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1 Introduction

The purpose of this chapter is to introduce the reader to promising new experimental methods for atmospheric
data assimilation involving the use of ensemble forecasts. There is a natural linkage between data assimilation
and ensemble forecasting: ensemble forecasts are designed to estimate the flow-dependent uncertainty of the
forecast; data assimilation techniques require accurate estimates of forecast uncertainty in order to optimally
blend the prior forecast(s) with new observations. Our intent is to demonstrate more concretely how these
two endeavours are united and how and why this union may improve the quality of both initial conditions and
ensemble forecasts.

Rather than launching into the specifics of recently proposed ensemble-based assimilation techniques, we will
take a step back and try to motivate their use by quickly developing them from first principles, noting the
approximations that have been made along the way. This will take us from full Bayesian data assimilation,
which is conceptually simple but computationally prohibitive, to the Kalman filter, somewhat of a simplifica-
tion, to the ensemble Kalman filter, which is perhaps more computationally tractable and more accurate. We
will then discuss some of the algorithmic techniques and the lessons learned from preliminary experiments with
ensemble-based data assimilation systems.

The reader is presumably familiar with the scientific underpinnings of chaos theory (Lorenz 1993). Most
specifically, for ensemble-based data assimilation, we will depend on the property that differences between
model states in a chaotic system will grow in a greatly reduced dimensionality subspace relative to the number
of degrees of freedom in the model. A smaller dimensional subspace in which the variance among model states
resides is important for the success of ensemble forecasting and ensemble data assimilation. If errors were
likely to grow equally and independently in every possible direction, for a forecast model with 107 degrees
of freedom, an ensemble of size 102 would be nearly useless for modeling the structure of forecast errors,
spanning an irrelevant 10

� 5 of the important directions. The more that forecast errors are contained in a small
subspace of a few particular directions, the more information in a limited-size ensemble (Tippett et al. 2000).
Fortunately, it appears that differences among ensemble member tend to grow in a relatively limited number of
directions in weather forecast models.

Why bother with ensemble-based assimilation techniques? Over the past decade, the operational weather pre-
diction facilities have worked very hard to implement four-dimensional variational analysis techniques (4D-Var;
Le Dimet and Talagrand 1986, Courtier et al. 1994, Rabier et al. 1998, 2000). These techniques are now con-
sidered the state of the art in atmospheric data assimilation. In 4D-Var, we typically seek to find a model
trajectory that best fits the observations over some recent period of time, perhaps the last 6-24 h. The model
state at the end of this time window is the control initial condition around which an ensemble of forecast initial
conditions may be generated. And 4D-Var has shown great promise. In particular, the European Centre for
Medium Range Weather Forecasts (ECMWF) has noted dramatic improvements in the accuracy of their anal-
yses and subsequent forecasts, in part due to the use of 4D-Var. Given this, it is worth asking up front: why
consider ensemble-based data assimilation techniques? Can they possibly produce better analyses than 4D-Var?
Only comparative tests will settle this issue, and so far, such comparisons are lacking. Still, we do know that
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4D-Var still has many significant disadvantages that may be easier to address using ensemble techniques. For
example, the forecast model used in 4D-Var may not adequately represent the true dynamics of the atmosphere,
i.e., model error may be significantly large. Other limitations may include the difficulty of generating an ac-
curate model of background-error covariances used in 4D-Var and the costs of coding and executing accurate
tangent-linear and adjoints models. Consequently, 4D-Var may fit a model trajectory that was significantly
different than the trajectory of the real atmosphere during that time window. Such problems were suggested in
tests with the operational version of 4D-Var at ECMWF (Rabier et al. 2000); when a 6-h assimilation window
was used, 4D-Var outperformed 3D-Var, but not when longer assimilation windows were used. In contrast,
model imperfections can be dealt with in a straightforward manner in ensemble techniques, and no adjoint nor
tangent-linear codes are required. The algorithmic simplicity of these techniques and the fact that they produce
an ensemble of analyses make them especially attractive for ensemble forecasting applications.

In subsequent discussion we also will assume that the atmosphere state, which is of course a continuum, can
be adequately described in discretized fashion, perhaps by the values of winds, temperature, humidity, and
pressure at a set of grid points.

2 Bayesian Data Assimilation

Conceptually, the atmospheric data assimilation problem is a relatively simple one. We would like the best
estimate of the probability density function (pdf) for the current atmospheric state given all current and past
observations. Much of the material in this section follows the work of Jazwinski (1970). If the reader is
interested in further material on the subject, Lorenc (1986) provides a formulation of data assimilation in a
Bayesian context, and Talagrand (1997) provides an excellent review of the data assimilation and in particular,
the Kalman filter discussed in Section 3. Cohn (1997) provides a more rigorous statistical basis for the problem.
We attempt here to use the minimum math possible to guide the reader along the path from Bayesian data
assimilation to the ensemble Kalman filter.

Assume the following notational conventions. Random variables for the model state and observations are de-
noted by capital letters, while the possible values that they may take on are denoted by small letters. Generally,
boldface characters will denote vectors or matrices, while use of the normal font denotes a scalar. Thus, if
we use the letter “x” to denote the model state, X indicates the random vector denoting the true model state,
x � � x � 1 ���������	� x � n ��
 denotes a specific n-component vector value, and P � X � x  indicates the probability density
that the true state of the random vector is the value x. Denote the associated random vector for the observations
again with capitalized letters, i.e., Ψt. This random vector includes observations Yt at the most recent time as
well as observations at all previous times Ψt � 1

� �
Yt � 1 �������	� Y0 
 , which we condense to Ψt

� �
Yt � Ψt � 1 
 . De-

note a possible vector value for the observations as �ψt
� � �y � �ψt � 1 
 . Also assume we have a collection of actual

observations ψt
� � yt � ψt � 1 
 , There are Mt observations at time t, i.e., yt

� � yt � 1 � �������	� yt � Mt � 
 .
Formally, the problem we seek to solve is the following: P � Xt

� xt � Ψt
� �ψt  . That is, we’d like the best

probability density estimate of the current atmospheric state provided the current and past observations take on
specified values. Bayes’ Rule tells us that this quantity can be re-expressed as

P � Xt
� xt � Ψt

� �ψt  ∝ P � Ψt
� �ψt � Xt

� xt  P � Xt
� xt  � 1 

Bayes’ Rule is usually expressed with a normalization constant in the denominator on the right-hand side of
(1); for simplicity, we have dropped that and assume that when coded, the user ensures that probability density
integrates to 1.0.

Let us make one hopefully minor assumption: observational errors are independent from one time to the next.
Hence, P � Ψt

� �ψt  � P � Yt
� �y  P � Ψt � 1

� �ψt � 1  . This may not be true for observations from satellites, where
instrumentation biases may be difficult to remove. Also, errors of observation representativeness (Daley 1991)
may be flow-dependent and correlated in time. But under this assumption, (1) is equivalent to

P � Xt
� xt � Ψt

� �ψt  ∝ P � Yt
� �y � Xt

� xt  P � Ψt � 1
� �ψt � 1 � Xt

� xt  P � Xt
� xt  � 2 
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By Bayes’ Rule again, P � Ψt � 1
� �ψt � 1 � Xt

� xt  P � Xt
� xt  ∝ P � Xt

� xt � Ψt � 1
� �ψt � 1  . Hence, (2) simplifies

to
P � Xt

� xt � Ψt
� �ψt  ∝ P � Yt

� �y � Xt
� xt  P � Xt

� xt � Ψt � 1
� �ψt � 1  � 3 

Equation (3) is elegantly simple. This is a recursive relationship: the “posterior,” the pdf for the current model
state given all the observations is a product of the the probability distribution for the current observations
P � Yt

� �y � Xt
� xt  and the “prior,” P � Xt

� xt � Ψt � 1
� �ψt � 1  also known as the “background.” Typically, it is

assumed in (3) that P � Yt
� �y � Xt

� xt  is a probability distribution centered in some manner about the actual
observed values; for example, perhaps P � Yt

� �y � Xt
� xt �� N � yt � R  , that is, the pdf is normally distributed

about yt with some observation-error covariance matrix R. The prior is the pdf of the model state at time t given
all the past observations up to time t � 1. Typically, the prior will have been estimated from a cycle of previous
data assimilations and short-term forecasts up to the current time.

Let’s now demonstrate Bayesian assimilation with a simple example. Suppose we have an estimate of the
prior P � Xt

� xt � Ψt � 1
� �ψt � 1  for a two-dimensional model state. This was produced by assimilating all prior

observations up to and including time t � 1 and estimating in some manner how that pdf has evolved in the
time interval between t � 1 and t. We now want to update the pdf given a new scalar observation y, which
in this example is observing the same quantity as the first component of the state vector measures. The pdf
for the observation P � Yt

� �yt � Xt
� xt  is assumed to be distributed normally about the actual observation,

Yt � N � yt � σ 2  . Here, let yt
� 58 and σ 2 � 100.

