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Abstract 

The present paper summarizes the methodologies used at the European Centre for Medium-Range Weather Forecasts 
(ECMWF), the Meteorological Service of Canada (MSC), and the National Centers for Environmental Prediction 
(NCEP) to simulate the effect of initial and model uncertainties in ensemble forecasting. The characteristics of the three 
systems are compared for a 3-month period between May and July 2002. The main conclusions of the study are that: 

� The performance of ensemble prediction systems strongly depends on the quality of the data assimilation system 
used to create the unperturbed (best) initial condition, and the numerical model used to generate the forecasts; 

� A successful ensemble prediction system should simulate the effect of both initial and model related uncertainties on 
forecast errors; and 

� For all three global systems, the spread of ensemble forecasts are insufficient to systematically capture reality, 
suggesting that none of them is able to simulate all sources of forecast uncertainty.  

The relative strengths and weaknesses of the three systems identified in this study can offer guidelines for the future 
development of ensemble forecasting techniques. 

1. The need for ensemble prediction  
Traditionally, the main objective of numerical weather prediction has been the generation of a single forecast 
that provides the best estimate of the future state of the atmosphere. Though the chaotic nature of the 
atmosphere that limits predictability and skill for all forecast applications was recognized from early on 
(Lorenz 1963, 1982), it was not until the 1990s that the uncertainty inherent in numerical forecasts became 
the subject of intense research, eventually leading to changes in operational weather forecasting.  

In an environment where forecast skill is limited, a single value (which could be either the expected or the 
most likely value) of the future state of a system variable contains only limited information. Ideally, the state 
of the system would be described through a probability distribution function (pdf) specifying the probability 
that the future state variable will fall in any arbitrary interval. Such a forecast format can also satisfy 
advanced users, whose applications crucially depend on probability information (Richardson 2000, Smith et 
al. 2001, Zhu et al. 2002, Taylor & Buizza 2003). 

Probabilistic forecasts can also be based on statistical post-processing of a single deterministic forecast. Due 
to the complexity of the atmosphere, and the very limited sample of available pairs of corresponding 
forecasts and observations (or analyzed fields), such statistical post-processing methods can describe the loss 
of forecast skill only in an average sense, and are typically unable to resolve case dependent deviations from 
average forecast uncertainty. Recent results have confirmed earlier indications that such variations are 
significant (Toth et al. 2002), and that probabilistic forecast methods based on statistical port-processing of 
single forecasts provide inferior forecast performance (Buizza et al. 2003).  
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One solution to the problem of forecasting in the presence of uncertainty is through the use of the Liouville 
equations (Ehrendorfer 1994a, b). This method is based on continuity equations in the probability space, 
recognizing that the integral of the initial probability density function is preserved throughout the forecast 
process. The resulting very high computational demand renders the Liouville equations impractical for 
probabilistic weather forecasting applications. Attempts at finding a satisfying closure scheme with the full 
probability density functions truncated to their first few moments also turned out to be unsuccessful (Fleming 
1971a, b, Pitcher 1977).  

Attention then turned toward practically feasible Monte Carlo methods. These methods are based on a 
statistical sampling approach (Leith 1974) where the forecast probability density function is approximated 
using a finite sample of forecast scenarios (ensemble of forecasts). These forecasts are started from a sample 
of states drawn from a probability density function of the initial state (that is often implicitly estimated), to 
sample initial value related forecast uncertainty. The ensemble forecasts are often integrated using a variety 
of different (or modified) numerical models with the aim of capturing model related forecast uncertainty as 
well. Note that the concept of ensemble Kalman filter (Evensen, 1994) offers a way of unifying ensemble 
forecasting and data assimilation. Knowledge on model error statistics can potentially also be used to 
improve the forecast model (Houtekamer & Lefaivre, 1997). Methodologies for ensemble-based data 
assimilation and model improvement, however, have not yet been applied operationally at weather prediction 
centers. Therefore the focus of this work is on the more mature area of medium-range ensemble prediction. 

It is thought that the evolution of forecast uncertainty originating from initial condition errors can be 
described fairly well with available numerical prediction models. This is done in the operational ensemble 
prediction systems (EPSs) of different centers. Opinions diverge however, on how to best describe the 
distribution of the initial errors and on how to subsequently sample that distribution. Three fairly different 
methods to generate an ensemble of initial conditions are currently in use at operational centers.  

At the U.S. National Centers for Environmental Prediction (NCEP, formerly NMC) Toth & Kalnay (1993) 
introduced the bred vector (BV) perturbation method. This method, discussed later in more detail, is based 
on the argument that fast-growing perturbations develop naturally in a data-assimilation cycle and will 
continue to grow as short- and medium-range forecast errors. A similar strategy has been used at the 
European Center for Medium-Range Weather Forecasts (ECMWF). Instead of bred vectors, however, 
ECMWF uses a singular vector (SV) based method to identify the directions of fastest growth (Buizza & 
Palmer 1995; Molteni et al. 1996). Singular vectors maximize growth over a finite time interval and are 
consequently expected to dominate forecast errors at the end of that interval and possibly beyond. Instead of 
using a selective sampling procedure, the approach developed at the Meteorological Service of Canada by 
Houtekamer et al. (1996b) generates initial conditions by assimilating randomly perturbed observations, 
using different model versions in a number of independent data assimilation cycles. This Monte Carlo like 
procedure will be referred to here as the perturbed observation (PO) approach. 

