolating scheme and then projecting the departure point to the nearest
model level. The modified procedure described above is easily seen to be more consistent by considering the case
in which the vertical velocity is not zero, but is small enough fontiaifiedtrajectory to be horizonta(lr']* =0) ).

The discretization is then equivalent to a purely two-dimensional semi-Lagrangian scheme, the trajectory being
computed using the horizontal wind field evaluated on a single model level.

An incidental advantage of the ‘non-interpolating’ scheme over the ‘fully interpolating’ scheme is that it resolves
any ambiguities about the treatment of departure points above the top model level or below the bottom model level;
the modified departure points automatically lie on the top or bottom level. The treatment of vertical advection be-
comes Eulerian, which is well-defined at the top and bottom levels. Thus, the non-interpolating scheme removes
the need for artificial ‘nudging’ of the departure points or the extrapolation of quantities to points above or below
the domain of the model levels.

Smolarkiewicand Rascl{1991) have extended the principle of the ‘non-interpolating’ semi-Lagrangian formula-
tion to generate a broader class of stable and accurate advection schemes.

3.4 FEMI-L AGRANGIAN DISCRETIZATION

Here we describe in detail only the fully interpolating version of the semi-Lagrangian discretization; the modifica-
tions necessary for the ‘non-interpolating in the vertical’ version become evident by comparing the right-hand side
of (3.12)with that of(3.2).

Following Ritchie (1988 1991), the momentum equations are integrategtictorform to avoid an instability of
the metric term near the poles. Using the notatio(Ba2) and defining the horizontal wind vectoy, = (u, v) ,
the semi-Lagrangian equivalent(@28)+(2.29)is

+ —
Vi —Vh
2At

+ [fk XVvy+ D(p+ RdryTvE”n p]O= Pv + Kv_gAttD{ [Y]T + RdryTvln psurf} (3-14)

wherek is the vertically directed unit vector arid is the horizontal gradient operator in spherical coordinates.
Onthe right-hand side ¢8.14) P, andK, respectively denote the contributions of the physical parametrization
schemes and horizontal diffusion, to be discusse8iubsection 3.8while the semi-implicit correction terms are
evaluated as i(3.4). For the momentum equations, it was found advantageous to evaluate the timé-level terms
[ ]O as an average between the values at the departure and arrival points of the trajectqB:3aslihe pressure
gradient terms are discretized in exactly the same way as for the Eulerian mo&elbseetion 2.2)1

Since(3.14)is in vector form, it is important to account for the change in the orientation of the coordinate system
as the particle follows the trajectory; the manipulations required are as set Ritthije(1988) and simplified by
Ritchieand Beaudoir{1994).

The thermodynamic and moisture equati¢h80)(2.31)become

0
T'-T7- O KT,w E

_ B
oAt +_%(1+ (6_1)q)p|] - l:)T + KT - EAtt([T] D) (315)
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3

-9 = p,+K, (3.16)

In (3.15) the { }O term is discretized as (8.25) and evaluated at the midpoint of the trajectory, while the semi-
implicit correction terms are evaluated ag3m).

The n -coordinate continuity equati¢®.5) can be rewritten as

dm@p0, PH 90
dtCon0 0r]EP ond "~ (3.17)

Setting
p = A(ﬂ) + B(rl)psurf

and noting that

0 PAD _ 0 [Qél] — 0 Psurt

stlon0 - Con0~ o - O
we also have
dpg_ 0B 9Psur, . 0 PO
dttond ™~ an dt  'onConDr (3.18)
Combining(3.17)and(3.18)
QE dpsurf apD
3 oD+ athgng = 0 (3.19)
Now introducing the vertical discretizatiaf3.19) becomes
dPgur 0p[] pn —
ABy—g +Apy Dy + H st ™ %antk ) = (3.20)
the vertical discretization ofjdp/dn  having been define(Rii8)
Changing the prognostic variablefidp/on
d 14 opQ opg O
AB 2 (INPgyr) + 5 D PDit Bﬁanm% %anm%% (3.21)
Combining(3.21)with the discrete definition ofijdp/dn  given §2.18)
d O(Inpgyp 0
ABk_(ln psurf)_ABkD—surf""Vk'Dln Psurd = 0 (3.22)
dt 0 ot 0
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3

whered(Inpg,)/0t is given by2.14)
Noting that

NLEV
AB, = 1,
k=1

and including the semi-implicit correction terms, the semi-Lagrangian discretization of the continuity equation fi-
nally becomes

NLEV - ) 9 ENLEV B
- np At f
(INpgy)” = Z ABy| (Inpgyr) +2At5|———ﬁ§9ﬁ-+vk.ljln psurfg_ﬁ_r'éf- Att% Z (Ap;e Dj)% (3.23)
= Psurt 0i=1 B

(Since there is no vertical advection term(&23), no modification is required for the vertically non-interpolating
scheme). It is important to bear in mind that each contribution to the sum on the right-hand @d&8yhvolves

a different trajectory. The interpolations fo(lnpg,;)~  and the semi-implicit correction terms are however two-
dimensional, since these quantities are independent of vertical Ievel{'l}ﬁ)e term is evaluated at the midpoint
of the trajectory, and requires a three-dimensional interpolation.

In summary, the semi-Lagrangian discretization is given by EqudBab¥)-(3.16Yogether with(3.23)

3.5 COMPARISON WITH OTHER SCHEMES

The semi-Lagrangian formulation presented above differs in some respects from those proposed by other authors.
Perhaps the most notable difference lies in the treatment of the convession  term in the thermodynamic equation
(3.15) and of the right-hand side of the continuity equat{823) Both involve terms of the forrv.Olnpg,;

which in our scheme are computed in a purely Eulerian fashion. This may appear somewhat inconsistent; indeed
McDonaldand Haugen(1993) state as a specific design objective of their scheme that the operator should
not appear explicitly. The alternative approach, also takeWiijamsonand Olson(1994), is to use the continuity
equation in its semi-implicit semi-Lagrangian form to derive a consistent equatignefdicting ndp/on , which

can then be used to eliminate theJlnp,,s  terms. Indghe -coordinate syBteaset al (1993) andvicDonald

and Hauger{1992) used a similar approach to derive a prognostic equatiom for . A possible disadvantage of such
an approach is thafjdp/on (@ ) then follows an independent evolution, no longer satisfying a diagnostic rela-
tionship of the form(2.18) Our ‘Eulerian’ treatment of thev.OInp,,; terms avoids this disadvantage and seems

to work well, but further study is required to determine whether this difference in formulation is important or not.

