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1 Introduction

Correlation models are at the heart of background-error covariance matrices and are fundamental for determin-
ing how observational information is spread spatially (Fisher 2003). The true correlations of background error
are not known but can be estimated from statistics of observed-minus-background fields (Hollingsworth and
Lönnberg 1986; Lönnberg and Hollingsworth 1986) or a suitable proxy for background error such as model
forecast differences (Parrish and Derber 1992; Rabier et al. 1998; Fisher 2003). From the available estimates of
the statistics of background error, correlation models attempt to parametrise key features of the shape and spec-
trum of the correlation functions. Correlation models are embedded within correlation operators. Applying
a correlation operator to a given field involves solving an integral equation over the model domain where the
kernel of the operator is a correlation function (here parametrised by a model). Application of the background-
error correlation operator is generally the most expensive step in a three-dimensional (3D) variational analysis.
The numerical efficiency of the correlation operator is critical. Therefore, not all correlation models (and hence
operators) are suitable for large dimensional problems such as those encountered in atmospheric or ocean data
assimilation.

This paper gives an overview of the theory and numerical implementation of the generalized diffusion approach
for defining correlation models in variational data assimilation. Fisher (2003) and Derber et al. (2003) describe
alternative correlation models based on spectral and recursive filtering techniques. Some of the similarities
between these different methods will be discussed in this paper. The basic algorithm detailed in this paper
consists of numerically integrating a generalized diffusion equation (GDE) in order to provide an efficient way
of accomplishing the smoothing action of a correlation operator. The choice of numerical integration scheme
is shown to be important in determining the class of correlation functions that can be represented by the GDE.
A much larger class of correlation functions can be modelled with a time-implicit scheme than with a time-
explicit scheme due to the property of unconditional stability of an implicit scheme. Analytical expressions
for the correlation functions are derived for the two-dimensional (2D) isotropic case on the sphere. A formal
connection between the time-implicit GDE and smoothing splines is also established. Techniques for adapting
the GDE to account for inhomogeneous, anisotropic and non-separable correlation functions are discussed
within the context of ocean data assimilation. Finally, some of the important issues involved in the numerical
implementation of the GDE are highlighted. Numerical examples are presented from an ocean variational
assimilation system.
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2 A one-dimensional example

The following one-dimensional (1D) problem provides a simple framework for interpreting the basic procedure
for constructing correlation operators using a generalized diffusion equation (GDE). Consider the classical
diffusion equation

∂η
∂t
�κ

∂2η
∂z2 � 0 (1)

where κ is a constant diffusion coefficient, and η�z� t� is an arbitrary scalar field (e.g., temperature) defined on
the infinite line such that η�z� t� vanishes as z��∞. The solution of (1) at the end of a (pseudo-)time interval
0� t � T is given by the integral equation

η�z�T � �
1�

4πκT

�
z�

e��z� z��2�4κT η�z��0�dz� (2)

where η�z�0� is the initial condition. Equation (2) shows that η�z�T � is the result of a convolution of η�z�0�
with the Gaussian covariance function �

�
4πκT ��1 exp ��z2�4κT � where the product 2κT can be interpreted

as the square of the length scale of the Gaussian function (Daley 1991) and the constant coefficient �
�

4πκT ��1

(with physical dimensions of inverse length) as the “variance”. A correlation function is a covariance function
with unit amplitude. The Gaussian covariance operator can thus be transformed into a Gaussian correlation
operator by post-multiplying η�z�T � by

�
4πκT .

The key idea is that, on a discrete grid, we can perform the action of a Gaussian correlation operator by
iterating a discretized version of the differential equation (1) from an initial condition η�z�0�, and normalizing
the result as above. This is a computationally efficient way of evaluating the convolution integral in (2), and
is the essence of the diffusion (Laplacian-filter) algorithm for constructing 2D and 3D correlation operators,
originally proposed by Derber and Rosati (1989), described in more detail by Egbert et al. (1994), and later
extended by Weaver and Courtier (2001) (hereafter referred to as WC01).

3 An isotropic correlation model: generalized diffusion and smoothing splines

The theoretical basis for employing a GDE to represent the action of a 2D correlation operator on the sphere
and a 1D correlation operator in the vertical is described in detail in WC01. The purpose of this section is to
outline the theory from a slightly different angle in order to expose a larger class of correlation functions than
those derived by WC01. For simplicity, we restrict the initial discussion to the homogeneous and isotropic
case. Inhomogeneous and anisotropic extensions will be considered in the next section.