Quantitative comparisons of the bred vector, singular vector and perturbed observation based ensembles 
have been so far performed only in simplified environments only. Houtekamer & Derome (1995) compared 
the different strategies of ensemble prediction in a simplified environment consisting of a simulated 
observational network and the three-level quasi-geostrophic T21 model of Marshall & Molteni (1993). They 
compared the quality of the ensemble mean forecasts and found that, although the basic concepts of the three 
ensemble prediction methods were rather different, the results were quite comparable. They recommended 
the use of bred-vector ensembles because of the relative ease of their implementation. The results from this 
and other simple model experiments (see, e. g., Hamill et al. 2000), however, are difficult to generalize since 
it is hard to know if all factors that are important for operational forecasts have been accounted for properly. 
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Therefore a comparative analysis of the actual forecasts generated by the three operational systems is 
desirable for planning future developments. 

Forecast errors in real world applications arise due to not only initial errors, but also due to the use of 
imperfect models. Representing forecast uncertainty related to the use of imperfect models is thought to be of 
an even greater challenge than simulating initial value related errors. As described in the next section, the 
three centers follow rather different approaches in this respect as well. 

For a better understanding of the differences and similarities between them, the main characteristics of the 
ensemble systems operational in 2002 at ECMWF, MSC and NCEP will be presented in section 2. The 
performance of the three ensemble systems will then be quantitatively compared in section 3 for a 3-month 
period (May-June-July 2002), with an attempt to highlight how the different designs lead to different 
performance characteristics of the ensemble forecasts. It should be noted that for ease of comparison the 
quantitative analysis is based on a sub-set of the ensemble systems that includes only 10 perturbed and one 
unperturbed member starting at 00 UTC. Future directions and ongoing research issues are discussed in 
sections 4 and 5, while section 6 offers some preliminary conclusions.  

2. Ensemble prediction at ECMWF, MSC and NCEP 
Schematically, the main sources of forecast errors can be classified as following: 

� observations (incomplete data coverage, representativeness errors, measurement errors); 

� models (errors due to, e. g., the parameterization of physical processes, the choice of closure 
approximations, and the effect of unresolved scales); 

� data assimilation procedures (errors due to, e. g., the use of a background covariance model that 
assumes isotropy); 

� imperfect boundary conditions (e.g., errors due to the imperfect estimation and description of 
roughness length, soil moisture, snow cover, vegetation properties, and sea surface temperature). 

Formally, an ensemble forecast system is represented by a set of numerical integrations 
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where Pj(ej,t) denotes the model tendency due to parameterised physical processes (turbulence, moist 
processes, orographic effect, ..) as used for member j, Aj(ej,t) denotes the tendency due to the other simulated 
processes (pressure gradient force, Coriolis, horizontal diffusion) and ej(0) is the initial state. 

In the MSC Monte-Carlo approach initial perturbations are generated by running separate data-assimilation 
cycles: 

 ],,)(),([)0( 211 jjjjj APdooee +÷Ξ= τττ  (2) 

where  (τ1, τ2) is the time spanned during each assimilation cycle, o(τ1, τ2) and doj denotes the vector of 
observations and of observations’ random perturbations, and Ξ[..,..,..] denotes the data assimilation process. 
Note that each assimilation cycle depends on the model used in the assimilation. 

In contrast, ECMWF and NCEP initial ensemble states are created by adding either bred or singular vectors 
to the best estimate of the atmosphere at initial time: 

 )0()0()0( 0 jj deee +=  (3a) 

which itself is produced by a high-resolution 3- or 4-dimensional data assimilation procedure: 
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The main characteristics of the three global operational systems as of summer 2002 are summarized in Table 
1 and further discussed below. 

 MSC ECMWF NCEP 
Pj (model uncert.) 2 mod + Diff. Ph. Par. Pj=P0 (single model) Pj=P0 (single model) 
dPj (random model error)  dPj=rj*Pj (stoch phys) dPj=0 
Aj 2 models Aj=A0 (single model) Aj=A0 (single model) 
oj (observ. error) Random perturbations - - 
ej (initial uncert.) ej  from Anal. Cycles ej=e0+dej(SV) ej=e0+dej(BV) 
horiz. resolution HRES 
forecast 100 km - T170(d0-7.5)>T126(d7.5-16) 

horiz. resolution control 
forecast 

TL149, not available for 
this study TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16) 

horiz. resolution 
perturbed members TL149 TL255 (d0-10) T126(d0-3.5)>T62(d3.5-16) 

vertical levels (control 
and perturbed members) 23 and 41, 28 40 28 

top of the model 10hPa 10hPa 3hPa 
number of perturbed 
members 16 50 10 

forecast length 10 days 10 days 16 days 
daily frequency 00 UTC 12 UTC (00 UTC exp) 00 and 12 UTC 
operational 
implementation February 1998 December 1992 December 1992 

Table 1. Summary of ensemble characteristics as of July 2002. 

2.1. The singular-vector approach at ECMWF 

The ECMWF singular-vector (SV) approach (Buizza & Palmer 1995, Molteni et al. 1996) is based on the 
observation that perturbations pointing along different axes of the phase-space of the system are 
characterized by different amplification rates. Given an initial uncertainty, perturbations along the directions 
of maximum growth amplify more than those along other directions. For defining the SVs used in the 
ECMWF Ensemble Prediction System (EC-EPS), growth is measured by a metric based on total energy 
norm. The SVs are computed by solving an eigenvalue problem defined by an operator that is a combination 
of the tangent forward and adjoint model versions, integrated up to the optimization time, and the metric 
corresponding to the energy-norm. The advantage of using singular vectors is that if the forecast error 
evolves linearly and the proper initial norm is used, the resulting ensemble captures the largest amount of 
forecast error variance at optimization time  (Ehrendorfer & Tribbia 1997). 