Another aspect of our semi-Lagrangian discretization of the continuity equation, which differs from that in other
models, concerns the definition of the trajectory; in our scheme this is the same (three-dimensional) trajectory as
used for the other variables. In the continuous form of the equdBdlR) the advective part of the total derivative
dp/dt may be regarded either as two-dimensional or as three-dimensional @mgg/on is zero). However
the vertically discretized form(3.20), is well-defined only at discrete model levels, implying that for consistency

the semi-Lagrangian discretizati¢®.23)should be based on horizontal trajectories. Correcting this inconsistency

in our scheme by computing horizontal trajectories for the continuity equation, based on the horizontal wind at each
model level, made very little difference to the results, and for the time being we have allowed the inconsistency to
remain. (As discussed later, in the case of the ‘vertically non-interpolating’ scheme the modified trajectories are
nearly always horizontal anyway.) In the case of the fully interpolating scheme, recomputing the trajectories rep-
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resents a significant expen&ateset al. (1993) andvicDonaldand Haugen(1992) used a simple projection of

the three-dimensional trajectory onto the model level of the arrival point. In our model this approach resulted in
poor mass conservation, thouBhteset al. (1993) came to the opposite conclusion. Again, the importance or oth-
erwise of these differences in formulation is not yet firmly established.

3.6 TIME -STEPPING PROCEDURE

The general outline of the time-stepping procedure for the semi-Lagrangian version is similar to that described for
the Eulerian model isubsection 2.2.4Thus at the start of a timestep, the model state at t{ine At) is defined
by the valuesofU V T g andnpg,; on the Gaussian grid. To complete the semi-implicit corrections, the
(t—At) values ofD ,0p/dA anddp/dp are also held on the grid. The model state at ime s defined by the
spectral coefficientsof D T q anthpg, . Legendre transforms followed by Fourier transforms are then
usedtocomput® U V T aT/op q aq/op Inpg, . and(Inpg,s)/op  attinte  on the model grid;
additional Fourier transforms are used to compute the corresponding valuesT /@A dq/oA , and
d(Inpg,/OA . Since ¢ and the horizontal gradientsbf ~ ahd  are no longer required on the model grid, one
multi-level Legendre transform and three multi-level Fourier transforms are saved in comparison with the Eulerian
version.

Since the advection of moisture is handled by the semi-Lagrangian discreti¢atl®) the horizontal gradients

of g are only needed in order to compute the horizontal gradients of the virtual temperBjure (which in turn
are required to compute tHeép  term(il4). If T, is chosen as the spectral variable aSubsection 2.2,7

these gradients are available directly, and there is then no need to trandfgdp o0q/qar ) to the model grid.
The number of multi-level Legendre transforms per time-step is further reduced to 10. In passing, all the ingredients
are then in place for a semi-Lagrangian treatment in which the moisture field is never transformed to spectral space
(Williamsonand Rasch1994), and only 8 multi-level Legendre transforms are required per time-step (compared
with 17 in the original{ © Eulerian model).

After the transforms to the model grid, all the information is then available to compute the trajectories for each grid
point, and to evaluate the ‘dynamical’ contributions to the semi-Lagrangian discretization. Ignoring for a moment
the contributions of the physical parametrization schemes and of the horizontal diffusion, each equation is either
of the form

X*(x) = X7(x-2a) + A{R°(x -20) + R°(x)} +S7(x-20) +S"(x). (3.24)

or

X*(x) = X (x-2q) +2AtR° + S (x —2q) + S (%) (3.25)

depending on whether th?  terms are averaged between the end points of the trajectory or evaluated at the mid-
points. In(3.24)and(3.25) the S terms represent the semi-implicit correctioss; includes contributions from
time-levels (t—At) and , whileS™ includes contributions from time-levels  (@ncAt)

In the first part of the calculation for equations of the fa{8i24) the combined fieldX " + AtR°+S™  is com-
puted, and the value of this combined field at each departure(goir2q) is then found by interpolation. Adding
the (uninterpolated) value oftR®  resultsin a provisional valueXof at each grid point, incorporating all the
terms in(3.24)except forS” . The calculation for equations of the fai@25) proceeds similarly, except that two
interpolations are required, one fo +S~ @ —-2g) ,and oneZatR® (xatq)
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A provisional value X* is now available at each grid point for each variable, and is used togethex with at the
same grid point to compute an ‘Eulerian’ tendency. These fields and their tendencies are then supplied to the phys-
ical parametrization routines, which increment the tendencies with their respective contributions, just as in the Eul-
erian version (except that, to avoid extra interpolations3he terms have been included in the supplied dynamical
tendencies). IfT,, is chosen as the spectral variable, a provisional vam\¢+of is computed at this point.

The contributions from theS™ terms at tinte  are now added in, resulting in a set of equations of the form

U+ BA2D - o, (3.26)
v*+B—§—tcoseaa—Fg = Q, (3.27)
T +BAt[T]D" = Q, (3.28)
q =Q, (3.29)
(INPgyr) + BALVID" = Qg (3.30)
where the right-hand sidé€3, — Q5  include all the terms which have been computed on the ngd,+and replaces

T if T, is the spectral variable. Equatio(i3.26)«3.30)have exactly the same form Bsjs. (2.37}2.41)of the
Eulerian model and are solved in exactly the same way, by first transforming to spectral space. After finding the
new spectral coefficients at tim{@ + At) , horizontal diffusion is also applied in the same way as for the Eulerian
version.

The implementation of the time-filtering for the semi-Lagrangian model is identical to that for the Eulerian version,
as described iBubsection 2.2.5

3.7 OPTIMIZATION OF VERTICALLY NON -INTERPOLATING SCHEME

In the ‘vertically non-interpolating’ scheme, the departure point of each modified trajectory lies on a model level.
For the set of arrival points on each model level, it is of interest to determine the frequency distribution of the cor-
responding departure points. The results of an experiment run to collect these statistics led to a significant optimi-
zation of the code for the vertically non-interpolating scheme.

The statistics were obtained from a 10-day forecast using the model in its operational configuration: T213, 31 lev-
els, with a 15-minute timestep. The results are summarizetalie 3.1 which shows that the vast majority
(99.67% overall) of modified trajectories are horizontal; no departure point was ever more than three model levels
away from its corresponding arrival point.