Selected contours of the prior are plotted in Fig. 1(a); as shown, the prior is bimodal. The shape of the marginal
distributions P � Xt � 1 � � xt � 1 � � Ψt � 1

� �ψt � 1  and P � Xt � 2 � � xt � 2 � �Ψt � 1
� �ψt � 1  are plotted on each axis in solid

lines. The dashed line denotes the observation probability distribution P � Yt
� �yt � Xt

� xt  . This probability
varies with the value xt � 1 � , but given xt � 1 � is the same for any value of xt � 2 � . The updated posterior distribution
is computed using (3) and is shown in Fig. 1(b). Note that the assimilation of the observation enhanced the
probability in the lobe overlapping the observation distribution and decreased it in the other lobe. Overall, the
posterior distribution is more sharp (specific) than the prior, as is expected.

Unfortunately, Bayesian data assimilation without some simplification is not practical for real-world numerical
weather prediction applications. One problem with modeling a complicated pdf in higher dimensions is the
“curse of dimensionality” (e.g., Bellman 1961, Hastie et al. 2001). Were one to try estimate the probability
density in a higher-dimensional space using a small ensemble, one would find that the model of probability
was very poor unless simplifying assumptions about the form of the distribution were made. Even were this
problem surmountable, the computational cost would be extravagant. In the prior example we evaluated the
probability density on a 100 � 100 grid. Suppose a similarly complicated structure for the prior existed in 100
dimensions. Then if we were to keep track of joint probabilities on a similar grid for each dimension, this
would involve evaluating and modifying 100100 density estimates. Such computations are already prohibitive
for a 100-dimensional model state; the problem becomes incomprehensible for model states of O � 107  . Clearly,
some simplification is required.

3 The Kalman Filter

3.1 The Discrete Kalman Filter

Non-normality of the prior such as the bimodality in Fig. 1(a) is typically assumed to be uncommon in atmo-
spheric data assimilation. This assumption is probably justified; at least for temperature and winds, the error in
the prior is approximately normally distributed, is usually relatively small compared to the error of a random
model state, and grows linearly over a short period of time. These assumptions may be bad ones for moisture,
cloud cover, and other aspects of the model state that may be very sensitive to motions at small scales, where
the time scale of predictability is small and errors grow and saturate rapidly. But let us assume normality and
linearity of error growth. Then Bayesian data assimilation computations can be simplified. Accordingly, we
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make the following assumptions:

P � Xt
� xt � Ψt � 1

� �ψt � 1 �� N � xb
t � Pb

t  ∝ exp

� � 1
2
� xt � xb

t  TPb
t

� 1 � xt � xb
t �� � 4 

That is, the probability density of the prior is normally distributed with known mean background xb
t and

background-error covariance matrix Pb
t . Similarly, assume that the observations are distributed normally with

mean yt and covariance R:

P � Yt
� �y � Xt

� xt �� N � yt � R  ∝ exp

� � 1
2
� Hxt � yt  T R

� 1 � Hxt � yt �� � 5 
Here, H is a linear operator that converts the model state to the observation type and location. Applying (3),

P � Xt
� xt � Ψt

� �ψt  ∝ exp

� � 1
2
� xt � xb

t  T Pb
t

� 1 � xt � xb
t �� 1

2
� Hxt � yt  TR

� 1 � Hxt � yt  � � 6 
Maximizing (6) is equivalent to minimizing the negative natural log of (6), i.e., to minimizing the functional
J � xt  according to

J � xt  � 1
2

� � xt � xb
t  T Pb

t

� 1 � xt � xb
t ���� Hxt � yt  TR

� 1 � Hxt � yt �� � 7 
This functional is a common starting point in the derivation of many assimilation schemes, from the Kalman
filter to 3-dimensional variational assimilation (“3D-Var;” e.g., Lorenc 1986, Parrish and Derber 1992). We
would like to choose the value that minimizes this functional, providing the best fit between the new observa-
tions and the prior. Let’s call this best fit state the “analysis,” or xa

t . xa
t can be found by the differentiating the

functional in (7) with respect to xa
t , setting the result equal to zero, and proceeding with some manipulation. A

full derivation is provided in Appendix 1. The resulting “update” equations are

xa
t
� xb

t � K � yt � Hxb
t  � 8 

where
K � Pb

t HT � HPb
t HT � R  � 1 � 9 

The optimal analysis state xa
t is estimated by correcting the background xb

t toward the “observation increment”
yt � Hxb

t , weighted by the Kalman gain matrix K. The effect of the K is to use the observation increments to
correct the background at relevant surrounding grid points. On average, the corrections are typically larger for
grid points near to the observation location than for grid points far from the observation location. However,
the appeal of the Kalman filter relative to an analysis scheme like 3D-Var is that the structure of the analysis
increments xb

t � xa
t can be quite complicated. This structure depends on the background-error covariances,

which are affected by the corrective action of previous observations on previous forecasts as well as the chaotic
dynamics since the last update. We will provide some examples in section 8 of complicated background-error
structures in the context of an ensemble Kalman filter.

The basic statistics of the Kalman filter update can be understood if one considers a one-dimensional state
vector updated to a single observation. Assume H=1. Under these assumptions, (8) simplifies to

xa
t
� xb

t � Pb
t

Pb
t � R

� yt � xb
t � R

Pb � R
xt

b � Pb

Pb � R
yt (10)
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The analysis state thus is a weighted linear combination of the background and the observation (Daley 1991).
The smaller the observation error is relative to the background, the more the analysis is drawn toward the
observation. Analogies for multiple dimensions will be discussed in later sections.

Equations (8) and (9) indicate how to predict the most likely state, but the accuracy of these calculations depends
on the accuracy of Pb

t and R. For atmospheric data assimilation, the latter, R, is usually derived from extensive
calibration and validation field experiments. Error statistics for R are usually assumed to be independent of the
flow; the same error statistics are used for different observations of the same type, regardless of location, time,
and synoptic conditions. Background-error statistics are explicitly updated in the Kalman filter. Given Pb

t , R,
and the observation locations (implied in H), the analysis-error covariance Pa

t is predicted. A forecast is then
made of how analysis-error covariances will evolve in time until the next assimilation cycle. The equation for
the expected Pa

t is

Pa
t
� � I � KH  Pb

t� Pb
t � KHPb

t� Pb
t � Pb

t HT � HPb
t HT � R  � 1HPb

t

(11)

The derivation of this is also provided in Appendix 1.

The form of (11) indicates that the analysis-error covariance is a correction to the background error covariance.
The magnitude of covariances are reduced, with the amount that they are reduced reflected in KHPb

t . If we
consider the one-dimensional system again as in (10), we find that

Pa
t
� Pb

t � Pb
t

Pb
t

Pb
t � R� Pb

t � R
Pb

t � R �
(12)

Hence, the smaller the magnitude of R (the more accurate the observation) relative to Pb
t , the greater the frac-

tional reduction of error covariance.

Given xa
t and Pa

t , we will need to evolve the expected analysis and the covariances forward in some fashion to
produce an estimate of background-error covariances at time t � 1. In the discrete Kalman filter, we suppose
that the true model state evolves according to the equation

xt � 1
� Mxt � η � 13 

That is, the forecast evolution can be expressed as the sum of a linear operation on the current model state
Mxt plus an unknown error η , also known as the “system noise.” M is an m � m matrix, often called the
transition matrix between times t and t � 1. Since we describe the discrete Kalman filter only to motivate use
of the ensemble Kalman filter, algorithmic details like the method of calculation of M will be skipped; these
details are not crucial to the understanding of ensemble filters. η is assumed to have an expected value of

zero  η ! � 0 and to be uncorrelated in time, with expected covariance Q :  ηpηT
q ! � Qδpq where δ is the

Kronecker delta, and p and q denote two assimilation times. In practice, accurately determining the statistics of
Q may be somewhat involved (Dee 1995).

Given our model in (13), if we are looking for the best estimate of the evolution of the mean state (e.g.,
Talagrand 1997), this is simply (13) without the noise term:

xb
t � 1

� Mxa
t � 14 
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We also require an estimate of the background-error covariances at the next assimilation time. Assuming that

the system noise is uncorrelated with the tangent-linear dynamics,  M � xa
t � xt  ηT ! � 0, we get

Pb
t � 1

�  �� xb
t � 1 � xt � 1 "� xb

t � 1 � xt � 1  T !�  � Mxa
t � Mxt � η "� Mxa

t � Mxt � η  T !�  �� M � xa
t � xt �� η "� M � xa

t � xt #� η  T !� MPa
t MT � Q� M � MPa

t  T � Q (15)

Given an operator M, this is how analysis-error covariances are evolved in the discrete Kalman filter.