Consider the following 2D differential operator defined on the sphere:

�η�λ�φ� �

�
P

∑
p�0

αp
��∇2�p

�M

η�λ�φ� (3)

where η�λ�φ� and �η�λ�φ� are scalar fields defined on the spherical domain of radius a, λ is longitude (0� λ�
2π), φ is latitude (�π�2 � φ � π�2), and ∇2 is the Laplacian operator in spherical coordinates:

∇2 � 1
a2 cosφ

�
1

cosφ
∂2

∂λ2 �
∂

∂φ

�
cos φ

∂
∂φ

��
� (4)

The weighting coefficients αp, p � 0� ����P, are assumed to be non-negative with α0 � 1, and M is a posi-
tive integer which we take to be even for convenience. Roughening operators similar to (3) are at the heart
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of smoothing splines on the sphere (Wahba 1981; 1982). In spline algorithms, smoothing is achieved by
minimizing the sum of an observation term (Jo) and a quadratic norm Js (analogous to the background term
Jb in variational assimilation) formulated as an explicit penalty on small-scale variability in the solutions.
Some examples of the use of spline algorithms in meteorological and oceanographic data assimilation are
given in Wahba and Wendelberger (1982), McIntosh (1990), Sheinbaum and Anderson (1990) and Brasseur
et al. (1996). A penalty term using (3) would be of the form

Js �

� 2π

λ�0

� π�2

φ��π�2
η�λ�φ�

�
P

∑
p�0

αp
��∇2�p

�M

η�λ�φ� a2 cos φ dλ dφ

�

� 2π

λ�0

� π�2

φ��π�2

	
� P

∑
p�0

αp
��∇2�p

�M�2

η�λ�φ�

��2

a2 cosφ dλ dφ (5)

where the square-root factorization in the last expression follows from the self-adjointness of the Laplacian
operator in the sense of the scalar product �η1�η2� �

��
η1η2 a2 cosφ dλ dφ. The norm spline considered by

Wahba (1982) is a special case of (5) with M � 2.

Before formally establishing that the inverse of (3) is a valid (positive definite) covariance operator on the
sphere, we first illustrate how (3) can be cast within the framework of the GDE

∂η
∂t

�
P

∑
p�1

κp
��∇2�p η � 0 (6)

where the diffusion coefficients κp, p� 1� ����P, are assumed to be non-negative. Consider a numerical solution
of (6) over a pseudo-time interval t0 � 0 to tM � M∆t � T from an initial condition η�t0�, where ∆t is the time
step and M the total number of time levels. WC01 considered a semi-discrete version of (6) in which the
time discretisation is evaluated using an explicit forward scheme. Other discretisation schemes are of course
possible and as we shall see the choice of scheme is important for determining the class of correlation functions
that can be represented by the GDE. Here we consider a classical implicit scheme for which the Laplacian terms
are evaluated at time step tm � m∆t rather than tm�1 � �m�1�∆t as in an explicit scheme, where m � 1� ����M.
Over one time step, the implicit form of (6) is

η�tm��η�tm�1�

∆t
�

P

∑
p�1

κp
��∇2�p η�tm� � 0 (7)

which can be rearranged to give

η�tm� �

�
1�

P

∑
p�1

κp∆t
��∇2�p

�
�1

η�tm�1� (8)

where the term within large brackets is understood to be a discrete matrix operator. Successive applications of
(8) from m � 1 to m � M yields

η�λ�φ�T � �

�
1�

P

∑
p�1

κp∆t
��∇2�p

�
�M

η�λ�φ�0� (9)

where η�λ�φ�0� � η�t0� and η�λ�φ�T � � η�tM�. The inverse of (9) is

η�λ�φ�0� �

�
1�

P

∑
p�1

κp∆t
��∇2�p

�M

η�λ�φ�T �� (10)
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We can match (10) to (3) by identifying �η�λ�φ� with the initial condition η�λ�φ�0�, η�λ�φ� with the final
condition η�λ�φ�T �, and αp with the product κp∆t where α0 � κ0∆t � 1. Application of the inverse of the dif-
ferential operator (3) is thus equivalent to performing M iterations of a GDE with a time-implicit discretisation
scheme.