The implication of these results is that a great deal of redundant calculation was being performed in the vertically
non-interpolating scheme. For each horizontal modified trajectory, the interpolation of the horizontal winds in the
trajectory calculation itself becomes two-dimensional rather than three-dimensional, as do the interpolations of
‘right-hand side’ terms at the mid point of the trajectory, while the additional interpolations to calculate terms of
the form r']*(é)X/é)r])O in(3.12)are not required at all. Consequently, special routines were written to perform
interpolations which are two-dimensional everywhere except at a set of ‘flagged’ points where they become three-
dimensional, and similarly to perform two- or three-dimensional interpolations at the flagged points while skipping
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all other points. The use of these special routines reduced the ‘semi-Lagrangian overhead’ for the vertically non-
interpolating scheme by about 30%.

TABLE 3.1 FREQUENCY DISTRIBUTION(%) OF DEPARTURE POINTS IN THEVERTICALLY NON-INTERPOLATING'

SCHEME

Arrival Departure levels

level K k k*1 k+2 k*3
1-6 100.00
7-9 100.00 *
10 99.99 0.01 *
11 99.96 0.04 *
12 99.89 0.11 *
13 99.76 0.24 * *
14 99.60 0.40 * *
15 99.43 0.57 * *
16 99.28 0.72 *
17 99.16 0.83 0.01
18 99.08 0.92 *
19 99.05 0.94 0.01
20 99.05 0.94 0.01 *
21 99.09 0.91 * *
22 99.14 0.85 0.01 *
23 99.22 0.78 *
24 99.31 0.69 *
25 99.44 0.56 *
26 99.60 0.40 *
27 99.78 0.22 *
28 99.92 0.08 *
29 99.99 0.01
30 100.00 *
31 100.00

Asterisks indicate less than 0.005% frequency
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3.8 MODIFIED SEMI -L AGRANGIAN EQUATIONS

3.8.1 Momentum equations

The momentum equations are treated in vector form (EG4). Following Rochas (1990) and Temperton (1997),

the Coriolis terms can be incorporated in the semi-Lagrangian advection. Thus, the advected variable becomes
vy +2Q xr whereQ is the earth’s rotation and is the radial position vector, while the Coriolis terms are
dropped from the right-hand side. As described by Temperton (1997), this reformulation is beneficial provided that
the spherical geometry is treated accurately in determining the departure point and in rotating the vectors to account
for the change in the orientation of the coordinate system as the particle follows the trajectory.

The discretization of the momentum equations in the notation ¢BHgis then:

X = vy +2Qxr (3.31)
L = —D(YTV+ RdryTrefln Psurt) (3.32)
N = —(Do+ Ry, T,0Inp) - L (3.33)

whereRy,, isthe gas constantfordry alir,.;  isareference tempergture, is geopotentialand isthe linearized
hydrostatic integration matrix defined in Eq. (2.32) of Ritchie (1995).

In component form2Q x ¢ isjugQaco®, 0) whem isthe earth’sradius@nd is latitude. Since the latitude
of the departure point is known, the tef®@ x y  in the advected varigble  is computed analytically rather than
interpolated. An alternative semi-implicit treatment of the Coriolis terms has also been developed (Temperton
1997).

3.8.2 Continuity equation

Modelling flow over mountains with a semi-Lagrangian integration scheme can lead to problems in the form of a
spurious resonant response to steady orographic forcing. The mechanism was clarified by Rivest et al. (1994).
Strictly speaking, the problem has little to do with the semi-Lagrangian scheme itself; rather, it is a result of the
long time steps permitted by the scheme, such that the Courant number becomes greater than 1. Recently, Ritchie
and Tanguay (1996) proposed a modification to the semi-Lagrangian scheme which alleviates the problem. It
turned out that their suggestion was easy to implement in the ECMWF model, and had additional benefits besides
improving the forecast of flow over orography.

Although Ritchie and Tanguay start by introducing a change of variables in the semi-implicit time discretization,
this is not necessary and a slightly different derivation is presented here. The continuity equation is written in the
form

d _
d_t(ln psurf) - [RHS] (334)

where[RHS] represents right-hand-side terms. The total derivative on the left-hand side is discretized in a semi-
Lagrangian fashion, and the final form of the discretized equation involves a vertical summation.
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Now split In p, into two parts:
INpgys = 10+1 (3.35)
where the time-independent p#lt  depends on the underlying orogpaphy
10 = (~Psur)/ (Ryry T) (3.36)
andT is a reference temperature. This choice gives
O@gyr+ Ry TOIH =0 (3.37)

so thatll is (to within an additive constant) the valudmpy, ¢ appropriate for an isothermal state at rest with
underlying orography.

Using(3.35)and(3.36),

d dl' 1
d_t((ln psurf)) = a - Elhd y_T_\,lH [D(psurfg (3-38)

The second term on the right-hand side is computed in an Eulerian manner and transferred to the right-hand side
of the continuity equatio(8.34) which becomes

dl’ 1
ai = [RHS] + R _T_\!H |:l;l(psurf (3-39)

dry

The new advected variable is much smoother than the original, since the influence of the underlying orography has
been subtracted out; hence, the semi-Lagrangian advection is presumably more accurate.

3.8.3 Thermodynamic equation

As mentioned above, the semi-Lagrangian treatment of the continuity equation is improved by changing the ad-
vected variable to a smoother quantity which is essentially independent of the underlying orography. A similar
modification has been implemented in the thermodynamic equation, borrowing an idea from the treatment of hor-
izontal diffusion. To approximate horizontal diffusion on pressure surfaces, thereby avoiding spurious warming

over mountain tops in sigma or hybrid vertical coordinates, the diffused quar{tity-iJ ) , with
_ 0p dTQ
Tc - %)Surfapsurfapljrefln Psurf (3-40)

where the subscript ‘ref’ denotes a reference value which is a function only of model level. For the purposes of the
semi-Lagrangian advectiolm py,,; is replaced by a time-independent value as (8.84g).above, to define a
“temperatureT,, which depends only on the model level and the underlying orography:

- op 0TQ T
Ty = _%)Surfap_surf%[lef |:tpsurf/(RdryT) (3.41)
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The semi-Lagrangian advection is now applied to the qua(ility T ) , While a compensating expression
oT, —q e 3.42
Yy b—N an (3.42)

appears on the right-hand side of the equation and is computed in an Eulerian fashion (note that this time itincludes
a vertical advection term).