3.2 The extended Kalman filter

Before considering ensemble data assimilation methods, we touch briefly on an extension to the discrete
Kalman filter called the extended Kalman filter, where some of the assumptions of linearity are relaxed. First,
suppose the assumption of linearity in (13) is a poor one; perhaps were one to use a fully nonlinear model
operator $ , i.e.,

xt � 1
� $ xt � η � 16 

then η would be much smaller. Accordingly, in the extended Kalman filter, one assumes that the mean state
will be evolved according to

xb
t � 1

� $ xa
t � 17 

intead of using (14). If differences xa
t � xt are small, then the evolution of these difference should be approxi-

mately linear: $ xa
t �%$ xt & M � xa

t � xt  � 18 
where here M is the Jacobian matrix of $ : M � ∂ '

∂x .

Let’s also relax the restriction that the forward operator H in (5) be linear. We replace it with a (perhaps
nonlinear) ( . Again, we presume that differences like xb

t � xt are small enough so that the innovation vector
yt �)( xb

t
� ( xt �)( xb

t � ε can be approximated with H � xt � xb
t �� ε , where now H � ∂ *

∂x .

Given these relaxed assumptions, one can proceed to derive an alternate form of the Kalman filter update
equations. The derivation of these is beyond the scope of this note but is discussed in Jazwinski (1970). We will
be content here to simply note the changes. In addition to assuming that the mean state is evolved nonlinearly
in (17), the update equations is changed. (8) and (9) are replaced by

xa
t
� xb

t � K � yt �+( xb
t  � 19 

where
K � Pb

t HT � HPb
t HT � R  � 1 � 20 

Covariance propagation is done as in (15).

3.3 Considerations in use of Kalman filters

Though Kalman filters provide a dramatic reduction in the computational cost relative to full Bayesian data
assimilation, for a highly dimensional state vector, the computational costs in weather prediction models may
still be extravagant. Consider the last line in (14). For an n-dimensional model state vector, it will require
2n applications of M to forecast the error covariances. Some reductions of computational expense may be

88



HAMILL. T.M.: ENSEMBLE-BASED DATA ASSIMILATION

possible. For example, there have been suggestions that this computation may be more practical if the tangent-
linear calculations are performed in a subspace of the leading singular vectors (Fisher 1998, Farrell and Ioannou
2001).

There is also the potential disadvantage of the assumption of linearity of error growth. While errors for large-
scale variables may reasonably be assumed to grow linearly over a typical period between assimilation cycles
of 3-6 h, some aspects, especially moist thermodynamic variables, may have errors which saturate on this time
scale.

Much more can be said about the Kalman filter, such as its equivalence to 4D-Var under certain assumptions
(perfect model, linearity, Gaussianity), the manner of computing M, iterated extensions of the basic extended
Kalman filter (Jazwinski 1970, Cohn 1997), and the properties of its estimators (which, in the case of the dicrete
filter, if assumptions hold, provide the Best Linear Unbiased Estimate, or BLUE; see Talagrand 1997). These
Kalman filters, however, are here but stepping stones toward the assimilation method we want to focus on, the
ensemble Kalman filter.

4 The Ensemble Kalman Filter

Many research groups have sought practical remedies for the computational expense of the Kalman filter. One
promising approach is a technique that has been dubbed the ensemble Kalman filter, or “EnKF.” The EnKF’s
modern roots go back to Evensen (1994), though similar ensemble filters have been used for engineering and
aerospace applications as far back as the 1960’s (Potter 1964, Maybeck 1979). Here, we will provide a deriva-
tion of the EnKF. The subsequent sections will describe more fully some practical algorithmic details concern-
ing how to implement ensemble filters as well as some demonstrations of their usefulness.

The main difference between the EnKF and the Kalman filter is that background-error covariances for the data
assimilation are estimated from a finite sample of fully nonlinear ensemble forecasts. These ensemble forecasts
start from a set of initial conditions that were created by the previous iteration of the EnKF. The EnKF is both an
approximation to and an extention of the Kalman filter. Since covariances are estimated from a finite sample,
they may be worse than those predicted by the Kalman filter. However, the Kalman filter itself makes the
approximation that error covariances evolve according to linear dynamics, whereas the EnKF makes no such
assumption. Hence, if error dynamics are strongly nonlinear, the EnKF may produce a more accurate estimate
relative to the Kalman filter. However, to the extent that error dynamics are linear, we would like the behavior
of the EnKF to converge to that obtained from the extended Kalman filter as the ensemble size increases.

The body of literature on ensemble-based data assimilation for atmospheric and oceanographic applications
has blossomed in recent years (e.g., Evensen 1994, Evensen and van Leeuwen 1996, Burgers et al. 1998,
Houtekamer and Mitchell 1998, 2001, van Leeuwen 1999, Lermusiaux and Robinson 1999, Anderson and
Anderson 1999, Hamill and Snyder 2000, Keppenne 2000, Mitchell and Houtekamer 2000, Heemink et al.
2001, Hamill et al. 2001, Anderson 2001, Pham 2001, Whitaker and Hamill 2002, Reichle et al. 2002, Tippett
et al. 2002, Mitchell et al. 2002). These articles describe the EnKF as well as various proposed extensions or
variants on its basic design. Hopefully, this literature will be more readily accessible with an understanding of
the basics provided here.

4.1 Update equations

We first demonstrate how an ensemble of background forecasts are updated in the EnKF and how they will
have the correct asymptotic properties as ensemble size increases.

For notational simplicity, in this section we will drop the t time subscript used in previous sections; it is assumed
unless noted otherwise that we are interested in the analysis at time t. We start off by assuming that we have an
ensemble of forecasts that randomly sample the model background errors. Let’s denote this ensemble as Xb,
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defined by
Xb � � xb

1 �������,� xb
m  � 21 

where the subscript now denotes the ensemble member. Xb is thus a matrix whose columns are comprised of
ensemble member’s state vectors. We define the ensemble mean xb as

xb � 1
m

m

∑
i - 1

xb
i � 22 

The perturbation from the mean for the ith member is x . bi � xb
i � xb. Let’s define an ensemble of perturbations

X . b as
X . b � � x . b1 �������	� x . bm  � 23 

Let P̂b represent an estimate of Pb from a finite ensemble:

P̂b � 1
m � 1

X . bX . bT � 24 
Also, let $ denote the full, nonlinear forecast model operator that integrates the model state from time t to
t � 1.

Our goal is to construct a data assimilation system such that if the ensemble size is infinite and if the dynamics
are linear, i.e., if $/� xa

1 0�)$/� xa  � M � xa
1 � xa  , where M � ∂ '

∂x is the Jacobian of $ , we will converge to
the extended Kalman filter solution. To wit, the core idea of the the EnKF is to run an ensemble of parallel
data assimilation cycles, i � 1 �������	� m, with each member updated to a somewhat different realization of the
observations, as illustrated in Fig. 2:

xa
i
� xb

i � K̂ � yi �+( xb
i  � 25 

Here, K̂ � P̂b ( T �1( P̂b ( T � R  � 1. ( is the observation operator, which is permitted here to be a nonlinear
operator. For future reference, as with the extended Kalman filter, let’s define H as the Jacobian of ( : H � ∂ *

∂x .
In (25), the yi

� y � y .i are “perturbed observations,” defined such that y .i � N � 0 � R  and we ensure that

1
m

m

∑
i - 1

y .i � 0 �
The m sets of perturbed observations are thus created to update the m different background fields.

For a complex numerical weather prediction model with a high-dimensional state vector, explicitly forming P̂b

as in (24) would be computationally prohibitive; for example, in a model with 106 degrees of freedom, storing
and readily accessing the 1012 elements of P̂b is not possible. However, in the EnKF, K̂ can be formed without
ever explicitly computing the full P̂b. Instead, the components of P̂b ( T and ( P̂b ( T of K̂ are computed
separately. Define ( xb � 1

m

n

∑
i - 1

( xb
i �

which represents the mean of the estimate of the observation interpolated from the background forecasts. Then

P̂b ( T � 1
m � 1

m

∑
i - 1 2 xb

i � xb 3 2 ( xb
i � ( xb 3 T � � 26 

and ( P̂b ( T � 1
m � 1

m

∑
i - 1 2 ( xb

i � ( xb 3 2 ( xb
i � ( xb 3 T � � 27 

If departures from nonlinearity are again small, then ( xb
i � ( xb & H � xb

i � xb  . In this case,

P̂b ( T & 1
m � 1

m

∑
i - 1 2 xb

i � xb 3 2 xb
i � xb 3 T

HT � P̂bHT � � 28 
90



HAMILL. T.M.: ENSEMBLE-BASED DATA ASSIMILATION

and ( P̂b ( T & 1
m � 1

m

∑
i - 1

H 2 xb
i � xb 3 2 xb

i � xb 3 T
HT � HP̂bHT � � 29 

Hence, K̂ 4 K of the extended Kalman filter when P̂b 4 Pb, which occurs as m 4 ∞. Note that essentially what
we are doing in (26) and (27) is using the ensemble to make a square-root representation of the background-
error covariance. This trait will be shared among ensemble filters; see Tippett et al. (2002) for more discussion
of this.

