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1. Introduction 
An important component of forecast error is error in the analysis of the initial state from which the forecast is 
made. Analysis error can be reduced by taking more observations, by taking more accurate observations, by 
taking observations at locations chosen to better constrain the forecast, and by extracting more information 
from the observations that are available. The last of these, obtaining the maximum amount of information 
from observations, is attractive because it makes existing observations more valuable and because, at least 
for linear systems,there is a solution to the problem of extracting the maximum information from a given set 
of observations: under appropriate assumptions the problem of extracting the maximum amount of 
information from a set of observations of a linear system in order to minimize the uncertainty in the state 
estimate is solved by the Kalman filter (KF) (Kalman, 1960,Ghil and Malanotte-Rizzoli, 1991).   

Unfortunately, the Kalman filter requires statistical description of the forecast error in the form of the error 
covariance and obtaining the required error covariance involves integrating a system with dimension equal to 
the square of the dimension of the forecast system. Direct integration of a system of such high dimension is 
not feasible. Attempts to circumvent this difficulty have involved various approximations to the error 
covariance (Bishop et al, 1999; Tippett et al, 2000) and approximate integration methods (Evensen, 1994; 
Dee, 1995; Fukumori and Malanotte-Rizzoli, 1995; Cohn and Todling, 1996; Verlaan and Heemink, 1997; 
Houtekamer and Mitchell, 1998). 

While the formal dimension of the forecast error system obtained by linearizing the forecast model about a 
base trajectory is the same as that of the forecast system itself, there are reasons to believe that the effective 
dimension is far lower.In the case of the tangent linear forecast error system the spectrum of optimal 
perturbations of the error propagator over the forecast interval typically comprise a few hundred growing 
structures and Lyapunov spectra for error growth have shown similar numbers of positive exponents 
suggesting that the effective dimension of the error system is O(103). 

The problem of reducing the order of a linear dynamical system can be cast mathematically as that of finding 
a finite dimensional representation of the dynamical system so that the Eckart-Schmidt-Mirsky (ESM) 
theorem can be applied to obtain an approximate truncated system with quantifiable error. The ESM theorem 
states that the optimal k order truncation of an n dimensional matrix in the euclidean or Frobenius norm is 
the matrix formed by truncating the singular value decomposition of the matrix into its first k singular 
vectors and singular values.  A method for exploiting the ESM theorem to obtain a reduced order 
approximation to a dynamical system was developed in the context of controlling lumped parameter 
engineering systems and is called balanced truncation (Moore, 1981; Glover, 1984). Balanced truncation was 
applied to the set of ordinary differential equations approximating the partial differential equations governing 
perturbation growth in time independent atmospheric flows by Farrell and Ioannou (2001)(FI01). 

In this work a reduced order Kalman filter is derived based on balanced truncation and applied to a time 
dependent Lyapunov unstable quasi-geostrophic model of a forecast tangent linear error system. We first 
review the method of balanced truncation and then use it to construct the reduced order Kalman filter  
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2. Reduction by balanced truncation 
The error dynamics are assumed to be governed by the linear system: 

ψψ A
dt

d
=  

where ψ  is the error state vector and  is the matrix dynamical operator which may be time dependent, but 
will for the time being be assumed to be time independent. Because of the high dimension of the error 
system in forecast applications we are interested in exploring the accuracy of reduced order approximations 
to this system. 

A

Before proceeding with the method of balanced order reduction we must first choose the norm that will be 
used to measure the accuracy of the approximation. The accuracy is measured by the norm of the euclidean 
length of the errors incurred in a chosen variable. This norm is the square root of the Euclidean inner product 
in this variable. If another norm is selected to measure the accuracy of the approximation then the most direct 
method of accounting for this choice is to transform the variable used to represent the state of the system so 
that the Euclidean inner product in the transformed variable corresponds to the new norm. The reduced order 
approximate system resulting from balanced truncation will in general depend on the norm. As discussed in 
FI01, optimal order reduction for stable normal systems is immediate: it is a Galerkin model based on 
projection of the dynamics onto the least damped modes. Difficulties in the reduction process arise in cases 
for which the system is non-normal in the variable corresponding to the chosen norm. Then a model based on 
projection on the least damped modes is sub optimal and the reduction must proceed by including in the 
retained subspace the distinct subspaces of the preferred excitations and preferred responses of the system. 

The preferred structures of response of a non-normal system are revealed by stochastically forcing the 
system with spatially and temporally uncorrelated unitary forcing and calculating the eigenfunctions of the 

resulting mean covariance matrix += ψψP  (the brackets denote an ensemble average, and + the 

hermitian transpose of a vector or a matrix). The covariance matrix under such forcing is given by: 

dteeP tAAt∫
∞

+

=
0

 

and this integral is readily calculated by solving the Lyapunov equation (FI96): 

IPAAP −=+ +  

which P  satisfies, as can be easily verified. The hermitian and positive definite matrix P  characterizes the 
response of the system and its orthogonal eigenvectors, ordered in decreasing magnitude of their eigenvalue, 
are the empirical orthogonal functions (EOF's) of the system under spatially and temporally uncorrelated 
forcing. 