3.9 TWO-TIME -LEVEL SEMI -L AGRANGIAN SCHEME
Formally, a two-time-level scheme may be written in the notation ¢8E2jas:

Xa= X5

1 - 1" *
i = 5o+ La) +5(Np+ Ny) (3.43)

where

Xa = X(x, t+At) is the value at the “arrival” gridpoint &t + At)
Xp = X(x—g, t) sthe value interpolated at the “departure” point at ime ;
L, andLy are the linear terms defined similarly;

*

N are the non linear terms, obtained by extrapolation in tin% -to%AtE
+_ 3 1
N = EN(t) —EN(t—At) (3.44)

The displacement equation becomes

q = At\/*%—%g, t+%At% (3.45)

where the three-dimensional wind fie\ﬁ is also extrapolated in time:

3

. 1
Y =3V (1) -5V (t-A (3.46)

The iterative scheme and first-guess for solythg5)are exactly analogous to those for solBg).

The choices for the variableX  and for the interpolation schemes remain exactly as for the three-time-level
scheme.

The semi-implicit equations to be solved in spectral space have the same form as for the three-time-level scheme,
except thatAt is replaced it/ 2

In principle a two-time-level scheme should have 2ot computational mode, and a time-filtering procedure is
no longer needed.

3.9.1 Stable Extrapolation Two-Time-Level Scheme (SETTLS)
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9
An alternative second-order accurate scheme to sol@rth)can be derived by expanding the position ved®or
of the parcel of air as a Taylor series around the departure point of the semi-Lagrangian trajectory:

R "= Ry + At D[d ] At[[ ()} (3.47)
AV

Here subscript AV indicates some average value along the semi-Lagrangian trajectory.
- -
Substituting the time derivative ® by the velocity vedtor , we find

St+At Ot At?
Ra  =Rp +At wD+—— (V)} (3.48)

This equation describes an uniformly accelerated movement. The trajectories can no longer be considered as
straight lines on a plane or as arcs of a great circle in spherical geometry as is traditionally done in semi-Lagrangian

schemes and the position of the middle point of the trajectory is no longer an average between the departure and
the arrival points.

To proceed, one has to estimate the quantity

Ljﬂt(\?)LV (3.49)

To estimatg3.49)the first possibility explored was to use an average along the trajectory of the explicit estimate
of the r.h.s. of the momentum equations as the horizontal part of exprgsd@yand the expression

d _Wi-wp ™
[a't(W)LV T Mt (259

for the vertical part.

After exploring many other possibilities, the following estimate was adopted:

_At 5t toat

4] o] -

using the departure point of the semi-Lagrangian trajectory corresponding to the present time step instead of the
departure point of the trajectory corresponding to the previous time step. Here D means the position at time t of the
parcel of air which will arrive to gridpoint A at time/t.

This estimate assumes that the total time derivative of the velocity is constant with time, following Durran’s sug-
gestion of “extrapolating along the trajectory”, but the estimate uses only the arrival and departure points of the
present trajectory and is therefore compatible with the semi-implicit treatment of the evolution equations. This
scheme should therefore be also stable according to linear stability analysis and has accordingly been named “Sta-
ble Extrapolation Two-Time-Level Scheme” or SETTLS.

Substituting(3.51)into (3.48) we obtain:
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—t+At At —>t —>t-At —>t
Ra RD+—[([2V -V  ]p+Va) (3.52)

and a similar expression can be used in every evolution equation to treat the non-linear terms of the r.h.s.

3.10 NUMERICAL COUPLING OF THE PHYSICAL PARAMETERIZATIONS TO THE  “DYNAMI-
CAL” EQUATIONS (SLAVEPP)

Due to the diffusive nature of the mostly parabolic equations in the physics the contributions of the physical pa-
rameterizations are computed separately from the “dynamical” equations. The coupling of these two parts can use
the SLAVEPP(SemiLagrangianAveraging ofPhysicalParameterizationsinethod which is described and dis-
cussed in detail byedi(1999).

In equation(3.14)(3.16)the contribution of the physical parameterizations are denotdd as indicating an eval-
uation of the parameterizations at the arrival point only. In the two time level scheme as described in3s8ction

this is replaced by a partly second order accurate coupling of the parameterizations in time and space, which is
achieved by evaluating part of the “physics” at the arrival point and the remainder at the departure point of the semi-
Lagrangian trajectory. Due to the different nature of the parameterized processes the contributions of radiation,
convection and cloud parameterization are averaged “along” the semi-Lagrangian trajectory while the contribu-
tions of vertical diffusion and parameterized gravity waves are taken at the arrival point only. EqGati@)ie-

comes then

Xa=Xp 1, e A, e 1, N N
T = E(LD + LA) + E(ND + NA) + E(PD, rad+ conv+ cloud™ PA, rad+ conv+ clou() + |:)A,vdif +gwdrag (3-53)
Part of the implicit calculations of the physical parameterizations use the following tendency:

~ o+ —
~ _ Xabyn—Xp

A= AT , (3.54)
with equation(3.43) modified to yield
X X5 1 1
A, Dyn — _ - i * * .
X ° = E(LD+LA)+§(ND+NA) (3:55)

The “~" denotes that only provisional values of the dynamic | fields are available because semi-implicit correction
terms are still to be computed (see sectof). ThereforeLA = LA = L, isused forthe linear terms Equation
(3.54)describes local tendencies, which are computed subtracting the new provisional explmn)«ahma of
the dynamic fields (at the arrival point) from their valu¥s, at the previous time step. The parameterizations at
the time steg + At are computed at the arrival point as shown in the following equation:
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PZ = PZ, rad(X_A) . (3'56)
+ P vait (Xas DALP;\,rad)
+ P;,gwdrag(X;v DA)
+ P;,conv(xz\,predicb (OUtPUt)Fconv)
+ P;,cloud(xz,predicv (inpUt)Fconv)

where the “first guess” predictoX +A’predict of the model variables at the arrival point at time sté is com-
puted from the tendency of the “dynamics”, the tendency of the parameterizations of radiation, convection and
clouds at the previous time-steand the tendency of vertical diffusion and gravity wavestaht

+ i - +
X A, predict — XA,Dyn + 0Pp, rad+conv +cloud At + PA'Vdif +gwdragAt' (3.57)

F..ny denotes an explicit interaction of the parameterizations of cloud and convection.The paranvet@5

has been introduced in order to achieve a better balance between the physical parameterizations when the “first
guess” predictor is computed.
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CHAPTER 4 Computational details

Implementing a high-resolution model, which must run operationally within a given elapsed time on a given com-
puter system, presents a number of interesting technical challenges. In this section we present some of the compu-
tational details which enabled the goal of implementation to be achieved.