The EC-EPS has been part of the operational suite since December 1992. The first version, a 33-member 
T63L19 configuration (spectral triangular truncation T63 with 19 vertical levels, Palmer et al. 1993, Molteni 
et al. 1996) simulated the effect of initial uncertainties by the introduction of 32 perturbations that grow 
rapidly during the first 48 hours of the forecast range. In 1996 the system was upgraded to a 51-member 
TL159L31 system (spectral triangular truncation T159 with linear grid; Buizza et al. 1998). In March 1998, 
initial uncertainties due to perturbations that had grown during the 48 hours prior to the starting time 
(evolved singular vectors, Barkmeijer et al 1999) were also introduced. In October 1998, a scheme to 
simulate model uncertainties due to random model error in the parameterised physical processes was added 
(Buizza et al. 1999). In October 1999, following the increase of the number of vertical levels in the data-
assimilation and high-resolution deterministic model from 31 to 60, the number of vertical levels in the EPS 
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was increased from 31 to 40. In November 2000, the EPS resolution was increased to TL255L40 (Buizza et 
al. 2003), with initial conditions for the mean of the ensemble interpolated from the TL511L60 analysis. This 
most recent upgrade coincided with an increase of resolution of the ECMWF data-assimilation and high-
resolution deterministic forecast from TL319L60 to TL511L60. 

At the time of writing this report (Summer 2003), the 51*TL255L40 EC-EPS included one “control” forecast 
started from the unperturbed analysis (interpolated to the lower ensemble resolution), and 50 additional 
forecasts started from perturbed analysis fields. These perturbed fields were generated by adding to / 
subtracting from the unperturbed analysis a combination of the dynamically fastest-growing perturbations 
(defined by the total energy as a measure of growth), scaled to have an amplitude consistent with analysis 
error estimates. Since April 2003 the EPS has been running twice a day, with 00 and 12 UTC initial times. 

Formally, each member of the EC-EPS is defined by Eq. (1) with the same model version 
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with randomly perturbed tendencies  

 ),(),()],,([ 6,10 tePrtedP jjjj ⋅>=< φλφλ  (4b) 

where (λ,φ) are the grid-point longitude and latitude, <…>10,6  indicates that the same random number rj is 
used inside a 10-degree box and a 6-hour time window (see Buizza et al. 1999 for more details). The initial 
perturbations dej(0) are defined as  

 TCSHNHj SVCSVBSVAde ⋅+⋅+⋅=)0(  (4c) 

where for each geographical region (northern and southern hemisphere extra-tropics, NH and SH, and 
tropics, TC) the coefficients of the linear combination matrices are set by comparing the singular vectors 
with analysis error estimates given by the ECMWF 4D-Var data-assimilation scheme (see Molteni et al. 
1996 for more details).  

2.2. The MSC perturbed-observation approach 

The MSC perturbed-observation approach attempts to obtain a representative ensemble of perturbations by 
comprehensively simulating the behaviour of errors in the forecasting system. Sources of uncertainty that are 
deemed to be significant are sampled by means of random perturbations that are different for each member 
of the ensemble. Because the analysis and forecast process is repeated several times with different random 
input, the perturbed-observation method is a classic example of the Monte Carlo approach. Arguments for 
the use of non-selective, purely random ensemble perturbations are presented in Houtekamer et al. (1996a) 
and by Anderson (1997). 

In the first version of the MSC-EPS, implemented operationally in February 1998, all 8 members used the 
Spectral Finite Element model at resolution TL95 (Ritchie & Beaudoin 1994) and an optimal interpolation 
data-assimilation system (Mitchell et al. 1996). The members used different sets of perturbed observations, 
different versions of the model, and different subsets of perturbed surface fields.  

The perturbation of the observations is straightforward in principle. An estimate of the error statistics is 
available for each observation that is assimilated with the optimal interpolation method. Random numbers, 
with Gaussian distribution, can subsequently be obtained from these estimates using a random number 
generator. Here the Gaussian distribution has zero mean and error (co-) variance as specified in the optimal 
interpolation scheme. It should be noted though that the resulting perturbations have subsequently been 
multiplied with a factor 1.8 in order to inflate the ensemble spread and thus compensate for an insufficient 
representation of model error. 
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To account for model error, experts on the model physics were consulted as to what physical 
parametrizations were of similar quality (Houtekamer & Lefaivre, 1997). The selected physical 
parametrizations were state-of-the-art at the time of the implementation of the MSC-EPS. In addition to the 
models and observations, the surface boundary conditions are also a source of errors, though perhaps less 
significant than the other two error sources.  The associated uncertainty is represented in the MSC-EPS  by 
adding time-constant random perturbation fields to the boundary fields of sea surface temperature, albedo, 
and roughness length. 

In August 1999, the size of the MSC-EPS was doubled to 16 members. Since then, the 8 additional members 
have been generated using the newly developed Global Environmental Multi-scale model (Côté et al. 1998). 
Furthermore, updated versions of physical parametrizations have been used for the 8 members that use the 
Global Environmental Multi-scale model. The use of two different dynamical models led to a much better 
sampling of the model error component. Improvement was noted in particular in the spread/skill correlation 
and the rank histograms for 500 hPa geopotential (not shown).  