We now set out to establish that the inverse of (3) is a valid covariance operator on the sphere and to derive the
specific form of the isotropic covariance functions that this operator can represent. On the sphere, η�λ�φ� can
be expanded as

η�λ�φ� �
∞

∑
n�0

n

∑
m��n

ηm
n Y m

n �λ�φ� (11)

where m is the zonal wavenumber, n is the total wavenumber, Ym
n �λ�φ� are the spherical harmonics (normalized

as defined in WC01), and ηm
n are spectral expansion coefficients. A similar expansion exists for �η�λ�φ�.

Since Y m
n �λ�φ� are the eigenvectors of the Laplacian operator on the sphere, with �n�n�1��a2 the associated

eigenvalues, the spectral coefficients of η�λ�φ� and�η�λ�φ� are related by

�ηm
n �

�
P

∑
p�0

αp

�
n�n�1�

a2

�p
�M

ηm
n �

�
1�

P

∑
p�1

αp

�
n�n�1�

a2

�p
�M

ηm
n � (12)

From the orthogonality of Ym
n �λ�φ� and the Addition Theorem, it is then straightforward to show (e.g., fol-

lowing the standard procedure laid out in WC01) that the inverse of (3) has an integral representation of the
form

η�λ�φ� �
1

4πa2

� 2π

λ�
�0

� π�2

φ�
��π�2

h�θ ; M� P� α1� ����αP� �η�λ��φ�� a2 cosφ� dλ� dφ� (13)

where

h�θ ; M� P� α1� ����αP� �
∞

∑
n�0

�
2n�1

�
1�

P

∑
p�1

αp

�
n�n�1�

a2

�p
�
�M

 �� �
hn

P0
n�cos θ�� (14)

P0
n�cos θ� being the Legendre polynomials, and θ the angular separation (great circle distance) between the

points �λ�φ� and �λ��φ�� on the sphere:

cos θ � cos φ cosφ� cos�λ�λ��� sinφ sinφ�� (15)

Since the coefficients hn of the Legendre polynomials in (14) are positive, the kernel h�θ� of the integral
operator (13) is the representation of an isotropic covariance function (e.g., see Gaspari and Cohn (1999) for
a thorough discussion on the theory of correlation functions). Equations (13) and (14) thus define a valid
covariance operator on the sphere. It is readily transformed into a valid correlation operator by multiplying
η�λ�φ� by the normalization constant 4πa2�h�0�.

It is interesting to note that by writing αp � κp∆t � 1
M �κpT � and letting M � ∞ while keeping κpT fixed, we

obtain from (12) an exponential relationship between spectral coefficients

�ηm
n � exp

�
P

∑
p�1

κpT

�
n�n�1�

a2

�p
�

ηm
n � (16)

Equation (16) can be derived directly from the GDE (Eq. 6), with �ηm
n and ηm

n defined to be the spectral coeffi-
cients of η�λ�φ� t� at t � 0 and t � T , respectively. As shown by WC01, (16) leads to the family of correlation
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functions

f �θ ; P� κ1T� ����κPT � �
∞

∑
n�0

�
2n�1 exp

�
�

P

∑
p�1

κpT

�
n�n�1�

a2

�p
�

 �� �
fn

P0
n�cos θ�� (17)

In (17) the free parameters of the correlation operator are the parameters κpT �� Mαp� and the maximum
number of Laplacians P. In (14) there is an additional parameter M that can be used to give further control over
the spectrum and shape of the correlation functions. Equations (14) and (17) provide an obvious relationship
between the GDE and spectral approaches (Courtier et al. 1998; Rabier et al. 1998; Fisher 2003) for modelling
isotropic correlation functions on the sphere. In the GDE, the spectral coefficients of the isotropic correlation
functions have a specific, yet flexible, functional form. In practice, the GDE is integrated in grid-point space
so the evaluation of spectral expansions of the form (14) and (17) is never actually needed. In the spectral
approach, however, the evaluation of correlation integrals is done directly in spectral space with truncated
spectral expansions.