Table of contents

4.1 Scanning structure
4.2 Multitasking

4.3 Performance

4.4 Analysis of CPU time
4.5 The IFS model

4.1 SANNING STRUCTURE
Each timestep of the model integration procedure consists of three scans.

At the beginning of the timestep, the model fields at time At are specified in grid-point form (as described in
Subsection 2.2.6f Chapter 2 ‘Basic equations and discretizatiptiiese fields are ‘partially time-filtered’). The
grid-point values of the model variables are contained in a ‘grid-point work-file’, held on a secondary storage de-
vice and organized as a random-access file with one record for each latitude row. Meanwhile, the model fields at
time t are specified in spectral form, all the spectral coefficients being held in central memory. The first scan con-
sists of Legendre transforms to compute the Fourier coefficients of the model variables @t time  on each latitude
row, the results being written out to a ‘Fourier work-file’, again organized with one record for each latitude row.
During the first scan, latitude rows are processed in north/south pairs with the members of each pair being equidis-
tant from the equator, in order to make use of the symmetries of the Legendre polynomials (see for éeample
perton1991). Once this first scan has been completed, the spectral coefficients are no longer required and the
central memory arrays can be released for use during the next scan.

The second scan steps through the latitude rows, starting at the row nearest the North Pole and proceeding south-
wards. At each row, the corresponding records of the grid-point values aitimAt) and the Fourier coefficients
attime t are read in. Fourier transforms then provide grid-point values of the fields (together with any required
horizontal derivatives) at timé . At this juncture, the time-filtering of the fields at tifhe At) is completed,
while ‘partially time-filtered’ fields at timet  are also computed and written out to the grid-point work-file ready

for the next timestep.

The grid-point calculations for the present timestep continue using the time-filtered val(ies At) and the un-
filtered values at tim& . The right-hand sides of the equations, discretized in semi-Lagrangian form as described
in Chapter 3are computed with terms being grouped separately depending on whether they will be evaluated at
the departure point, the midpoint or the arrival point of the trajectory. The results of these calculations, together
with the horizontal wind components and the vertical velogjity , are then stored in a ‘rotating buffer’ which con-
tains values for a number of consecutive latitude rows. The grid-point calculations described so far correspond to
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the southernmost row contained in this buffer. Next, the focus of the computation returns to the central row of the
buffer. Values of the wind fields and the right-hand sides of the equations are now available at a sufficient distance
to the north and south of the central row for the trajectory calculations to be performed and for the semi-Lagrangian
timestep to be implemented, thus furnishing provisional valu¢s-ait) . As descriBedtion 3.4the con-
tributions from the physical parametrization schemes can then be incorporated to complete the calculation of the
right-hand side®), — Qs  dEgs. (3.26}3.30)

These right-hand sides are now Fourier transformed and the coefficients are written out to another Fourier work-
file, again organized with one record for each latitude row but this time with a special structure which will be ex-
ploited in the third scan. The computation then proceeds southwards to the next pair of ‘southernmost’ and ‘central’
rows, the values computed for the new southern row overwriting those in the buffer for the previous northernmost
row, which are no longer required.

At the start of the second scan, there is clearly an initialization phase during the first few rows when only the first
part of the above calculations can be done. Similarly, at the end of the scan there is a ‘winding-down’ phase during
which the first part of the calculations has already been done, and only the second part is required. The same logical
structure is also used to run the Eulerian version of the model, but in this case the width of the ‘rotating buffer’ can
be reduced to that for a single latitude row.

The third scan performs direct Legendre transforms to obtain the provisional spectral coefficients(dt-tife

from the Fourier coefficients computed in the second scan, using Gaussian quadrature. The calculation proceeds
one zonal wavenumber at a time. Here we make use of the special structure of the Fourier work-file; although the
file was written row by row, it can be read in ‘transposed’ fashion, wavenumber by wavenumber. The direct Leg-
endre transforms first exploit the symmetries of the Legendre polynomials, and then complete the calculations us-
ing highly efficient matrix multiplication routines. To see how this is achieved, notice that since a single Legendre
transform can be written as a matrix/vector multiplication of the fgrms [P]x , a set of simultaneous transforms
for the same zonal wavenumber but for different variables and model levels can be written as

{y.1Yo-Ynt = [PIH{%:%5-- %01}

which is indeed in the form of a matrix multiplicatidry] = [P][X] . A similar technique could have been used
in the first scan, and this has been incorporated in the latest version of the model.

After the transformation to spectral space, the semi-implicit equations are solved and the horizontal diffusion is
implemented as described Bection 3.4 thus completing the calculation of the spectral coefficients at time
(t +At) . At the end of the third scan, the whole model has been advanced by one timestep.

4.2 MULTITASKING

Currently the model is run on a ‘modestly parallel’ supercomputer (specifically, a Cray Y-MP C90 with 16 proces-
sors), and multitasking is an important aspect of the strategy to make the best use of the available computer power.
We have chosen to rely mainly on high-level ‘macrotasking’, i.e., dividing the computation into large independent
units of work, each of which is assigned to one of the processors. Here only a brief outline will be given; additional
details and discussion are providedmnt(1992).

In the first scan, the unit of work is a pair of latitude rows. Each pair is independent of all the others, and a simple
dynamic scheduling technique can be used: as each processor becomes free, a new pair of rows is assigned to it.

In the second scan, the unit of work is a single latitude row. For the semi-Lagrangian version, the calculations for
each row are no longer independent of those for all the other rows. The trajectory calculations and semi-Lagrangian
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advection algorithm for the central row of the rotating buffer can only be carried out once the required calculations
have been completed for all the neighbouring rows, and somewhat complex logic is required to control the multi-
tasking during this scan.

In the third scan, the unit of work is a single zonal wavenumber. Each wavenumber is independent of all the others,
and the scheduling technique used in the first scan can again be used. The work content of each wavenumber varies
from a maximum aim = 0 to a minimum at the largest valuerof (the ‘tip’ of the triangular truncation), and

the dynamic scheduling technique is effective in spreading the work over available processors.

4.3 PERFORMANCE

The following performance figures relate specifically to the operational version of the model run at horizontal
resolution T213 with 31 levels on the 16-processor Cray Y-MP C90. With the model time-step set at 15 minutes
the total CPU time per forecast day would be about 1.5 hours on a single processor, the corresponding elapsed time
(excluding the post-processing) being 7 minutes when the work is shared amongst 16 processors. This represents
a sustained computation speed of about 3.5 gigaﬂ&oﬁslog floating-point operations per second). The memory
requirements are 49 Mwords of central memory plus 70 Mwords of secondary storage. Multitasking using 16 proc-
essors provides a speed-up factor of 13 compared with using a single processor. A typical operational 10-day fore-
cast, including all the post-processing, takes 2 hours of elapsed time.