In 2001, it became possible to increase the horizontal resolution. The spectral truncation of the 8 members 
that use the Spectral Finite Element model was increased from TL95 to TL149, and the resolution of the 8 
members that use the Global Environmental Multi-scale model increased from a 2 degree to a 1.2 degree 
uniform grid. This was possible due to an increase in computational resources at MSC. 

Note that no additional data-assimilation cycles are run for the new members introduced in 1999: instead, the 
8 additional initial conditions for the medium-range forecasts is obtained by means of a correction 
(Houtekamer & Lefaivre, 1997) towards the operational deterministic high-resolution 3d-variational analysis 
of the Canadian Meteorological Centre (CMC) (Gauthier et al. 1999). Since the high resolution analysis is of 
higher quality than the lower resolution ensemble mean optimal interpolation analysis, the correction is such 
that the 16-member ensemble mean state is a weighted mean of the high resolution analysis and the original 
8-member ensemble mean analysis.  

It should be noted that the relative weights of the low-resolution ensemble mean and the high-resolution 
deterministic analysis were determined at a time when both analyses were performed with an optimal 
interpolation procedure. Since then the low-resolution ensemble mean analyses have been obtained with a 
fairly stable configuration whereas the deterministic analysis improved significantly. The way in which these 
analyses are combined is due for a re-evaluation. 

One of the difficulties of the MSC-EPS approach is that a significant man-power investment is required to 
operationally maintain the system at a state-of-the-art level, since this involves a continuous re-evaluation, 
adjustment, correction, and replacement of data assimilation and modelling algorithms by more suitable or 
acceptable procedures. It is more difficult to maintain a multi-model ensemble, especially during periods of 
hardware replacements.  

2.3. The NCEP bred-vector approach 

The NCEP bred-vector approach is based on the notion that analysis fields generated by data assimilation 
schemes that use NWP models to dynamically propagate information about the state of the system in space 
and time will accumulate growing errors by the virtue of perturbation dynamics (Toth & Kalnay 1993, 1997). 
For example, based on 4D-VAR data assimilation experiments with a simple model, Pires et al. (1996) 
concluded that in advanced data assimilation systems the errors at the end of the assimilation period are 
concentrated along the fastest growing Lyapunov vectors. This is due to the fact that neutral or decaying 
errors detected by an assimilation scheme in the early part of the assimilation window will be reduced, and 
what remains of them will decay due to the dynamics of such perturbations by the end of the assimilation 
window.  In contrast, even if growing errors are reduced by the assimilation system, what remains of them 
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will, by definition, amplify by the end of the assimilation window. These findings have been confirmed in a 
series of studies using assimilation and forecast systems of varying complexity (for a summary, see Toth et 
al. 1999).  

The breeding method involves the maintenance and cycling of perturbation fields that develop between two 
numerical model integrations, practically amounting to the use of a “virtual” non-linear perturbation model. 
When its original form is used with a single global rescaling factor, the bred vectors (BV) represent a non-
linear extension of the Lyapunov vectors (Boffetta et al. 1998). For ensemble applications, the bred-vectors 
are rescaled in a smooth fashion to follow the geographically varying level of estimated analysis uncertainty 
(Iyengar et al. 1996). In NCEP operations, multiple breeding cycles are used, each initialized at the time of 
implementation with independent arbitrary perturbation fields (“seeds”).  

The perturbed observation and the bred vector methods are related in that they both aim at providing a 
random sample of analysis errors. One difference is that while the perturbed observation method works in the 
full space of analysis errors, the bred-vector method attempts to sample only the small subspace of the fastest 
growing errors. The bred vector approach is also related to the singular vector approach followed at ECMWF 
in that both methods aim at sampling the fastest growing forecast errors. The difference between these two 
techniques is that while the breeding techniques attempts to provide a random sample of growing analysis 
errors, the singular vectors give a selective sample of perturbations that can produce the fastest linear growth 
in the future.  

The use of closure schemes in NWP models result in random model errors that behave dynamically like 
initial value related errors (Toth & Vannitsem 2002). These random model errors are simulated in the NCEP 
ensemble in a crude fashion by setting the size of the initial perturbations at a level somewhat higher than the 
estimated uncertainty present in the analysis fields. While the larger spread in the NCEP ensemble slightly 
hinders performance in the short lead-time ranges, it improves performance in the medium- and extended 
ranges (Toth & Kalnay 1997).  

NCEP produces 10 perturbed ensemble members both at 00 and 12 UTC every day out to 16 days lead-time. 
For both cycles, the generation of the initial perturbations is done in 5 independently run breeding cycles, 
originally started with different arbitrary perturbations, using the regional rescaling algorithm. The initial 
perturbations are centered as positive-negative pairs around the operational high resolution (at the time of the 
study period, T170L42) NCEP analysis field, truncated to T126L28 (Toth et al. 2002; Caplan et al. 1997). 
The ensemble forecasts are integrated at this spatial resolution out to 84 hours, at which point the forecasts 
are truncated to, and for computational efficiency integrated at a lower, T62L28 resolution. For both cycles, 
the ensemble forecasts were complemented by a higher resolution control forecast (T170L42 up to 180 
hours, then truncated to T62L28) starting from the high-resolution operational analysis. At 00 UTC, a second 
control forecast with the same spatial resolution as the perturbed forecasts is also generated.  

Formally, each member of the NCEP-EPS is defined by Eq. (1) with the same model version P being used 
for all members and with initial perturbations dej(0) defined as  

 jj BVRRde ⋅=)0(  (5) 

The coefficients RR of the linear combination matrices in Eq. (5) are defined by the regional re-scaling 
algorithm (Toth & Kalnay 1997).  