Figure 1 shows examples of the grid-point representation (left panel) and variance-power spectrum (right
panel) of correlation functions computed using (14) and the analytical solution of the GDE (17). The spectral
expansions have been evaluated numerically with a truncation at total wavenumber 212. The solid curves in
Fig. 1 correspond to the approximately Gaussian correlation function derived from the analytical solution of the
classical diffusion equation (Eq. 17 with P � 1), while the dotted and dashed curves correspond to analytical
solutions of the GDE for P � 2 and P � 3. The dashed-dotted curves correspond to solutions of (14) with
P � 1�M � 10 (dashed one-dotted curves), and P � 2�M � 2 (dashed three-dotted curves). For these fixed
values of P (and M), the correlation parameters κpT (αp) have been tuned so that the length scale, L, of the

correlation functions is 500 km in all examples, where L2 �� f
�
∇2 f

�
�1 �θ�0 (see WC01). Generally speaking,

the effect of increasing P (the number of Laplacians) is to increase the amplitude of the negative lobes in the
correlation function and to sharpen its spectral decay at high wavenumbers, while the effect of decreasing M
(the number of implicit time-steps) is to increase the “fatness” of the tail of the correlation function and to
slow its spectral decay at high wavenumbers. Figure 1 illustrates that the GDE provides a sufficiently flexible
framework to represent correlation functions with very different characteristics. This attractive property of
the GDE can enable it to capture key features (e.g., spectral decay rates) of observed estimates of the auto-
correlations of different geophysical fields (Julien and Thiébaux 1975; Hollingsworth and Lönnberg 1986;
Stammer 1997; Wilke et al. 1999).

From a numerical viewpoint, the extra degree of freedom M arises from the property of unconditional stability
of the time-implicit scheme. In contrast, a time-explicit scheme (as considered in WC01) is conditionally
stable; M is determined as a function of the free parameters κpT �M αp and in practice is chosen small enough
to leave the scheme stable. The stability requirement can be particularly penalising on the computational
efficiency of the method in some cases, for instance, when the length scale is large compared to the grid size.
So, not only does the implicit approach allow us to extend the class of correlation functions as outlined above,
it also allows, in general, for a significant reduction in the number of iterations of the generalized diffusion
operator. The computational cost of the method is mainly determined by the efficiency of the implicit solver.
This point will be discussed further in section (5).

So far we have described a general 2D statistical model for representing horizontal correlation functions on the
sphere. By analogy, the inverse of a 1D operator of the form

�η�z� ��
Q

∑
q�0

βq

�
� ∂2

∂z2

�q
�N

η�z� (18)

can be used, with appropriate boundary conditions, to define a general statistical model for representing vertical
correlation functions, where z denotes the vertical coordinate. The parameters q, Q, βq and N in (18) are
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Figure 1: The grid-point values (left panel) and the variance-power spectrum (right panel) of sample cor-
relation functions generated using (14) and (17). The solid, dotted and dashed curves have been generated
using (17) with P � 1, P � 2 and P � 3, respectively. The dashed one-dotted and dashed three-dotted
curves have been generated using (14) with P � 1�M � 10 and P � 2�M � 2, respectively. The values of
the coefficients αp in (14) and κpT in (17) have been tuned to give a common length scale of 500 km.

analogous to p, P, αp and M in (3). The inverse of a 3D correlation operator can then be derived by combining
the operators (3) and (18),

�η�λ�φ�z� �

�
R

∑
r�0

βr

�
� ∂2

∂z2

�r
�N�

P

∑
p�0

αp
��∇2�p

�M

η�λ�φ�z� (19)

where the associated 3D correlation function is given by the product of a 1D and 2D correlation function.
Computing numerically the action of the inverse of the operator (19) requires solving first a 1D implicit diffu-
sion equation and then a 2D implicit diffusion equation. To represent correlation functions of the form (17),
the GDE can be solved using either an implicit scheme with large M (and κpT fixed) or, as in WC01, using an
explicit scheme.

Another useful feature of the implicit GDE is that it gives immediate access to an inverse correlation operator
(Eq. 19) with explicit control of the shape and spectrum of the associated correlation function (Eq.14). An
inverse correlation operator for the background error is usually not needed in practice when the standard pre-
conditioning transformation involving the square-root of the background-error covariance matrix is employed
(Courtier 1997; Derber and Bouttier 1999; Fisher 2003). Nevertheless, the inverse operator may be needed if
alternative preconditioners are employed or if the initial estimate of the control vector is not known a priori
and must therefore be computed using the inverse of the preconditioning transformation. Note that direct appli-
cation of the inverse correlation operator (19) is generally much simpler than performing the matrix inversion
(9) of the correlation operator itself.