4.4 ANALYSIS OF CPU TIME

In developing a high-resolution spectral model, the cost of the transforms (particularly the Legendre transforms)
may be a cause for concern (e@ptéand Staniforth 1990). In the case of a semi-Lagrangian model, it is clearly
important that the gain obtained through the use of longer time steps is not outweighed by the extra cost of the semi-
Lagrangian scheme. In view of these concerns, it is of interest to analyse the CPU time required for our model.
Table 4.1shows the percentage breakdown for the Eulerian version, for the fully interpolating semi-Lagrangian
scheme and for the vertically non-interpolating scheme, at T213/L31 resolution.

TABLE 4.1 ANALYSIS OF CPUTIME (%)

Fully Vertically non-
Eulerian interpolating interpolating
semi-Lagrangian semi-Lagrangian

Dynamics 21 15 17
Physics 53 42 45

FFT 6 3 4
Legendre 20 13 14
transforms

Semi-Lagrangian 27 20

This analysis suggests that the spectral method is still perfectly viable at this resolution, and that considerably high-
er resolutions can be achieved before the cost of the transforms becomes a matter for serious concern. The overhead
of the semi-Lagrangian scheme, particularly the non-interpolating version, is also quite modest; for the present res-
olution it permits a timestep of 15 minutes compared with 3 minutes for the Eulerian version, and the resulting
reduction in the CPU time for the forecast is about a factor of four. The semi-Lagrangian overhead is in fact slightly

31
IFS Documentation Cycle CY23r4 (Printed 19 September 2003)



F20- Part Ill: ‘Dynamics and numerical procedures’

less than suggested by the figuregable, since there is a simultaneous reduction in the number of transforms
compared with the Eulerian scheme. Comparing the two variants of the semi-Lagrangian scheme, the overall CPU
time for the non-interpolating version is 8.5% less than that for the fully interpolating version.

4.5 THE IFS MODEL

On 2nd March 1994, the model code described above was replaced in operations by the IFS (‘Integrated Forecast-
ing System) model, developed in collaboration with Météo-France (where it is known as ARPEGEsé&er

et al. (1991) for an account of this project). The new code includes all the features required for three- and four-
dimensional variational data assimilatiorh@pautand Courtier 1991;Rabierand Courtier 1992), and for deter-

mining optimal unstable perturbations for ensemble predictBnzzaet al. 1993). The computational structure

of the forecast model component of the system is similar to that described above but includes further improvements
in efficiency, notably the matrix-multiplication treatment of the Legendre transforms in the first scan as well as the
third scan (se&ubsection 4.above), and the option to combine several latitude rows together (for example near
the poles of the reduced grid) resulting in longer vectors.
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	Vertical advection of a variable X is now given by
	(2.19)
	The discrete analogue of the hydrostatic equation (2.6) is
	(2.20)
	which gives
	(2.21)
	where is the geopotential at the surface. Full-level values of the geopotential, as required in t...
	(2.22)
	where and, for ,
	, (2.23)
	The remaining part of the pressure gradient terms in (2.1) and (2.2) is given by
	(2.24)
	with given by (2.23) for all .
	Finally, the energy conversion term in the thermodynamic equation (2.3) is discretized as
	(2.25)
	where , , is defined by (2.23) for , and
	(2.26)
	The reasons behind the various choices made in this vertical discretization scheme are discussed ...

	2.2.2 Time discretization
	To introduce a discretization in time, together with a semi-implicit correction, we define the op...
	,
	where represents the value of a variable at time , the value at time , and the value at . In prep...
	(2.27)
	Introducing the semi-implicit correction terms, Eqs. (2.1)–(2.4) become:
	(2.28)
	(2.29)
	(2.30)
	(2.31)
	where is a parameter of the semi-implicit scheme; the classical scheme (Robert 1969) is recovered...
	, (2.32)
	. (2.33)
	where the half-level pressures appearing in (2.32) and (2.32) are reference values obtained from ...
	The integrated surface pressure tendency equation (2.14) becomes
	(2.34)
	where
	(2.35)

	2.2.3 Horizontal grid
	A novel feature of the model is the optional use of a reduced Gaussian grid, as described by Hort...

	2.2.4 Time-stepping procedure
	The time-stepping procedure for the Eulerian – version of the model follows closely that outlined...
	. (2.36)
	The model state at time is defined by the spectral coefficients of , , , and . Legendre transform...
	.
	All the information is then available to evaluate the terms at time on the left-hand sides of (2....
	(2.37)
	(2.38)
	(2.39)
	(2.40)
	(2.41)
	The right-hand sides – are transformed to spectral space via Fourier transforms followed by Gauss...
	(2.42)
	. (2.43)
	Eqs. (2.39), (2.41) and (2.43) can then be combined with the aid of (2.36) to obtain an equation ...
	(2.44)
	for each zonal wavenumber and total wavenumber , where the matrix
	(2.45)
	couples all the values of in a vertical column. Once has been found, the calculation of and can b...
	Finally, a ‘fractional step’ approach is used to implement the horizontal diffusion of vorticity,...
	(2.46)
	where , or . It is applied in spectral space to the values such that if is the spectral coefficie...
	(2.47)
	A modified form of (2.47) is also used for the temperature , to approximate diffusion on surfaces...

	2.2.5 Time filtering
	To avoid decoupling of the solutions at odd and even time steps, a Robert filter (Asselin 1972) i...
	(2.48)
	where the subscript denotes a filtered value, and , and represent values at , and , respectively.
	Because of the scanning structure of the model (see Chapter 4 ‘Computational details’ ), it is co...
	(2.49)
	(2.50)
	The ‘partially filtered’ values computed by (2.49) are stored on a grid-point work file and passe...
	. (2.51)
	The computations described in Section 2.2.4 are performed using these fully filtered values at ti...

	2.2.6 Remarks
	Ritchie (1988) noted that for a spectral model of the shallow-water equations, the – form and the...
	In the case of the model described here, the corresponding elimination between the variables is p...
	The – model is nevertheless considerably more economical than its – counterpart in terms of the n...