2.4. An example: the forecast case of 14 May 2003 

To illustrate the effect of the use of different configurations on the characteristics of the three ensembles, a 
forecast example is presented in Figs. 1, 2 and 3. These figures show the ensemble mean and standard 
deviation (which is a measure of the ensemble spread) for the 500 hPa geopotential height for a randomly 
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selected initial date (14 May 2002), along with the t+48h and the t+120 hour forecasts. The comparison is 
based on 11-member ensembles started at 00 UTC, and each ensemble is verified against its corresponding 
analysis. 

At initial time, the spread among the three centers’ initial states (measured by the standard deviation of three 
centers’ ensemble-means) is also shown (Fig. 1d). This field can be considered as a crude lower bound 
estimate of analysis error variance, providing a reference for ensemble spread. Since at initial time the 
ensemble perturbations are designed to represent analysis errors, the ensemble spread should, on average, be 
similar to analysis error variance. Figure 1 shows that the three ensembles emphasize different geographical 
regions. The EC-EPS (Fig. 1a) has the smallest initial spread, falling closest in amplitude to the spread 
among the three centers’ initial states (Fig. 1d; note the lower contour interval compared to other panels). 
Note that the EC-EPS spread over the northern hemisphere south of 30ºN degree is almost zero, since SV 
perturbations in the tropical region are generated only in the vicinity of tropical cyclones (see section 2.1).  

In case of the forecasts the average error of the three centers’ ensemble-mean forecasts (i. e., average 
distance of the respective analyses from the ensemble-mean forecasts) is used as a reference field (Fig. 2d 
and 3d). Since the ensemble forecasts are supposed to include the verification as a possible solution, the 
ensemble spread should, on average, be similar to this field. At t+48h (Fig. 2), the spread in the three centers’ 
ensembles is more similar to each other than at initial time, both in terms of amplitude and pattern. At t+120h 
(Fig. 3), the three ensembles continue to have a similar pattern of spread, with a slightly larger spread in the 
EC-EPS than in the others. Note that for this particular forecast case there is a certain degree of agreement 
between areas of large ensemble spread and large average error, suggesting that the ensembles are able to 
capture case dependent forecast uncertainty. 

 
Figure 1. Initial state, 00UTC of 14 May 2002, 500 hPa geopotential height. (a-c) Ensemble mean and standard 
deviation (shading) of the (a) EC-EPS, (b) the MSC-EPS and (c) the NCEP-EPS. (d) average of the three ensemble-
means and standard deviation among the three ensemble means (shading). Contour interval is 8 dam for full field, 0.5 
dam for ensemble standard deviation in panels (a-c) and 0.25 dam for standard deviation in panel (d). 
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Fig. 2. As Fig 1 but for 48h forecast from 00UTC of 14 May 2002, and with average RMSE of the three control 
forecasts instead of the analysis STD in panel d, and with 1dam ci for shadings. 

 
Fig. 3. As Fig 1 but for 120h forecast from 00UTC of 14 May 2002, and with average RMSE of the three control 
forecasts instead of the analysis STD in panel d, and with 2dam ci for shadings. Comparative verification of the three 
ensemble systems  
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3. Comparative verification of the three ensemble systems 

3.1. Earlier studies 

A number of studies have been performed comparing the performance of former versions of the EC- and the 
NCEP-EPSs. In the first of these studies Zhu et al. (1996) compared the performance of the EC- and NCEP-
EPS at a time (winter of 1995/96) when the spatial resolution of the ensemble forecasts (T62 vs. T63) and 
the skill of the control forecasts at the two centers were rather similar. Using a variety of verification 
measures similar to those used in this study, they concluded that the NCEP_EPS 500 hPa geopotential height 
forecasts had a 0.5-1-day advantage in skill during the first 5 days, while the EC-EPS became comparable or 
superior by the end of the 10-day forecast period.  

Subsequently, the ECMWF ensemble always had a markedly higher resolution (and superior control forecast 
performance) than the NCEP ensemble. Despite this difference in horizontal model resolution, in a follow-up 
study Atger (1999) found the statistical resolution (see, e.g., Wilks 1995) of the NCEP and ECMWF 
ensembles comparable. In this comparison, the ECMWF ensemble had an advantage in terms of statistical 
reliability due to its larger spread that guaranteed a better agreement between the growth of ensemble spread 
measured, e.g., by the ensemble standard deviation, and the growth of the ensemble-mean error. Mullen & 
Buizza (2001) compared the skill of probabilistic precipitation forecasts based on 10 perturbed members over 
the US, using 24-hour accumulated precipitation data from the US NWS River Forecast Centers. They 
concluded that during 1998 the limit of skill (measured by the Brier skill score) for the EC-EPS was about 2-
days longer for the 2- and 10-mm/d thresholds, while the two systems exhibited similar skill for 20mm/d 
amounts. The results of Atger (2001) confirmed that the EC-EPS performed better than the NCEP-EPS in 
terms of precipitation forecasts, based on verification against rain-gage observations in France. 

These studies indicate that the relative performance of the different ensemble systems depends on their actual 
operational configuration, and the time period, variables, and verification measures used. The current study 
offers a recent snapshot of the performance of the three systems compared and has the same limitations as 
previous work. Results for other seasons have not been carefully studied. We note that work is in progress 
towards establishing a continuous comparison effort based on a fairly extensive set of measures as discussed 
below. 