To summarize, in this section we have illustrated how we can transform the problem of solving a general 3D
correlation integral equation into an equivalent, but generally computationally much more efficient problem of
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solving a product of GDEs using a time-implicit scheme. In the next two sections, we discuss some general-
izations to account for inhomogeneous, anisotropic and non-separable correlation functions and outline some
of the important numerical aspects of the method.

4 Inhomogeneity, anisotropy and non-separability

In the ocean or atmosphere, correlation structures are generally more complex than those permitted by a ho-
mogeneous, isotropic and separable correlation model as presented in the previous section. In this section we
outline how the GDE can be adapted to account for inhomogeneous, anisotropic and non-separable correla-
tions.

Consider the 2D differential operator (3). To account for spatial variations in the length scale of the correlation
function, it is sufficient to replace αp∇2 by ∇ 	Ap∇, where Ap � Ap�λ�φ� is an inhomogeneous function of
horizontal position, and ∇ and ∇	 are the gradient and divergence operators, respectively. With reference to the
GDE (6), this is equivalent to using inhomogeneous diffusion coefficients; i.e., replacing κp∆t∇2 by ∆t ∇ 	Kp∇
where Kp � Kp�λ�φ�. For example, this feature would allow for small length scales to be used in boundary
current regions such as the Gulf Stream while keeping larger length scales in the equatorial regions.

As discussed by WC01, anisotropic variations in the correlation functions can be accounted for by generalizing
the diffusion coefficient Kp to a diffusion tensor Kp. The diagonal elements, Kλ

p and Kφ
p, of the tensor can be

adjusted relative to one another to allow the coordinates of the correlation model to be stretched or shrunk in
one of the directions, thereby transforming circular correlation surfaces into elliptical ones. This is a useful
feature to include near the equator where zonal scales are typically greater than meridional scales. More
complicated anisotropic correlations can be produced by introducing off-diagonal terms in the diffusion tensor
through a rotation of the coordinates of the correlation model (WC01).

Since horizontal scales in the ocean (and atmosphere) are generally much larger than vertical scales, it is
convenient to keep a general separation of the correlation model into a horizontal and vertical component as in
(19). This does not mean to say that the 3D correlation functions constructed with the GDE must be defined
to be the product of strictly separable functions of the horizontal and vertical coordinate. For example, it may
be desirable to use a non-separable formulation in which the horizontal (vertical) length scale is a function of
the vertical (horizontal) coordinate. It may also be desirable to define the horizontal and vertical coordinates
of the correlation model to be different from those of the ocean model. In an appropriately defined coordinate
system, the separability assumption may not be a particularly restrictive one. For example, an isopycnal
coordinate defined with respect to the background state would be a natural (flow-dependent) 2D coordinate in
the tropical thermocline, whereas a terrain-following 2D coordinate would be appropriate near coastlines or
near the ocean bottom. Coordinate transformations of these type can be handled within the tensorial formalism
of the GDE and in some cases can be implemented straightforwardly by exploiting existing anisotropic tensors
in ocean model diffusion parametrisations (Griffies et al. 1998; Madec et al. 1998).

5 Numerical aspects

The 3D correlation operator based on the GDE is formulated in grid-point space. The complete numerical
representation of the operator is given by the symmetric product

C � ΛΛΛL1�2 W�1 �L1�2�T ΛΛΛ (20)

�
�

ΛΛΛL1�2 W�1�2
��

ΛΛΛL1�2 W�1�2
�T
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� C1�2 �C1�2�T (21)

where L � Lh Lv is the product of the horizontal (Lh) matrix operator (9) and the vertical (Lv) matrix operator
defined by the inverse of the discrete version of (18). The factor L1�2 � L1�2

h L1�2
v corresponds to M�2 and

N�2 iterations of Lh and Lv, respectively. W is a diagonal matrix of volume elements that define the weights
in the discrete analogue of the scalar product �η1�η2��

���
η1η2 a2 cos φ dλ dφ dz. It enters naturally into the

(symmetric) expression for C since L is self-adjoint with respect to this scalar product (L � W�1LT W). This
property was already used in the 2D case to derive the square-root factorization in (5). It is worth remarking
that even if the discrete representation of the Laplacian operator is not exactly self-adjoint (which may arise,
for example, if the discretised form of a diffusion tensor Kp is not symmetric), the symmetric attribute of a
correlation matrix can still be enforced practically by formulating C, as in (20), as a product of square-root
factors C1�2 and �C1�2�T . The matrix ΛΛΛ in (20) is diagonal and contains normalization factors to ensure that
the diagonal elements of C are equal to unity. These normalization factors are equal to the inverse of the
intrinsic “standard deviations” of L1�2 W�1 �L1�2�T . The computation of these factors is an important aspect
of the algorithm and is discussed shortly.

Figure 2 shows an example from the variational assimilation system for the OPA model (Weaver et al. 2003) of
a correlation pattern generated using an implicit version of the GDE. The correlation pattern has been produced
by applying (20) to a unit impulse located at a grid-point on the equator in the tropical Pacific. A bi-Laplacian
version of the GDE (P � 2 with α1 � 0) with M � 4 iterations has been used in this example. The value of
α2 has been chosen to give an isotropic length scale of 4Æ. The diagonal elements of the diffusion tensor have
been set to Kλ

2 � 4α2 and Kφ
2 � α2�4 to give a locally anisotropic response at the equator. The negative lobes

are clearly visible in Fig. 2, right panel, which shows a 1D representation at the equator of the correlation
pattern in the left panel. Figure 2 gives an excellent match to the correlation function predicted from (14). In
this example, a direct solver designed for sparse, multi-diagonal, symmetric matrices (Duff 2002) was used
to produce an efficient inversion of (10). Iterative techniques such as conjugate gradient could also have been
used to invert (19) (approximately) and these may be better suited for larger and denser versions of the GDE
matrix (e.g., arising from the use of non-diagonal diffusion tensors) than the one considered in this example.

In an ocean model, the application of a correlation operator is complicated by the presence of continental
boundaries. Boundary conditions can be imposed directly within a finite-difference representation of a Lapla-
cian operator using a land-ocean mask array. This is a standard technique to account for complex boundaries
in ocean models while keeping the symmetry of the finite-difference expression of the Laplacian (e.g., Madec
et al. 1998). The application of the boundary condition will generally result in large changes in the amplitude
of the GDE-generated covariance structures over short distances near the boundary. This is not a significant
problem provided the amplitude can be estimated accurately and the normalization factors modified accord-
ingly to ensure that the resulting covariance function has unit amplitude.

For the homogeneous and isotropic formulation of the GDE, the normalization matrix is simply a constant
multiple of the identity matrix I (e.g., ΛΛΛ �

�
4πa2�h�0� I for the 2D GDE in (13)). For anisotropic and

inhomogeneous versions of the GDE, the normalization factors are no longer constant and a specific algorithm
is required to compute them. Let Λi denote the i-th diagonal element of ΛΛΛ. Letting vi � �0� ����0�1�0� ����0�T ,
where the non-zero element is defined at the i-th grid point, then it follows from (20) that

Λi �
��vT

i �vi
�
�1�2

(22)

where

�vi � W1�2 L1�2 vi� (23)

Each element of ΛΛΛ can thus be computed exactly by applying the square root of the GDE operator to a unit
impulse at each grid point. For a model with O�105 � 106� independent grid points, the entire computation
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Figure 2: Left panel: horizontal section of a correlation function generated using an implicit version of the
GDE with P� 2 (α1 � 0) and M � 4. The value of α2 has been chosen to give an isotropic length scale of
4Æ. The correlations have been made anisotropic by stretching (shrinking) them zonally (meridionally) by a
factor of 2. Right panel: the amplitude (vertical axis) of the correlation function as a function of longitude
at the equator.

is clearly expensive. This may not be such a critical issue if the parameters of the correlation model are held
constant from one assimilation cycle to the next since these factors would only need to be computed once, on
the first assimilation cycle. However, if the parameters are varied between cycles, which would be the case
for example with flow-dependent formulations of the diffusion tensor, then the normalization factors would
have to be recomputed at the start of each assimilation cycle. To compute these factors on each cycle using the
above method would lead to an enormous increase in the overall cost of the assimilation algorithm.