Why run a set of parallel data assimilation cycles, assimilating perturbed observations? We now would like to
show that in the limit of infinite ensemble size, we end up with the same update equations in the EnKF that
would be produced by the extended Kalman filter. Again, we assume that departures from nonlinearity in the
observation operator are relatively small so that ( xb & ( xb. The EnKF’s update for the ensemble mean state
is thus

xa � 1
m

m

∑
i - 1

xa
i� 1

m � m

∑
i - 1

xb
i � K̂ � m

∑
i - 1

yi � m

∑
i - 1

( xb
i �� xb � K̂ � y � ( xb & xb � K̂ � y �)( xb 

(30)

Thus, (30) is equivalent to the extended Kalman filter update equation (19) as m 4 ∞, assuming ( is approx-
imately linear.

The equation to show the asymptotic equivalence of the analysis-error covariances is much more tedious to
derive. Interested readers can see the full derivation in Appendix 2. For here, we are content to note that again,

as m 4 ∞, P̂a � 1
m � 1  X . aX . aT !54 Pa � � I � KH  Pb as was defined for the extended Kalman filter. As shown

in Appendix 2, the covariance estimates from the extended and ensemble Kalman filters are equivalent only if
the observations are perturbed.

Ideally, we would hope to produce a quality ensemble of analyses even when m is small; the more members,
the larger the computational cost of the EnKF. To the extent that the error covariances can be approximated
reasonably by a small sample m 676 n, the EnKF will have a large computational advantage over the extended
Kalman filter.

4.2 Error covariance propagation and model-error parameterization

We have not discussed yet how to evolve the analysis-error covariances forward to produce an estimate of
background-error covariances for the next assimilation time. In the discrete and extended Kalman filters,
analysis-error covariances were propagated using the linear tangent and adjoint of the forecast model (eq 15),
and a covariance Q was added to account for the uncertainty due to model error. In the ensemble Kalman filter,
we’d like to take advantage of the potential increase in accuracy that may result from estimating covariances
from an ensemble propagated with the fully nonlinear forecast model. If forecast-error dynamics are in fact
quite nonlinear and saturate quickly, then the assumption of linearity in the discrete and extended Kalman filters
was inappropriate, and some accuracy may be gained relative to the Kalman filters by estimating covariances
from a sample of fully nonlinear model forecasts (Miller et al. 1999).

As we will see, we cannot just estimate background-error covariances at the next assimilation cycle by con-
ducting an ensemble of forecasts forward from the current cycle’s analyses. To understand why, let’s return to
(16). Because of model deficiencies, even if the true state of the atmosphere is perfectly known, the resulting
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forecast will be imperfect: x � t � 1 � � $ x � t � � η , where here we denote the time index in parentheses. Let’s

first assume that our forecast model is unbiased  η ! � 0, again with model-error covariance  ηηT ! � Q.

In practice, the assumption of no bias is probably not justified, and if the bias can be determined, the fore-
casts ought to be corrected (Dee and Todling 2000). In any case, we propagate an analysis state estimate
forward and examine the error covariance at the next assimilation time. Assume again that forecast error

and model error are uncorrelated  2 $8� xa
i � t � 0�)$/� x � t �  3 ηT ! � 0, and assume linearity of the error growth$/� xa

i � t � 9�:$8� x � t �  & M 2 xa
i � t � � x � t � 3 . Then the true background-error covariance at the next assimilation time

is  ;� xb
i � t � 1 � � x � t � 1 � <� xb

i � t � 1 � � x � t � 1 �  T ! �  ���$ xa
i � t � �+$ x � t � � η =��$ xa

i � t � �%$ x � t � � η  T !&  M 2 xa
i � t � � x � t � 3 2 xa

i � t � � x � t � 3 T
MT ! �  ηηT !� MPa

t MT � Q (31)

Consider what happens when we estimate covariances directly from an ensemble of forecasts. Say we propagate
our ensemble of i � 1 �������,� m analyses forward with the fully nonlinear forecast model

xb
i � t � 1 � � $8� xa

i � t �  � � 32 
Calculating the covariance, we get

 �� xb
i � t � 1 � � xb� t � 1 � >� xb

i � t � 1 � � xb� t � 1 �  T ! �  2 $/� xa
i � t � ��+$/� xa� t �  3 2 $/� xa

i � t � ��+$/� xa� t �  3 T !&  M 2 xa
i � t � � xa� t � 3 2 xa

i � t � � xa� t � 3 T
MT !& MP̂a� t � MT (33)

Comparing (31) and (33), we can see that an ensemble of analyses that are simply propagated forward with the
nonlinear forecast model will have too small an expected amount of spread, missing the extra covariance Q. Let
us define some hypothetical set of background forecasts at time t � 1 that do have the correct covariance, i.e.,

define xb
i � t � 1 � such that  �� xb

i � t � 1 � � xb� t � 1 � >� xb
i � t � 1 � � xb� t � 1 �  T ! � MP̂a� t � MT � Q. Such an ensemble is possible if

we add noise to our existing ensemble:
xb

i � t � 1 � � xb
i � t � 1 � � ξi � 34 

where  ξiξ
T
i ! � Q and  ξi ! � 0.

Several methods have been considered for incorporating noise into the ensemble of forecasts so that they ac-
count for model error. First, one could actually make the forecast model stochastic, adding terms to the prog-
nostic equations to represent interactions with unresolved scales and/or parameterized effects; in essence, $
is changed so that the ensemble of forecasts integrates random noise in addition to the determininstic forecast
dynamics. Over an assimilation cycle, this additional variance added to the ensemble as a result of integrating
noise should increase the covariance by the missing Q. Another possibility is that one may choose to run a
forecast model without integrating noise but to add noise to each member at the data assimilation time so as to
increase the ensemble variance appropriate to the missing Q. Third, it may be possible to use a multi-model
ensemble to estimate covariances.

Little work has yet been done on the first of these three approaches. Buizza et al. (1999) demonstrated a
simple technique for integrating noise to account for deterministic sub-gridscale parameterizations. Under
their methodology, the parameterized terms in the prognostic equations were multiplied by a random number.
The method was quite heuristic but appears to have increased the spread in the ensemble forecasts somewhat
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and increased their skill. Penland (2002) outlines a more general approach for integrating system noise in
numerical models. To date, however, a comprehensive noise integration scheme has not yet been demonstrated
in an operational weather prediction model. Still, this is a promising avenue for more research: the problem
of deficient spread in ensemble forecasts will of course affect longer-range forecasts as well as shorter ones
between data assimilation cycles. If the methodology can be designed for data assimilation purposes, it could
be used to ameliorate spread deficiencies in subsequent ensemble forecasts as well.

The second general approach is to change the model of covariances at the data assimilation time to reflect
model errors. Mitchell and Houtekamer (2000) detail such an approach. Following a methodology outlined
in Dee (1995), innovation statistics y �?( xb from the data assimilation are used to estimate parameters of a
simple model of the system noise covariances Q. Random vectors that are consistent with the system noise
covariance are added to each ensemble member, producing an ensemble with a larger spread. A disadvantage
of this approach is that it is tailored specifically to making ensemble forecasts for data assimilation purposes,
not for treating model error in ensemble forecasts in general.

The third approach, use of multiple forecast models for generating the ensemble of background forecasts (e.g.,
Houtekamer et al. 1996, Harrison et al. 1999, Evans et al. 2000, Ziehmann 2000, Richardson 2000, Hou et al.
2001), is appealing for its simplicity. A wider range of forecasts is typically generated when different weather
forecast models are used to forecast the evolution of different ensemble members. Unfortunately, initial experi-
mentation has shown that the multi-model ensembles tend to produce unrealistic estimates of error covariances.
Forecast errors ought to be mostly balanced, but when estimated from multi-model ensembles, preliminary
results suggest that the errors are excessively out of balance, with detrimental effects on the subsequent assim-
ilation (personal communication, M. Buehner).

5 Extensions to deal with filter divergence

In the EnKF, algorithmic modifications are necessary to ensure that background-error covariances are not sys-
tematically underestimated. When they are, the filter will assume that the background is relatively accurate
compared to the observations, and consequently the analysis is insufficiently corrected toward the observations.
This underweighting of new observations can feed back on itself, the ensemble progressively ignoring obser-
vational data more and more in successive cycles, leading eventually to a useless ensemble. This detrimental
process is known as “filter divergence” (e.g., Houtekamer and Mitchell 1998, van Leeuwen 1999, Hamill et al.
2001). For the EnKF, filter divergence can be caused by inappropriately treating model error, as discussed in
the previous section. It can also be caused by using a finite ensemble to represent background error statistics.
Hence, filter divergence can occur even if the forecast model is perfect.