	2.2.7 as spectral variable
	In preparation for a further reduction in the number of Legendre transforms required by the semi-...
	There are corresponding slight changes in the semi-implicit correction terms. The linearized hydr...
	(2.52)
	although as explained above it is not necessary to formulate or compute the missing terms explici...
	(2.53)
	and the solution of the semi-implicit equations in spectral space proceeds just as before.
	This change of spectral variable results in only insignificant changes to a 10-day model forecast...
	IFS documentation
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	3.1 General description
	The general form of the model equations is
	(3.1)
	where the three-dimensional advection operator was defined in (2.27), L is the linearized part of...
	(3.2)
	where the superscripts , and , respectively denote evaluation at the arrival point , the mid-poin...
	It is more economical (and, as discussed later, gives better results in some circumstances; see a...
	(3.3)
	since only a single interpolation (of the combined field at the point ) is then required in order...
	The right-hand sides of the time-discretized model equations also contain semi-implicit correctio...
	where the superscripts refer to time-levels, and to a single common grid point. In the semi-Lagra...
	(3.4)
	and again the terms to be evaluated at the departure point can be added to other right-hand side ...
	To obtain accurate results from a semi-Lagrangian integration scheme, it is necessary to choose t...
	For the reduced Gaussian grid described in Subsection 2.2.3, the mesh is no longer regular. Howev...
	The order of the interpolation in the vertical is reduced to linear when the evaluation point lie...

	3.2 Finding the departure point
	Extending the procedure of Robert (1981) to three dimensions, the midpoint and the departure poin...
	(3.5)
	where in (3.5) is the three-dimensional wind field . Since was never explicitly required in the E...
	(3.6)
	where is already defined by (2.18) and
	(3.7)
	In deriving (3.7) we have used (2.11) together with a formal definition of itself (which again wa...
	(3.8)
	where is a constant pressure (chosen to be 1013.25 ).
	The iterative procedure for solving (3.5) is analogous to that used by Ritchie (1991) in a -coord...
	(3.9)
	where the vertical component of the displacement is found first. The vertical component of on the...
	(3.10)
	The calculations include approximations to the spherical geometry away from the poles, following ...
	Once the midpoint of the trajectory has been found, the departure point is immediately obtained (...
	In solving (3.9), it is necessary to convert between a displacement in terms of the spatial coord...

	3.3 ‘Non-interpolating’ scheme in the vertical
	An alternative formulation of the semi-Lagrangian scheme in three dimensions was suggested by Rit...
	(3.11)
	where
	and is the horizontal part of the advection operator defined in (2.27). In (3.11), is defined to ...
	(3.12)
	where the superscripts , , respectively denote evaluation at the arrival point , the midpoint and...
	(3.13)
	where and are respectively the arrival and departure levels of the modified trajectory, is meanin...
	If the vertical velocity (or the time-step) is sufficiently small, then the modified departure po...
	There is a subtle, but important, difference in the way the iterative scheme (3.9) is implemented...
	An incidental advantage of the ‘non-interpolating’ scheme over the ‘fully interpolating’ scheme i...
	Smolarkiewicz and Rasch (1991) have extended the principle of the ‘non-interpolating’ semi-Lagran...

	3.4 Semi-Lagrangian discretization
	Here we describe in detail only the fully interpolating version of the semi-Lagrangian discretiza...
	Following Ritchie (1988, 1991), the momentum equations are integrated in vector form to avoid an ...
	(3.14)
	where is the vertically directed unit vector and is the horizontal gradient operator in spherical...
	Since (3.14) is in vector form, it is important to account for the change in the orientation of t...
	The thermodynamic and moisture equations (2.30)–(2.31) become
	(3.15)
	(3.16)
	In (3.15), the term is discretized as in (2.25), and evaluated at the midpoint of the trajectory,...
	The -coordinate continuity equation (2.5) can be rewritten as
	(3.17)
	Setting
	and noting that
	,
	we also have
	. (3.18)
	Combining (3.17) and (3.18).
	. (3.19)
	Now introducing the vertical discretization, (3.19) becomes
	. (3.20)
	the vertical discretization of having been defined in (2.18).
	Changing the prognostic variable to ,
	(3.21)
	Combining (3.21) with the discrete definition of given by (2.18),
	(3.22)
	where is given by (2.14).
	Noting that
	,
	and including the semi-implicit correction terms, the semi-Lagrangian discretization of the conti...
	(3.23)
	(Since there is no vertical advection term in (3.23), no modification is required for the vertica...
	In summary, the semi-Lagrangian discretization is given by Equations (3.14)–(3.16)together with (...

	3.5 Comparison with other schemes
	The semi-Lagrangian formulation presented above differs in some respects from those proposed by o...
	Another aspect of our semi-Lagrangian discretization of the continuity equation, which differs fr...

	3.6 Time-stepping procedure
	The general outline of the time-stepping procedure for the semi-Lagrangian version is similar to ...
	Since the advection of moisture is handled by the semi-Lagrangian discretization (3.16), the hori...
	After the transforms to the model grid, all the information is then available to compute the traj...
	. (3.24)
	or
	(3.25)
	depending on whether the terms are averaged between the end points of the trajectory or evaluated...
	In the first part of the calculation for equations of the form (3.24), the combined field is comp...
	A provisional value is now available at each grid point for each variable, and is used together w...
	The contributions from the terms at time are now added in, resulting in a set of equations of the...
	(3.26)
	(3.27)
	(3.28)
	(3.29)
	(3.30)
	where the right-hand sides include all the terms which have been computed on the grid, and replac...
	The implementation of the time-filtering for the semi-Lagrangian model is identical to that for t...

	3.7 Optimization of vertically non-interpolating scheme
	In the ‘vertically non-interpolating’ scheme, the departure point of each modified trajectory lie...
	The statistics were obtained from a 10-day forecast using the model in its operational configurat...
	The implication of these results is that a great deal of redundant calculation was being performe...
	Table 3.1 Frequency distribution (%) of departure points in the ‘vertically non-interpolating’ sc...
	1–6
	100.00
	7–9
	100.00
	*
	10
	99.99
	0.01
	*
	11
	99.96
	0.04
	*
	12
	99.89
	0.11
	*
	13
	99.76
	0.24
	*
	*
	14
	99.60
	0.40
	*
	*
	15
	99.43
	0.57
	*
	*
	16
	99.28
	0.72
	*
	17
	99.16
	0.83
	0.01
	18
	99.08
	0.92
	*
	19
	99.05
	0.94
	0.01
	20
	99.05
	0.94
	0.01
	*
	21
	99.09
	0.91
	*
	*
	22
	99.14
	0.85
	0.01
	*
	23
	99.22
	0.78
	*
	24
	99.31
	0.69
	*
	25
	99.44
	0.56
	*
	26
	99.60
	0.40
	*
	27
	99.78
	0.22
	*
	28
	99.92
	0.08
	*
	29
	99.99
	0.01
	30
	100.00
	*
	31
	100.00
	Asterisks indicate less than 0.005% frequency


	3.8 Modified semi-Lagrangian equations
	3.8.1 Momentum equations
	The momentum equations are treated in vector form (Eq. (3.14)). Following Rochas (1990) and Tempe...
	The discretization of the momentum equations in the notation of Eq. (3.1) is then:
	(3.31)
	(3.32)
	(3.33)
	where is the gas constant for dry air, is a reference temperature, is geopotential and is the lin...
	In component form, is just where is the earth’s radius and is latitude. Since the latitude of the...