3.2. The data-set used in the this study: May-June-July 2002 

In this study the performance of the three ensemble forecast systems is assessed for a 3-month period for 
which data from the three ensembles were available and exchanged, May-June-July 2002. Since NCEP 
generates only 10 perturbed forecasts from each initial time, the comparison has been limited to 10-member 
ensembles. When considering the quantitative results of this study, the reader should be aware that ensemble 
size has an impact on ensemble skill: according to Buizza & Palmer (1998), increasing the ensemble size 
from 8 to 32 members in the old T63L19 EC-EPS system increased the skill of the ensemble-mean by ~6h in 
the medium-range, and the skill of probabilistic predictions by ~12h, with exact numbers function of the 
accuracy measure.  The sub-sampling from the MSC-ensemble will have a negative impact on the quality of 
its initial ensemble mean fields, and the sub-sampling of the EC-EPS with initial perturbations designed for a 
50-perturbed member system will have a negative impact on its skill for the whole forecast period. 
Furthermore, since in May-June-July 2002 ECMWF had no operational 00 UTC ensemble and MSC had no 
operational 12 UTC ensemble, for each day 00UTC MSC- and NCEP-EPS and the 12UTC ECMWF 
ensembles have been considered.  

For brevity, only 500 hPa geopotential height forecasts are considered over the middle latitudes of the 
northern hemisphere (20º-80ºN, except for PECA, see below). Forecast and analysis fields have been 
interpolated onto a common regular 2.5x2.5 grid, and each ensemble has been verified against its own 
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analysis, i.e. the analysis generated by the same center. Probabilistic forecasts are generated and evaluated in 
terms of 10 climatologically equally likely intervals determined at each grid point separately (Toth et al. 
2002), based on the NCEP-NCAR reanalysis. 

3.3. Verification  attributes and measures 

3.3.1. Attributes of forecast systems 

The performance of the ensemble forecast systems will be measured through an analysis of their two main 
attributes: statistical reliability (or consistency) and resolution. Reliability of a forecast system implies that a 
sample of forecasts is statistically indistinguishable from the corresponding sample of observations (or 
analysis fields). Reliability can often be improved through simple statistical post-processing techniques. 
Though important for real world applications, reliability of a forecast system in itself does not guarantee 
usefulness. For example, a climatological forecast system, by definition, is perfectly reliable, yet has no 
forecast value. The real value of forecast systems is measured by their other main attribute, statistical 
resolution. Statistical resolution reflects a forecast system’s ability to distinguish between different future 
events in advance.  

3.3.2. Verification measures  

There exist a number of verification scores that measure the two main attributes of forecast systems. These 
measures differ since they emphasize different aspects of forecast performance.  In this study, the 
performance of the three EPS will be compared using a comprehensive set of standard ensemble and 
probabilistic forecast verification methods, including the pattern anomaly correlation (PAC), root mean 
square (RMS) error, and the Brier Skill Score (Brier 1950). All these scores provide a measure that is a 
function of both the statistical reliability and the resolution. In addition, results for outlier statistics, that 
measures only reliability, and relative operating characteristics (ROC, Mason 1982, Stanski et al 1989), that 
measures only resolution, will also be presented. A brief description of each of these measures is provided in 
the Appendix, while further details, along with a discussion of the two main attributes of probabilistic 
forecasts, resolution and reliability, can be found, e. g., in Wilks 1995, Talagrand et al 1997, and Toth et al. 
2003. 

The above scores measure the quality of probabilistic forecasts of scalar quantities. In the context of this 
study, one would also like to evaluate the relevance of perturbation patterns. The characteristics of the 
patterns could be very different for the 3 EPS systems. To investigate this, Wei & Toth (2003) designed a 
new measure called perturbation vs. error correlation analysis (PECA). By evaluating how much of the error 
in a forecast can be explained by a single, or an optimal combination of ensemble perturbations, PECA 
ignores the magnitude of forecast errors that may dominate other verification measures. Therefore the PECA 
values shown in the next subsection may be helpful in attributing the ensemble performance results to 
differences in the quality of data assimilation, NWP modelling, and ensemble perturbation techniques at the 
three centers.  

3.4. Performance of the three ensemble systems for May-June-July 2002 

3.4.1. Quality of data assimilation and numerical modelling systems 

Since the performance of the ensemble forecast systems is affected not only by the ensemble generation 
schemes but also by the quality of the data assimilation and forecast procedures used, it will be useful to first 
compare the performance of single forecasts started from the best analysis available at each center (“control” 
forecasts). This can serve as a reference reflecting the quality of data assimilation and NWP modelling at the 
three centers. Shown in Fig. 4 is the PAC score for each center’s control forecast. Note that both ECMWF 
and NCEP has a control forecast that is run at the same model resolution as the respective perturbed 
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ensemble members (note that this resolution is different at the three centers), started from the initial 
condition equal to the ensemble mean. Due to communication problems such an equal resolution control 
forecast from the MSC-EPS was not available for this comparison. In its place the skill of the MSC high 
resolution control forecast, started from the operational 3D-Var analysis, is shown in Fig. 4. Results indicate 
that for this period the quality of the control forecast is highest for the EC-EPS and lowest for the MSC-EPS.  

 
Figure 4. May-June-July 2002 average PAC for the control (dotted lines) and the ensemble-mean (solid 
lines) of the EC-EPS (green lines), the MSC-EPS (red lines) and the NCEP-EPS (black lines).Values refer 
to the 500 hPa geopotential height over the northern hemisphere latitudinal band 20º-80ºN. 