Two potential sources of filter divergence are illustrated in Fig. 3. The first is an underestimate of background-
error covariances. Fig. 3a illustrates a hypothetical posterior probability distribution when background-error
covariances are estimated correctly (in this example, the covariance between the two state components is zero).
If background errors are underestimated, the observation is comparatively underweighted (Fig. 3b) and the
posterior distribution unduly resembles the prior. Similarly, if there are directions in phase space where the
ensemble underestimates the true background covariances because of sampling errors, or at its worst assumes
no variance at all because of the limited span of a finite number of ensemble members, then the background is
not sufficiently corrected back toward the observation in these directions.

Another problem may be that the magnitude of background-error covariances between an observation loca-
tion and a secondary, far-removed grid point are over-estimated due to sampling errors. If so, the posterior
probability distribution at this secondary grid point will be adjusted too much (Fig. 3c). This can generate a
posterior probability distribution that is biased and/or has too little variance. In probabilistic terms, the posterior
distribution has insufficient probability in the region in phase space near to the true state.

The problems illustrated in Figs. 3b-c can be expected to show up when applied to more complex models, too.
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Following Houtekamer and Mitchell (1998), Figures 4 a-b illustrate maps of covariances of 300 hPa temperature
estimated from background ensembles of various sizes. Here, a dry, low-resolution general circulation model
and an ensemble assimilation scheme (Whitaker and Hamill 2002) were used; these will be described in more
depth in Section 8. Each map represents the spatial pattern of covariances of the ensemble background forecasts
at each location with a location over Europe, marked by a dot. Note two general characteristics: first, for the
25-member ensemble in Fig. 4a, there are many locations worldwide that appear to co-vary with the ensemble
at the observation location. Note especially the large covariances in the Southern Hemisphere oceans, where
there are few observations and background-error variance is large (see Section 8). Second, note that the extent
of the undesirably noisy covariances is diminished somewhat when the ensemble size is increased (Fig. 4b). If
the Kalman gain calculation uses background-error covariances that are directly estimated from the ensemble,
at grid points where there are larger covariances, the EnKF will modify the analysis proportionately. These
unwanted corrections can bias the resulting mean analysis and result in too little variance in the analysis,
contributing to filter divergence.

There are several possible measures that can be taken to prevent filter divergence. First, some adequate treat-
ment of model error is necessary, perhaps along the lines of algorithms suggested in section 4b. By treating
model error, the spread in the ensemble will be larger, resulting in a Kalman gain that draws the analysis away
from the background forecasts and closer to the observations. By (11) and (12), increasing the background-
error covariances also preserves more variance in the subsequent analysis. Another possible set of remedies
are made possible by modifying the model of background-error covariances estimated from the ensemble. For
example, perhaps one believes that the covariances are more trustworth near the observation but less so far from
them (Houtekamer and Mitchell 2001, Hamill et al. 2001). The covariance estimate from the ensemble could
be used more the near the observation location and damped to zero or a small value away from it. This is the
essence of one technique to ameliorate filter divergence, a technique called “covariance localization.” Under
this, the covariance estimate from the ensemble is multiplied point by point with a correlation function that
is 1.0 at the observation location and decreases monotonically with increasing distance. Mathematically, the
Kalman gain equation K̂ � P̂b ( T �1( P̂b ( T � R  � 1 is replaced by a modified gain

K̂ � 2 ρS @ P̂b ( T 3 2 (A� ρS @ P̂b B( T � R 3 � 1 � 35 
where the operation ρS @ in (35) denotes a Schur product (an element-by-element multiplication) of a correlation
matrix S with the covariance model generated by the ensemble. The Schur product of matrices A and B is a
matrix C of the same dimension, where Ci j

� Ai jBi j. The application of the Schur product to the covariance
estimate from the 100-member ensemble is shown in Fig. 4c. Note the damping of covariances everywhere but
in the region around the observation.

See Hamill et al. (2001) for more details on implementation of covariance localization, and see Mitchell and
Houtekamer (2002) for a discussion of balance issues related to the length scale of the covariance localization
function.

Another problem, illustrated in Fig. 3b, was the detrimental effect of underestimating the variances. As a rem-
edy, Anderson and Anderson (1999) suggested increasing background-error covariances somewhat by inflating
the deviation of background members with respect to their mean by a small amount. Before the first observa-
tion is assimilated in a new cycle, background forecasts deviation from the mean are inflated by an amount r,
slightly greater than 1.0:

xb
i C r 2 xb

i � xb 3 � xb � 36 
Here, the operation C denotes a replacement of the previous value of xb

i .

Houtekamer and Mitchell (1998) have proposed the use of a “double” ensemble Kalman filter that eliminates
the necessity of using an inflation factor. The ensemble is split into two separate sub-ensembles, where one
ensemble is used to estimate error covariances for the other. Systematic underestimation of covariances are
much less likely to happen in the double EnKF, though for the same accuracy of covariance estimates, twice as
many ensemble members are needed.

94



HAMILL. T.M.: ENSEMBLE-BASED DATA ASSIMILATION

6 A Simple Demonstration of the Update Step in the Ensemble Kalman Filter

Let us return to the data assimilation problem illustrated back in Fig. 1, when we were discussing Bayesian
data assimilation. There, we were seeking to update a 2-D probability distribution given an observation in one
dimension. Let’s explore the characteristics of the EnKF applied to this problem.

We sidestep the issue of system noise and model error discussed in the previous section. We simply assume
that we can generate a realistic random sample from the prior distribution for purposes of demonstrating the
data assimilation methodology. Accordingly, we start by generating an m � 50-member random sample from
the distribution in Fig. 1(a). These are denoted by the black dots in Fig. 3(a). We’ll keep special track of the
assimilation for one particular member, denoted by the larger black dot.

The EnKF assumes that the background-error probability distribution is normally distributed. Estimated from
this random sample,

P̂b � � σ 2 � xb� 1 �  Cov � xb� 1 �	� xb� 2 � 
Cov � xb� 1 ��� xb� 2 �  σ 2 � xb� 2 �  � �ED 121 � 03 115 � 47

115 � 47 232 � 72 F
Here, since our observation measures the same aspect as the first component of our state variable, ( � � 1 � 0 
 .
We assume R � 100, so ( P̂b ( T � R � 121 � 03 � 100 � 221 � 03. P̂b ( T � �

121 � 03 � 115 � 47 
 T , and hence
K̂ � Pb ( T �1( Pb ( T � R  � 1 & � � 547 ��� 512 
 T . We then apply (25), updating background samples to their
associated perturbed observations, generating analysis samples. For example, the heavy black dot in Fig. 3(a)
denotes one such background sample. This particular background is updated to the perturbed observation
marked with the “*”. The resulting analysis sample is the large black dot in Fig. 3(b). The analysis has been
adjusted from the background in both directions, consistent with the error statistics built into K̂. Here, the first
component of the background state was much less than the mean, and the perturbed observation was greater
than the mean background state. The resulting analysis nudged the posterior state toward the mean in both
components.

Compare the EnKF random samples of the posterior from Fig. 3b with the Bayesian posterior in Fig. 1b. The
EnKF assumed from the start that the prior distribution was normally distributed, when in fact it was bimodal.
Consequently, the samples from Fig. 3b do not appear to randomly sample the posterior from Fig. 1b, which can
be seen by comparing the fitted normal distribution for the EnKF posterior to the Bayesian posterior. The EnKF
posterior is shifted slightly toward lower values in both components. The underlying problem is both in the
assumption of normality and in the limited ensemble size. Hopefully, scenarios with non-normal distributions
such as in Fig. 1(a) are relatively rare, as more involved techniques would then be required (e.g., Gordon et al.
1993).

7 Making the Ensemble Kalman Filter Computationally Tractable

Though the EnKF is computationally less expensive than the Kalman filter, it is still a much more expensive
calculation than 3D-Var and it is probably roughly the same order of magnitude as 4D-Var. The computational
expense of the EnKF will scale with the number of observations times the number of ensemble members times
the dimension of the state vector. Practically, though, the expense may be more determined by factors such as
the extent of parallelization and the complexity of the operator ( . For example, with observations such as
radiances, ( may be computationally very expensive, while with observations like rawinsonde temperature
data, simple interpolations to the observation location may be all that is needed. Since ( is calculated for
each ensemble member, if ( is particularly expensive, this may dramatically increase the overall cost of the
ensemble filter.

How can we minimize the computational time of these ensemble filters? We have already discussed one short-
cut, avoiding the formulation of P̂b directly and calculating the gain components directly from the ensemble.
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(eqs. 26 and 27). We now consider two other methods for simplifying the calculations, serial (sequential)
processing of observations and parallel-processing methods.