The preferred structures of excitation of the system are determined from the stochastic optimal matrix: 

dteeQ AttA∫
∞

+

=
0

 

the orthogonal eigenvectors of which, in decreasing magnitude of their eigenvalue, order the forcing 
structures according to their effectiveness in producing the statistically maintained variance. The 
eigenvectors of Q  are called the stochastic optimals (SO's) and because of the non-normality of the system 

are distinct from the EOF's. The stochastic optimal matrix satisfies the back Lyapunov equation: Q
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IQAQA −=++  

The Lyapunov equations for P  and  have unique positive definite solutions if  is stable. The covariance 

matrix 

Q A
P  and stochastic optimal matrix  need to be determined in order to proceed with order reduction 

by balanced truncation. 
Q

A successful order reduction must accurately approximate the dynamics of the system which can be 
expressed as the mapping of all past (square integrable) forcings to all future responses of the system. This 
linear mapping of inputs to outputs is called the Hankel operator. Application of the ESM theorem to the 
Hankel operator provides the optimal low order truncation of the dynamics.  Remarkably, because of the 
separation between past forcings and future responses in the Hankel operator representation of the dynamics 
this operator has finite rank equal to the order of the system; its singular values, denoted by h, are the square 
root of the eigenvalues of the product of the covariance and stochastic optimal matrix P  and .  Q

The balanced truncation transforms the internal coordinates of the system so that the transformed covariance 
matrix P  and stochastic optimal matrix Q  become identical and diagonal (while preserving the inner 
product of the physical variables). The dynamical system is then truncated in these transformed balanced 
coordinates. The balanced truncation retains a leading subset of empirical orthogonal functions (EOF's) and 
stochastic optimals (SO) of the dynamical system and preserves the norm. 

Balanced truncation preserves the stability of the full system and provides an approximation with known 
error bounds which is found in practice to be nearly optimal (Moore, 1981; Glover, 1984; FI01) 

3. The reduced order Kalman filter 
In the previous section we showed how to reduce the order of an autonomous linear system by obtaining an 
accurate balanced truncation of the time independent operator . Consider now a time dependent operator 
of the form , and assume that the mean operator  is dominant. In previous work we 

showed that perturbation growth in time dependent non-normal systems occurs primarily in the non-normal 
subspace of the time mean operator (Farrell and Ioannou, 1999). In the following we take advantage of this 
result to obtain an approximate reduced order model of a time dependent system by reducing the order of the 
time dependent operator using the balancing transformation derived for the mean operator. This procedure is 
found to produce an accurate model order reduction for example non-autonomous stationary systems at far 
less computational cost than is incurred by balancing at each time. In the following the error covariance 
matrix and the Kalman gain are obtained using this reduced model and transformed back to the full space for 
use in updating the state estimate. 

A
)()( 10 tAAtA += 0A

Let the dimension of the full system perturbation vector, ψ , be N, and of the reduced system, kψ , be k with 

k < N. The variables in the reduced system, kψ , are related to the variables in the full system, ψ , by the 

transformation  

ψψ += Yk . 

The evolution equation in the kψ coordinates is  

ψ
ψ

)(tA
dt

d
k

k =  

where 
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XtAYtAk )()( += . 

In this approximation the biorthogonal bases Y  and X  remain the balancing transformation of the mean 
operator  instead of being recalculated at each step.  0A

In the reduced order system variables the observation matrix is HXH k = , so that the error covariance 
matrix in the reduced order system , is evolved according to the reduced order 

dynamics: 

YtPYtP i
k

i
k )()( +=

)()()()( 1 i
Tk

i
ka

i
k

i
kf tMtPtMtP =+

kQ+  

where  is the model error covariance projected on the reduced order space, i.e. , and kQ QYYQk += kM  is 
the reduced order propagator. The reduced order covariance matrix is corrected by the observation statistics:  

)()()()( 1111 ++++ −= i
kf

i
k

i
kf

i
ka tHPtKtPtP  

in which the reduced order Kalman gain is  

( ) 1

111 )()()(
−

+++ += kTk
i

kfkTk
i

kf
i

k RHtPHHtPtK  

where RYYRk += . 

The Kalman gain that will be used in the full system in order to entrain the observations is obtained from the 
reduced order system gain:  

kr XKK =   

with the superscript indicating that the Kalman gain is obtained from the reduced order system. 

A model of a time dependent tangent linear system with dimension 400 is formed by varying the zonal flow 
in an Eady channel model according to Fig. 1. This model is Lyapunov unstable and the performance of state 
estimation methods is compared in the four panels of Fig. 2 where we show the true state (top panel), and the 
estimates of the state based on the full Kalman, the order 40 reduced order Kalman and the estimate of the 
state by direct substitution, all at time t =150. Both the Kalman filter based on integrating the full error 
covariance matrix and the order 40 reduced order Kalman filter give a good estimate of the true state, while 
direct substitution fails.  

 

 

 

 

 

Figure 1: Realization of the time dependent 
velocity. The mean is a constant shear wind, and 
the fluctuations have r.m.s amplitude 0.3. 
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4. Conclusions 
Optimal utilization of observing resources requires that the structure of the time dependent error is taken into 
account in identifying the state. The error covariance matrix contains the required information but the high 
dimension of the forecast system precludes directly obtaining it. In this work we described a method for 
obtaining an approximate error covariance and an approximate state identification using a Kalman filter 
based on balanced truncation of the tangent linear forecast error system. 

Comparison of the performance of a full Kalman filter and approximate filters obtained by balanced 
truncation on the order 400 storm track model reveals that truncation at order 40 is sufficient to provide 
accurate flow dependent covariances for the purpose of approximating the Kalman gain. 

 

 

 

 

 

 

Figure 2: First panel: streamfunction of the state at 
t=150. The state is growing with Lyapunov exponent 
λ=0.075. Second panel: streamfunction of the 
analyzed state obtained using a full Kalman filter. 
Third panel: streamfunction of the analyzed state 
obtained using a Kalman filter calculated from a 
balanced truncation of the full system to 40 degrees of 
freedom. Fourth panel: streamfunction obtained by 
direct substitution. Observations are made at one 
location x=4, z=0.8. 
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