3.4.2. Overall measures of ensemble performance 

RMS error, and the related PAC are influenced by both systematic errors (related to reliability) and random 
error variance (related to resolution). Therefore these two scores offer good measures of overall forecast 
performance. In this subsection the value of each ensemble forecast system will be measured by PAC and 
RMS of the ensemble mean forecasts. For PAC, the ensemble skill will also be compared to that of the 
control forecasts. These scores will be complemented by the Brier Skill Score computed for probabilistic 
forecasts based on the three ensembles. 

Except as noted below, each ensemble mean forecast is more skilful than its control in terms of PAC (see 
Fig. 4). The gain in predictability from running an ensemble (instead of a single control forecast) is about 
12/24 hours at forecast day 6/9. These gains are due to the non-linear filtering effect that ensemble averaging 
offers in terms of error growth reduction (Toth & Kalnay 1997). For the first few days, the MSC control 
forecast has higher skill than the MSC-EPS mean. Most likely this is due to the MSC-EPS being centered 
around an initial state that is inferior to the 3D-VAR analysis and to the sub-sampling to 10 members 
performed for this study.  

Note also that beyond 5 days lead time the gain from ensemble averaging is smallest in the NCEP-EPS. This 
may be related to the lack of explicit representation of model errors in that ensemble.  

Given the earlier finding that the ECMWF forecast system has the best overall data assimilation/modelling 
components, it is not surprising that the ensemble mean for the EC-EPS also performs better than those for 
the other centers’, both in terms of PAC (Fig. 4) and RMS error (Fig. 5). Note also that by the end of the 10-
day forecast period the performance of the EC- and the MSC-EPS become very similar. This may be due to 
the beneficial effect of using different model versions in the MSC-EPS in terms of the RMS error and PAC 
measures. 
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Figure 5. May-June-July 2002 average RMS error of the ensemble-mean (solid lines) and ensemble 
standard deviation (dotted lines) of the EC-EPS (blue lines), the MSC-EPS (red lines) and the NCEP-EPS 
(black lines). Values refer to the 500 hPa geopotential height over the northern hemisphere latitudinal 
band 20º-80ºN. 

The BSS, shown in Fig. 6, is computed by averaging the BSS for 10 climatologically equally likely events, 
considering climatology as a reference forecast. Just as the RMS error and PAC, the Brier Skill Score (BSS) 
also reflects both the reliability and resolution of ensemble forecast systems. Not surprisingly, the BSS 
results are somewhat similar to those presented for the RMS error in Fig. 5. Overall, the best performance is 
obtained by the ECMWF ensemble. During the first few days, the NCEP system remains competitive, 
suggesting perhaps a positive effect of the initial perturbations (bred vectors). At longer lead times the 
performance of the NCEP system slips, probably due to the lack of model perturbations. The relatively good 
performance of the MSC system at long (8-10 days) lead time again may be due to the use of multiple model 
versions in that ensemble. 

 
Figure 6. Top: May-June-July 2002 average Brier skill score for the EC-EPS (blue lines), the MSC-EPS 
(red lines) and the NCEP-EPS (black lines). Bottom: resolution and reliability contributions to the Brier 
skill score. Values refer to the 500 hPa geopotential height over the northern hemisphere latitudinal band 
20º-80ºN, and have been computed considering 10 equally-climatologically-likely intervals. 
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The BSS can be decomposed into reliability and resolution components (Murphy 1973). Results from the 
lower panel of Fig. 6 indicate that at shorter lead times (before day 6) it is the resolution, while at longer lead 
times (beyond day 7) it is the reliability part of the BSS that dominates the overall results. 

3.4.3. Measures of reliability  

In this subsection statistical reliability will be assessed in three different ways. The first measure used is the 
discrepancy between the ensemble spread and the ensemble mean error, both shown for all three systems in 
Fig. 5. One should note here that the very small initial ensemble mean errors are a consequence of validating 
against analyses. For a statistically reliable ensemble system, reality should statistically be indistinguishable 
from the ensemble forecasts. It follows that the distance between the ensemble mean and the verifying 
analysis (ensemble mean error) should match that between the ensemble mean and a randomly selected 
ensemble member (ensemble standard deviation or spread). A large difference between the ensemble mean 
error and spread is therefore an indication of statistical inconsistency. 

As seen from Fig. 5, the growth of the rms error exceeds that of the spread for all three systems (except as 
noted below). The growth of ensemble perturbations (spread) in the three systems is affected by two factors: 
the initial ensemble perturbations, and the characteristics of the model (or model versions) used. While the 
initial perturbations are important during the first few days, their influence diminishes with increasing lead 
time since the perturbations rotate toward directions that expand most rapidly due to the dynamics of the 
atmospheric flow (as represented in a somewhat different manner in each model), as discussed in relation 
with Figs. 1-3. 

Out of the three systems the EC-EPS exhibits the largest (and therefore most realistic) perturbation growth. 
During the first two days the EC-EPS perturbation growth even exceeds error growth. This is due to the use 
of SVs that are optimised for maximum growth. Due to the use of a purely Monte Carlo perturbation 
technique that generates initial perturbations containing neutral and decaying modes, the MSC-EPS exhibits 
the lowest perturbation growth during the first day of integration.  After the first day, the NCEP-EPS exhibits 
the lowest (and least realistic) perturbation growth. Most likely this is due to the lack of model perturbations 
in that ensemble.  