7.1 Serial Processing of Observations

Gelb (1974) demonstrated in the Kalman filter that a batch of independent observations can be assimilated
either simultaneously or sequentially (serially). Starting with a background forecast and background error-
covariances, a single observation may be assimilated. The analysis state and analysis-error covariance resulting
from the assimilation of the first observation may be used as the background and background-error covariance
in the assimilation of the second observation. Regardless of whether the observation are assimilated simulta-
neously or serially, the same expected analysis and analysis-error covariance will result. Consequentially, the
order in which observations are serially assimilated is unimportant.

Serial processing of observations may be desirable, as both the coding and the computations are somewhat less
demanding. Most of the ensemble-based algorithms described in the literature serially assimilate observations.
When observations are assimilated serially, for each observation that is assimilated, ( P̂b ( T and R become
scalars. Thus, their inverse �1( P̂b ( T � R  � 1 in the gain matrix is trivial to compute. Also, the application of
the covariance localization in (35) is much more straightforward.

The equivalence of serial and simultaneous assimilation is often assumed in the ensemble Kalman filter. Unfor-
tunately, unlike the Kalman filter, somewhat different analyses may result if observation 1 is processed before
observation 2 instead of 2 before 1, so the equivalence is not strictly correct. The reasons for this and an al-
ternative algorithm to the EnKF where observation order is irrelevant are discussed in Whitaker and Hamill
(2002). Regardless, for a reasonably large ensemble (50-100 members), order is nearly irrelevant in the EnKF,
introducing errors that are much smaller than sampling errors in the covariance estimate.

The equivalence of serial and simultaneous processing is only true if observations have independent errors.
Practically, however, many observations may have vertically or horizontally correlated errors. Consider two
alternatives to deal with this. First, if the size of a batch of observations with correlated errors is relatively small,
these batches can be processed simultanteously without much more computational expense; the matrix inverse
of �1( P̂b ( T � R  � 1 should not be prohibitively expensive. Another option is to transform the observations
and the update equation so that the observations are effectively independent. The method for doing this is
derived in Appendix 3.

7.2 Parallel Processing

Many modern computers today are “massively parallel” computers consisting of individual central processing
units (CPUs) with their own memory. Such computers often have relatively fast computational speed on each
CPU, but the overall speed of a calculation can be slowed significantly when new data must be continually
exchanged between CPUs. Hence, to speed up the processing speed of the EnKF on such computers, the
parallelization ought to be designed so a minimum of data need be exchanged among the CPUs.

There are two general components to the EnKF; first, for an m-member EnKF, m parallel data assimilation
cycles will need to be computed, and second, from the m resulting analyses, m forecasts forward to the next
assimilation time. The forecast component is easily parallelizable. Each member of the ensemble can be
forecast in parallel on a separate CPU(s), since no information need be swapped between CPUs during the
forecast step. However, parallelizing the data assimilation component is considerably more difficult. The
update of each member background forecast to the new observations requires information from all the other
ensemble members in formulating the gain matrix K̂. It would be highly inefficient to simply parallelize so
that different members were updated on different processors, since each processor would be duplicating the
same computationally expensive gain calculation. How, then, might we speed up the computation of parallel
analyses?

96



HAMILL. T.M.: ENSEMBLE-BASED DATA ASSIMILATION

One reasonably simple thing to do is to parallelize over widely separated observations or batches of observa-
tions. Envision two observations on opposite sides of the world. With covariance localization, each observation
corrects the background at a mutually exclusive set of grid points. In this case, regardless of whether the two
observations are processed serially or simultaneously in parallel, the same analyses will result. This is one
simple example of how the computations in the EnKF may be parallelized. Houtekamer and Mitchell (2001)
discuss the design and testing of a parallel ensemble Kalman filter exploiting this algorithm.

How else might the work of the ensemble filter be split up among several CPUs? Typically, one of the most
computationally expensive steps during the EnKF is the calculation of the K̂, and in particular, the computation
of the term P̂b ( T. If this could be parallelized, it could result in dramatic cost savings. Following (26), when
observations are processed serially, this term is computed from a product of the n � m matrix of ensemble
perturbations and the m-dimensional vector of observation operators applied to the ensemble perturbations.
Consider, now, that the m-dimensional state vector is split up over a number of processors. Perhaps the ensemble
of northern hemisphere grid points are processed on CPU 1, the southern hemisphere on CPU 2. Say we are to
process two observations serially, one just north of the equator and one south of it. For the first observation, the

ensemble of 2 ( xb
i � ( xb 3 T

from (26) could be computed on CPU 1 and then transferred to processor 2. CPU

1 would then calculate P̂b ( T for the northern hemisphere, CPU 2 for the southern hemisphere. Following that,
the update (25) would similarly be split amongst the two CPUs. When the second observation in the southern

hemisphere is ready to be processed, the ensemble of 2 ( xb
i � ( xb 3 T

can be computed on CPU 2 and that

data shipped back to CPU 1. The computationally expensive part of the gain calculation (26) and the update
(25) are then again computed in parallel. This general method of parallelization could be split up over any
arbitrarily large number of CPUs. As long as the operator ( is relatively simple, then the step of computing
the ( xb

i should proceed relatively quickly on one processor (not leaving the other processors idle for long),
and the amount of data shipped between processors should be minimal.

8 Demonstration of ensemble-based data assimilation

We now demonstrate an ensemble-based data assimilation methodology in a simplified general circulation
model. Specifically, we attempt to show how the use of flow-dependent background-error covariances from the
ensemble filter can lead to dramatic reductions in the analysis errors. We will not focus on comparisons against
other assimilation schemes; for such results, see, for example, Hamill and Snyder (2000), Anderson (2001),
and Hamill and Snyder (2002).

The experiment is conducted under perfect-model assumptions; that is, the same forecast model is used to
generate both a synthetic true state and in the conduct of the ensemble forecasts. To generate a time series
of the true state, we started with a random perturbation superimposed upon a resting state. The model is then
integrated for 280 days. The first 100 days were discarded, and the remaining 180 days comprise the time series
of the true state used in this experiment. Hereafter, day 100 is considered the starting point, the day 0 for all
further experiments.

Errors will be measured in a total energy norm. We follow the definition of total energy from Ehrendorfer and
Errico (1995): G:HIG � 1

2 J D J 1

0 K u2 � v2 � cp

Tr
T 2 � RdTr 2 ps

pr

3 2 L
dσ dD � 37 

where D indicates the horizontal domain, σ is the vertical coordinate, Tr is a reference temperature (here, 300
K), Rd is the gas constant for dry air (287 J K

� 1 kg
� 1), and cp is the specific heat of dry air at constant pressure

(1004 J K
� 1 kg

� 1), ps is the surface pressure, and pr is a reference pressure (1000 hPa).
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8.1 Forecast model

A T51 L15 dry, primitive equation spectral model will be used in the following experiments. There is no terrain
nor surface variations. The model has 60,996 degrees of freedom. The prognostic variables are vorticity,
divergence, temperature, and surface pressure. Except for a minor modification to the forcing, described in
Hamill et al. (2002), the model is essentially equivalent to the model of Held and Suarez (1994). The model
has an error-doubling time of � 3.1 days.

8.2 Observations

Synthetic rawinsondes (raobs) were assimilated every 12 h. The observations consisted of a surface pressure
measurement and winds and temperatures at 7 of the sigma levels, located approximately at 900, 766, 633, 500,
366, 233, and 100 hPa. Observations have error characteristics derived from Parrish and Derber (1992), and
observation errors were assumed uncorrelated in the vertical. Observation locations are shown in Fig. 6; they
were chosen to provide a crude analog to the operational raob network, with more observations over the land
than the ocean.

8.3 Assimilation methodology

The ensemble-based data assimilation methodology used here is a variant of the ensemble Kalman filter, a
technique we have called the ensemble square-root filter, or “EnSRF.” It is very similar to the EnKF, but the
algorithm is designed in a manner where each of the parallel data assimilation cycles assimilates the same
unperturbed observations. We describe the scheme briefly here; for more information, see Whitaker and Hamill
(2002).

Like the EnKF, the EnSRF conducts a set of parallel data assimilation cycles. It is convenient in the EnSRF to
update the equations for the ensemble mean (denoted by an overbar) and the deviation of the ith member from
the mean separately:

xa � xb � K̂ � y �)( xb  � � 38 
x . ai � � I � �K (M x . bi � � 39 

Here, K̂ is the traditional Kalman gain as in Eq. (25), and �K is the “reduced” gain used to update deviations
from the ensemble mean.