	3.8.2 Continuity equation
	Modelling flow over mountains with a semi-Lagrangian integration scheme can lead to problems in t...
	Although Ritchie and Tanguay start by introducing a change of variables in the semi-implicit time...
	(3.34)
	where represents right-hand-side terms. The total derivative on the left-hand side is discretized...
	Now split into two parts:
	(3.35)
	where the time-independent part depends on the underlying orography :
	(3.36)
	and is a reference temperature. This choice gives
	(3.37)
	so that is (to within an additive constant) the value of appropriate for an isothermal state at r...
	Using (3.35) and (3.36),
	(3.38)
	The second term on the right-hand side is computed in an Eulerian manner and transferred to the r...
	(3.39)
	The new advected variable is much smoother than the original, since the influence of the underlyi...

	3.8.3 Thermodynamic equation
	As mentioned above, the semi-Lagrangian treatment of the continuity equation is improved by chang...
	(3.40)
	where the subscript ‘ref’ denotes a reference value which is a function only of model level. For ...
	(3.41)
	The semi-Lagrangian advection is now applied to the quantity , while a compensating expression
	(3.42)
	appears on the right-hand side of the equation and is computed in an Eulerian fashion (note that ...


	3.9 Two-time-level semi-Lagrangian scheme
	Formally, a two-time-level scheme may be written in the notation of Eq.(3.2) as:
	(3.43)
	where
	is the value at the “arrival” gridpoint at
	s the value interpolated at the “departure” point at time ;
	and are the linear terms defined similarly;
	are the non linear terms, obtained by extrapolation in time to
	(3.44)
	The displacement equation becomes
	(3.45)
	where the three-dimensional wind field is also extrapolated in time:
	(3.46)
	The iterative scheme and first-guess for solving (3.45) are exactly analogous to those for solvin...
	The choices for the variables and for the interpolation schemes remain exactly as for the three-t...
	The semi-implicit equations to be solved in spectral space have the same form as for the three-ti...
	In principle a two-time-level scheme should have no computational mode, and a time-filtering proc...
	3.9.1 Stable Extrapolation Two-Time-Level Scheme (SETTLS)
	An alternative second-order accurate scheme to solving (3.45) can be derived by expanding the pos...
	(3.47)
	Here subscript AV indicates some average value along the semi-Lagrangian trajectory.
	Substituting the time derivative of by the velocity vector , we find
	(3.48)
	This equation describes an uniformly accelerated movement. The trajectories can no longer be cons...
	To proceed, one has to estimate the quantity
	(3.49)
	To estimate (3.49) the first possibility explored was to use an average along the trajectory of t...
	(3.50)
	for the vertical part.
	After exploring many other possibilities, the following estimate was adopted:
	(3.51)
	using the departure point of the semi-Lagrangian trajectory corresponding to the present time ste...
	This estimate assumes that the total time derivative of the velocity is constant with time, follo...
	Substituting (3.51) into (3.48) we obtain:
	(3.52)
	and a similar expression can be used in every evolution equation to treat the non-linear terms of...


	3.10 Numerical coupling of the physical parameterizations to the “dynamical” equations (SLAVEPP)
	Due to the diffusive nature of the mostly parabolic equations in the physics the contributions of...
	In equation (3.14)-(3.16) the contribution of the physical parameterizations are denoted as indic...
	(3.53)
	Part of the implicit calculations of the physical parameterizations use the following tendency:
	, (3.54)
	with equation (3.43) modified to yield
	(3.55)
	The “~” denotes that only provisional values of the dynamic fields are available because semi-imp...
	(3.56)
	where the “first guess” predictor of the model variables at the arrival point at time step is com...
	. (3.57)
	denotes an explicit interaction of the parameterizations of cloud and convection.The parameter ha...
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	CHAPTER 4 Computational details
	Implementing a high-resolution model, which must run operationally within a given elapsed time on...
	Table of contents
	4.1 Scanning structure
	4.2 Multitasking
	4.3 Performance
	4.4 Analysis of CPU time
	4.5 The IFS model

	4.1 Scanning structure
	Each timestep of the model integration procedure consists of three scans.
	At the beginning of the timestep, the model fields at time are specified in grid-point form (as d...
	The second scan steps through the latitude rows, starting at the row nearest the North Pole and p...
	The grid-point calculations for the present timestep continue using the time-filtered values at a...
	These right-hand sides are now Fourier transformed and the coefficients are written out to anothe...
	At the start of the second scan, there is clearly an initialization phase during the first few ro...
	The third scan performs direct Legendre transforms to obtain the provisional spectral coefficient...
	which is indeed in the form of a matrix multiplication . A similar technique could have been used...
	After the transformation to spectral space, the semi-implicit equations are solved and the horizo...

	4.2 Multitasking
	Currently the model is run on a ‘modestly parallel’ supercomputer (specifically, a Cray Y-MP C90 ...
	In the first scan, the unit of work is a pair of latitude rows. Each pair is independent of all t...
	In the second scan, the unit of work is a single latitude row. For the semi-Lagrangian version, t...
	In the third scan, the unit of work is a single zonal wavenumber. Each wavenumber is independent ...

	4.3 Performance
	The following performance figures relate specifically to the operational version of the model run...

	4.4 Analysis of CPU time
	In developing a high-resolution spectral model, the cost of the transforms (particularly the Lege...
	Table 4.1 Analysis of CPU time (%)
	Dynamics
	21
	15
	17
	Physics
	53
	42
	45
	FFT
	6
	3
	4
	Legendre
	transforms
	20
	13
	14
	Semi-Lagrangian
	27
	20
	This analysis suggests that the spectral method is still perfectly viable at this resolution, and...


	4.5 The IFS model
	On 2nd March 1994, the model code described above was replaced in operations by the IFS (‘Integra...
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