A practical algorithm for estimating the normalization factors is randomization (Fisher and Courtier 1995; An-
dersson 2003). The randomization algorithm is also based on several applications of the square-root operator
but generally far fewer applications than required by the exact method. Let vr denote a random vector with the
property that E�vr� � 0 and E�vr vT

r � � I, and define the square-root operator

�vr � L1�2 W�1�2 vr (24)

so that E��vr�vT
r � � L1�2 W�1 �L1�2�T . Therefore, given an ensemble of R random vectors

Λi 

�

diagi

�
1

R�1

R

∑
r�0

�vr�vT
r

��
�1�2

(25)

where the randomization error is proportional to 1�
�

R. The effect of the ensemble size on the accuracy of the
correlations is illustrated in Fig. 3. Figure 3a shows an example of a “correct” correlation pattern for which
the normalization factors have been computed exactly. Figures3b and c show that the pattern produced using
randomization estimates of the normalization factors for ensemble sizes of R � 100 and R � 1000; Figs3d
and e show their difference from the “correct” correlation pattern in Fig.3a. For R � 100, there is noticeable
distortion of the correlation pattern, with a maximum error of 0.14. Randomization errors of this magnitude
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may lead to a small source of noise in the analysis (Fig. 3d). It will also implicitly modify the effective
background-error standard deviations used in the analysis, but this effect may be relatively unimportant given
our uncertainty of the true statistics of background error. For R � 1000, the distortion of the correlation pattern
from the randomization error is hardly visible by eye (the maximum error is 0.04). Purser et al. (2003b)
describe another method for estimating the normalization factors which also makes use of the square-root
operator. Their method provides a good estimate of the normalization factors providing the scale parameters
(Kp) are smoothly and slowly varying functions of the model’s spatial coordinates.
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Figure 3: a) An example of a time-explicit GDE-generated correlation function where the normalization factors
have been computed exactly. The same correlation function but with the normalization factors estimated from
randomization with b) R � 100 and c) R � 1000. Panels d) and e) show the respective difference of the
correlations in panels b) and c) with the exact correlations in panel a). The contour interval is 0.1 in a)–c) and
0.02 in d) and e).

Finally, it is worth pointing out the similarity between the time-implicit GDE and the recursive filter (Lorenc
1992; Purser et al. 2003a,b; Wu et al. 2003; Derber et al. 2003) approaches to correlation modelling. The
connection between these methods is evident by considering the numerical solution of the inverse of the 1D
equation (18) on an infinite domain in which the matrix representation of the second-derivative operator is
decomposed into a symmetric Cholesky factorization GGT where G �GT � is a lower (upper) triangular matrix
(Golub and Van Loan 1989). As discussed by Purser et al. (2003b), inverting equation (18) can then be
obtained through a sequence of forward-elimination and backward-substitution steps analogous to the forward
and backward iterations of the recursive filter. Supplied with appropriate boundary conditions on a finite
domain, the recursive filter can in turn be matched to the forward-backward solution of the Langevin equations
used in the representer method to evaluate a 1D (temporal) covariance operator with an exponential correlation
function (Bennett et al. 1996; Chua and Bennett 2001; Ngodock 2003).

336



WEAVER AND RICCI: CORRELATION MODELLING USING GENERALIZED DIFFUSION OPERATORS

6 Conclusions

Generalized diffusion operators provide a well-based theoretical and practical framework for constructing gen-
eral correlation models for data assimilation. In addition, they have the appealing feature of being conceptually
straightforward, providing a “physically” intuitive way of interpreting the smoothing action of a correlation op-
erator. Time-explicit diffusion schemes are much simpler to implement than time-implicit schemes. However,
they have the disadvantage of restricting the class of correlation functions that the GDE can represent to those
with high wavenumber variance spectra that decay at least as fast as the Gaussian. In addition, explicit schemes
can be computationally expensive since a large number of iterations may be required to keep them stable. What
is the most efficient method for solving a time-implicit GDE is an open question. Direct solvers are ideal for
relatively small problems such as the one considered in the example in this paper, but become memory inten-
sive and cumbersome for larger problems and on complicated grids. Iterative techniques could be promising
provided good preconditioners can be found.
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