When sequentially processing independent observations, K̂, �K, ( P̂b and P̂b ( T are all vectors with the same
length as the model state vector, and ( P̂b ( T and R are scalars. Thus, as first noted by Potter (1964), when
observations are processed one at a time,�K � D 1 �ON R( P̂b ( T � R F � 1

K̂ � � 40 
The quantity multiplying K̂ in Eq. (40) is thus a scalar between 0 and 1. This means that, in order to obtain the
correct analysis-error covariance with unperturbed observations, one uses a modified Kalman gain to update
deviations from the ensemble mean that is reduced in magnitude relative to the traditional Kalman gain. Con-
sequently, deviations from the mean are reduced less in the analysis using �K than they would be using K̂. In
the EnKF, the excess variance reduction caused by using K̂ to update deviations from the mean is compensated
for by the introduction of noise to the observations. In the EnSRF, the mean and departures from the mean are
updated independently according to Eqs. (38) and (39). If observations are processed one at a time, the EnSRF
requires about the same computation as the traditional EnKF with perturbed observations.

The general analysis methodology is thus as follows: generate a set of perturbed initial conditions. Make n
forecasts forward to the next data assimilation time. Perform n � 1 parallel data assimilation cycles, updating
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the mean state using (38) and the n perturbations using (39) and (40). Repeat the process. In each data
assimilation cycle, observations are assimilated serially.

Our experiment was conducted over an 180-day period and used a 100-member EnSRF data assimilation sys-
tem. In this implementation of the EnSRF, covariances were localized using a Schur product of ensemble
covariances with an � Gaussian-shaped function with local support (Gaspari and Cohn 1999) reaching a zero
value at 4000 km distance from the observation. Before each data assimilation cycle, ensemble deviation from
the mean were inflated by 1.2 % following (33). The ensemble is initialized with an ensemble consisting 80
percent of the true state and 20 percent of a random model state.

8.4 Results

First, consider a time series of analysis errors in an energy norm. This initial ensemble is not very accurate,
but the data assimilation rather quickly reduces the error in the analysis (Fig. 7). On average, the errors remain
largest in the southern hemisphere, where there are few observations (Fig. 8).

As the ensemble cycles forward, the covariances begin to reflect more and more the flow-dependent error struc-
tures. Figure 9 provides an illustration of the background-error covariances used in the assimilation around
four selected observation locations. Notice that the covariances have very complicated structures. Consider
the covariances around the grid point in the eastern Pacific. Here, the observation is just north of the front,
and the model of covariances indicates that covariances are not largest at the observation location, but rather
slightly southeast of the observation, in the region of the front. Further, the covariances are elongated along
the isotherms rather than across it. When considering the assimilation of a single observation, the Kalman gain
K̂ will be directly proportional to P̂bHT, that is, proportional to the covariance with the observation location.
Hence, this indicates that a small observation increment at this location in the Pacific will make larger correc-
tions to the background state in the region of the nearby front than at the observation location itself. This is very
different than the corrections that 3D-Var would make, which would be largest at the observation and decrease
with increasing distance from the observation. The background-error covariance model from the ensemble fil-
ter may make more synoptic sense; a small change in the position of the front may result in a large change of
temperature there, but that change is lessened outside the frontal zone (Fig. 10).

Notice also in Fig. 9 that the background-error covariances have much different structures around each of
the observation locations. For example, that the covariances around the observation in eastern Europe are
much smaller in magnitude. Part of the reason covariances are smaller is because this observation is in a more
data-rich region. As a result of the smaller covariances, the analysis in this region will be drawn less to new
observation than it will for the observation in the eastern Pacific.

9 Where Next?

The field of ensemble-based atmospheric data assimilation is a very new one. To this date, because of the
computational expense and the need for a basic understanding of these approaches, most of the experimentation
with ensemble filters have been done in simple models, often using assumptions that are unrealistic for practical
numerical weather prediction (for example, the assumption of a perfect model). The results with these simple
experiments have been uniformly impressive, indicating that testing in more realistic scenarios is warranted.
That is the state of the field in 2002. Several groups, most notably researchers at the Canadian Meteorological
Centre, are testing the methodology with real observational data.

We still have much to learn about ensemble-based data assimilation methodologies. We are still learning
how to parameterize model error. Head-to-head comparisons against 4D-Var have not yet been performed
in operational weather prediction models, so the appeal is more theoretical than evidence-based. The extent
to which the underlying assumptions of these filters are met (such as Gaussianity) are not well known. Many
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practical problems such as ensuring balanced initial conditions may need to be addressed. Despite the problems,
the potential upside of ensemble assimilation methodologies is huge. Since no tangent-linear or adjoint models
are needed, the code is relatively simple to develop. Unlike 4D-Var, linearity of error growth is not assumed,
and model error should be able to be treated in an intelligent fashion.

Because of the upside, expect a burgeoning literature on ensemble-based data assimilation in the coming years.

10 Appendix 1: Derivation of the Discrete Kalman Filter Update equations

10.1 a. Discrete Kalman filter state update equation

Given the functional

J � xt  � 1
2

� � xt � xb
t  T Pb

t

� 1 � xt � xb
t ���� Hxt � yt  TR

� 1 � Hxt � yt �� � A1 
we seek to find the model state that minimizes this functional, providing the best fit between the observations
and background. Let’s call this model state “the analysis,” or xa

t . Differentiating the functional with respect to
xa

t and setting the result equal to zero to find the expected minimum, we get

Pb
t

� 1 � xa
t � xb

t �� HTR
� 1 � Hxa

t � yt  � 0 � A2 
Rearranging terms, we get

xa
t
� 2 Pb

t

� 1 � HTR
� 1H 3 � 1 K Pb

t

� 1
xb

t � HTR
� 1yt

L � A3 
We now put to use the Sherman-Morrison-Woodbury formula (Golub and van Loan 1989). For matrices A, U,
and V, � A � UVT  � 1 � A

� 1 � A
� 1U � I � VTA

� 1U  � 1VTA
� 1 � � A4 

Using this, where A � Pb
t

� 1
, U � HTR � 1, and VT � H, we get

xa
t
� 2 Pb

t � Pb
t HTR

� 1 � I � HPb
t HTR

� 1  � 1HPb
t
3 K Pb

t

� 1
xb

t � HTR
� 1yt

L � A5 
Next, using the identity A � 1B � 1 � � BA  � 1 for two invertible matrices A and B, where A � R and B � I �
HPb

t HTR � 1 (A5) becomes

xa
t
� 2 Pb

t � Pb
t HT � HPb

t HT � R  � 1HPb
t
3 K Pb

t

� 1
xb

t � HTR
� 1yt

L � A6 
Expanding (A6), we get

xa
t
� xb

t � Pb
t HT � HPb

t HT � R  � 1Hxb
t � Pb

t HTR
� 1yt � Pb

t HT � HPb
t HT � R  � 1HPb

t HTR
� 1yt� xb

t � Pb
t HT � HPb

t HT � R  � 1Hxb
t � Pb

t HT � R � 1 �P� HPb
t HT � R  � 1HPb

t HTR
� 1  yt� xb

t � Pb
t HT � HPb

t HT � R  � 1Hxb
t � Pb

t HT � R � 1 �P� HPb
t HT � R  � 1 � HPb

t HT � R � R  R � 1  yt (A7)

Using the vector identity B � 1 � A � 1 � B � 1 � B � A  A � 1, (Golub and Van Loan 1989) to R � 1 �O� HPb
t HT �

R  � 1 � HPb
t HT � R � R  R � 1, where A � R � 1 and B � HPb

t HT � R, (A7) simplifies to

xa
t
� xb

t � K Pb
t HT � HPb

t HT � R  � 1
L � yt � Hxb

t  � A8 
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This is update equation for the model state in the Kalman filter. Commonly we define a matrix K, the Kalman
gain matrix, as

K � Pb
t HT � HPb

t HT � R  � 1 � A9 
so (A8) is expressed more compactly as

xa
t
� xb

t � K � yt � Hxb
t  � A10 

Interpretation of this equation is described in the main text.

10.2 b. Discrete Kalman filter covariance update equation

The crucial difference between the Kalman filter compared with 3D-Var or other analysis schemes is that
the error covariances are explicitly evolved in time through the data assimilation and through the subsequent
forecast. Assume that we know the background-error covariance Pb

t and seek to know the resulting analysis-
error covariance Pa

t that results from the assimilation of observations. We start with the definition of Pa
t :’

Pa
t
�  �� xt � xa

t >� xt � xa
t  T ! � � A11 

Subtracting both sides of (A10) from xt gives

xt � xa
t
� 2 I � KH 3 � xt � xb

t �� K � yt � Hxt  � � A12 
As previously, we assume yt

� Hxt � ε , where ε � N � 0 � R  . In this case, we can write (A12) as

xt � xa
t
� xt � xb

t � K � ε � Hxt � Hxb
t � � I � KH >� xt � xb

t #� Kε (A13)

Now, let us form the covariance matrix (A11). Assuming that observation and background errors are uncor-

related, i.e.,  ;� xt � xb
t  εT ! � 0, and noting that Pb

t
� Pb

t
T

and using the matrix identity ATBT � � AB  T, we
get

Pa
t
�  �� xt � xa

t >� xt � xa
t  T !�  �� I � KH >� xt � xb
t >� xt � xb

t  T � I � KH  T � KεεTKT !� 2 I � KH 3 Pb
t 2 I � KH 3 T � KRKT� Pb

t � KHPb
t � 2 KHPb

t
3 T � K 2 HPb

t HT � R 3 KT � (A14)

Inserting the definition of K from (A9) and expanding, we simplify to

Pa
t
� Pb

t � Pb
t HT 2 HPb

t HT � R 3 � 1
HPb

t� 2 I � KH 3 Pb
t � (A15)

This is the update equation for the covariances. We note in passing that the assumption that observation and
background errors are uncorrelated is not always realistic. The observation-error covariance R is commonly
thought of as representing both random errors from the instrument as well as “representativeness” errors, de-
noting the fact that an observation typically measures a point value not a grid volume; hence the point value
may not be representative of the average value for that grid volume. One may imagine that representativeness
errors may be larger in situations where there is a strong gradient in the background, such as near a front. In
this manner, representativeness errors may in fact have some correlation with the background errors, one being
larger when the other is. For simplicity, we will neglect this source of error, but it may be helpful to keep in
mind where such simplifying assumptions have been made.
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11 Appendix 2: Derivation of the Ensemble Kalman Filter covariance update

Here we show that the analysis error covariance estimated from the ensemble converges to that which would
be obtained from the Kalman filter as ensemble size increases. That is, for an m-member ensemble, if X . a is
defined as X . a � � xa

1 � xa �������,� xa
m � xa 
 , then P̂a � 1

m � 1 X . aX . aT, and P̂a 4 Pa as m 4 ∞, where Pa � Pa
t in (11).

¿From (25) it is apparent that the EnKF requires the up-front computation of a set of perturbed observations, one
set associated with each member forecast. The perturbed observations are generated by adding random noise� N � 0 � R  to the control observations. Let’s make a matrix of column vectors from the perturbed observations:

Y . � � y .1 � y ��������� y .m � y  � � A16 
With some simple algebra, one can show that

P̂a � 1
m � 1 K X . b � K̂Y . � K̂ ( X . b L K X . b � K̂Y . � K̂ ( X . b L T � � A17 

X . b was defined in (23) of section 4, and K̂ � P̂b ( T �1( P̂b ( T � R  � 1. Let’s assume that the observations

and the background are uncorrelated, i.e.,  X . bY . T ! � 0 and  ( X . bY . T ! � 0. Using the definition of P̂b from

(24), one can then show that (A17) can be expressed as

P̂a � 1
m � 1 2 X . bX . bT � X . b � K̂ ( X . b  T � K̂Y . Y . TK̂T � K̂ ( X . bX . bT ��� K̂ ( X . b >� K̂ ( X . b  T 3� P̂b � P̂b ( TK̂T � K̂RK̂T � K̂ ( P̂b � K̂ ( P̂b ( TK̂T� P̂b � P̂b ( TK̂T � K̂ ( P̂b � K̂ �1( P̂b ( T � R  K̂T � (A18)

By inserting the definition of K̂, then K̂ �1( P̂b ( T � R  K̂T � P̂b ( TKT, so

P̂a � P̂b � K̂ ( P̂b � � A19 
If P̂b � Pb as it should be as m 4 ∞, and if P̂b ( T � P̂bHT and ( P̂b ( T � HP̂bHT as in (28) and (29), then
K̂ � K, where K is the Kalman gain of the extended Kalman filter, and (A19) is equivalent to (11).

12 Appendix 3: Serial processing of non-independent observations in the en-
semble Kalman filter

As previously outlined, if observations have independent errors, then they can be processed serially, which may
be of computational advantage. If the observations are not independent, the EnKF update equation (19) can be
transformed so that serial processing of observations can occur.

Recall that we assume yt
� ( xt � ε , where ε � N � 0 � R  . Presumably R is not diagonal here, so observations

are not independent. However, R is symmetric and positive definite, so it has a decomposition of the form
R � QRΛRQT

R, where QR is a unitary matrix with properties that QRQT
R
� I and QT

R
� Q � 1

R . ΛR is a diagonal
matrix of associated eigenvalues.

Let’s denote a pseudo-observation �y � QT
Ry, or alternately, y � QR �y. Then �y � QT

R ( xt � QT
Rε . Hence QT

Rε � QT
Rε  T ! � QT

R  εεT ! QR
� ΛR � � A20 

Define Q( � QT
R ( , or equivalently ( � QR Q( . Substituting this definition of ( and y into the EnKF update

equation (25), we get
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xa
i
� xb

i � P̂b ( T �1( P̂b ( T � R  � 1 � yi �+( xb
i � xb

i � P̂b � QR Q(M T � QR Q( Pb Q( TQT
R � QRΛRQT

R  � 1 � QR �yi � QR Q( xb
i � xb

i � P̂b Q( TQT
RQR � Q( P̂b Q( T � ΛR  � 1QT

RQR � �yi � Q( xb
i � xb

i � P̂b Q( T �RQ( P̂b Q( T � ΛR  � 1 � �y �8Q( xb
i  � (A21)

Thus, given a batch of observations with correlated errors and known observation-error covariance matrix R
for these observations, one determines the eigenvectors QR and eigenvalues ΛR of R, forms the transformed

perturbed observations �y and operator Q( and then solves the last line of (A21) can be used to serially process
observations.
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Figure 1. Example of Bayesian data assimilation. Here the model state is two dimensional and a single obser-
vation is assimilated. This observation measures the same variable as the first component of the model state. (a)
Probability density for prior distributions (solid) and sample observation distribution (dashed). (b) Probability
density for posterior distributions.

106



HAMILL. T.M.: ENSEMBLE-BASED DATA ASSIMILATION

Figure 2. Schematic of the parallel data assimilation cycles in the ensemble Kalman filter, with each parallel
cycle assimilating distinct perturbed observations. Note that the figure is somewhat misleading, in that the
information from all ensemble members is input into the update step for each member, since the ensemble
members are used to model background-error covariances.
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Figure 3. (a) Hypothetical data assimilation for two-dimensional state vector with an observation in only the
xb � 1 � component. Heavy lines denote the true background error distribution, or prior (marginal distributions
plotted along each axis). Dashed line denotes marginal distribution for observation. (b) As in (a), but assuming
the the background error distribution is underestimated in magnitude. Note the posterior is shifted very little
from the prior. (c) As in (a), but where correlations between the two components are overestimated, so the
posterior of xb� 2 � is inappropriately shifted.
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Figure 4. Covariances of ensemble of 300 hPa background temperature forecasts with background temperature
forecasts at grid point marked with dot. Background forecasts are taken from an ensemble data assimilation
system in a low-resolution, dry general circulation model. Solid lines denote ensemble-mean 300 hPa tempera-
ture (contours every 5 K). Colors denote covariances, with deep red colors indicating large positive covariance
and blue negative. (a) Covariances directly from 25-member ensemble; (b) from 100-member ensemble; (c)
from 100-member ensemble with Schur product of correlation function applied.
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Figure 5. Illustration of the EnKF with a two-dimensional state variable and observations observing the same
as xb� 1 � . (a) Random samples (black dots) from the probability distribution in (1). Implied bivariate normal
probability background-error covariance distribution contoured in black, and the observation sampling distri-
bution (dashed). Solid vertical lines denote individual perturbed observations sampled from this distribution.
The one black dot and the perturbed observation marked with a star denote the sample discussed in the text.
(b) Random samples from the EnKF assimilation scheme (dots) and the implied analysis-error covariance from
this sample (solid lines).

Figure 6. Observations used in the data assimilation experiment.
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Figure 7. Time series of domain-averaged analysis errors.

Figure 8. Horizonal map of time-averaged analysis errors in a total-energy norm at 500 hPa. Time average was
computed from days 17.5 to 180 of the time series. Dots again indicate observation locations.
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Figure 9. Examples of ensemble based covariance estimates. Covariances of 900 hPa temperatures in the vicin-
ity of four observation locations, denoted by dots, are shown. Covariances were estimated from 100-member
ensemble, with covariance localization applied. Dashed lines are contours of 900 hPa ensemble mean back-
ground temperatures; contours are plotted every 5K. Covariances are normalized so that the largest covariance
in the figure is assigned a non-dimensional value of 1.0.

Figure 10. Example of why corrections in ensemble filter can be largest at locations somewhat distant from the
observation. Consider the a mistakenly analyzed cold front (dashed line) and the true state of the front. If the
only observation is available in a region outside the frontal zone, a small change in temperature at this location
may reasonably imply a much greater correction is needed in the nearby frontal zone.
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