The relatively large growth rate of the EC-EPS in the 3-10 day range is mostly due to the sustained growth of 
the SV-based perturbations and partly to the stochastic simulation of random model errors (Buizza et al 1999 
documented that the introduction of the stochastic simulation increased the spread of the old TL159L31 EC-
EPS by ~6% at forecast day 7). This suggests that the introduction of random model perturbations may be as 
effective in increasing ensemble spread as the use of different model versions in the MSC-EPS. This 
explanation, however, is not definitive, since some models, especially at higher resolution, may be more 
active than others, contributing to differences in perturbation growth rates. An important observation based 
on Fig. 5 is that the perturbation growth is lower than the error growth even in the ensemble with the most 
realistic behavior (EC-EPS), indicating that none of the techniques currently used for representing model 
related uncertainty provides satisfactory performance. In the MSC- and NCEP-EPS, the deficiency in 
perturbation growth is partially compensated by initial perturbation amplitudes that are larger than the level 
of estimated initial errors.  

To provide further insight into the statistical behavior of the forecast systems, the geographical distribution 
of spread in the three ensembles is contrasted in Figs. 7 and 8 with a crude estimate of uncertainty at initial 
and 2-day forecast lead times in a manner similar to Figs. 1-3, except averaged for the month of June 2002. 
As a further reference, a linear measure of atmospheric instability, the Eady index (Hoskins & Valdes 1990), 
is also shown Figs. 7 and 8. 
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Figure 7. May-2002 initial-time average, 500 hPa geopotential height. (a-c) Ensemble mean and 
standard deviation (shading) of the (a) EC-EPS, (b) the MSC-EPS and (c) the NCEP-EPS, (d) average of 
the three ensemble-means and standard deviation among the three ensemble means (shading) and (e) 
average of the three ensemble-means and Eady-index (shading). Contour interval is 8 dam for full field, 
0.25 dam for ensemble standard deviations in panel (a) and 0.5 dam in panels (b-c), 0.25 dam in panel 
(e) and 0.2 d-1 for Eady index. 
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Figure 8. May-2002 +48-hour average, 500 hPa geopotential height. (a-c) Ensemble mean and standard 
deviation (shading) of the (a) EC-EPS, (b) the MSC-EPS and (c) the NCEP-EPS. (d) average of the three 
ensemble-means and standard deviation among the three ensemble means (shading). Contour interval is 
8 dam for full field, 1 dam for ensemble standard deviations. 

 
dz
du

N
f

E 31.0=σ , (6) 

where N is the static stability and the wind shear is computed using the 300-1000 hPa potential temperature 
and wind. 

As already noted in Figs. 5 and 1, the magnitudes of the initial perturbations in the EC-EPS (note use of half 
size contour interval) is on average half of that in the other two systems and is comparable to the uncertainty 
estimate in Fig. 7d. More interesting here are the differences in the geographical distribution of the initial 
perturbations between the three ensembles, with absolute (relative) maxima over the Atlantic, Arctic 
(Pacific, Atlantic), and Atlantic (Arctic) regions in the EC-, MSC-, and NCEP-EPS respectively. The 
characteristics of the SV-based EC-EPS, and the BV-based NCEP-EPS perturbations are further discussed 
by Buizza & Palmer 1995, and Toth & Kalnay 1997, respectively. We only note here that the distribution of 
EC-EPS initial spread exhibits some similarity with the Eady Index (Fig. 7e). In contrast with the EC-EPS 
perturbations that are generated by pure linear dynamics, the MSC-EPS perturbations are more 
representative of the characteristics of the observational network , with more pronounced maxima over the 
data sparse regions of the globe. Since it attempts to capture flow dependent growing analysis errors, it is not 
surprising that the results from the NCEP-EPS in Fig. 7 appear to fall in between the results generated by 
pure linear dynamics (EC-EPS) and Monte Carlo analysis error simulation (MSC-EPS). 

Interestingly, the geographical distribution of perturbations from the three systems develop considerable 
similarity even after just 2 days of integrations (Fig. 8). Despite the large discrepancies at initial time, the 
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absolute and relative maxima in the three 2-day forecast ensemble spread charts are reasonably aligned with 
each other and also with those in the estimated forecast uncertainty (Fig. 8d). Again, this is a reflection of the 
convergence of initial perturbation and error patterns into a small subspace of perturbations that can grow in 
a sustainable manner based on the flow dependent dynamics of the atmosphere. 

The second measure of statistical reliability discussed in this subsection is the percentage of the number of 
cases when the verifying analysis lies outside the cloud of the ensemble in excess to what is expected by 
chance (Fig. 9).  A reliable ensemble will have a score of zero in this measure, whereas larger positive 
(negative) absolute values indicate more (fewer) outlier verifying analysis cases than expected by chance. 
Despite an adequate level of spatially averaged spread indicated at day 1 in Fig. 5, the ECMWF ensemble 
has too many outliers at short lead times. The apparent discrepancy between the results in Figs. 5 and 9 can 
be reconciled by considering that too small spread in certain areas can be easily compensated by too large 
spread in other areas when reliability is evaluated using rms standard variation. This is not the case, however, 
when the outlier statistics is used, since this measure aggregates (and not averages) results obtained at 
different grid points.  

 
Figure 9. May-June-July 2002 average percentage of excessive outliers for the EC-EPS (green lines), the 
MSC-EPS (red lines) and the NCEP-EPS (black lines). Values refer to the 500 hPa geopotential height 
over the northern hemisphere latitudinal band 20º-80ºN. 

In contrast with the EC-EPS results, the MSC-EPS (and to a lesser degree, the NCEP-EPS) rms spread and 
the outlier statistics results are consistent with each other. This suggests that the initially too large ensemble 
spread in these two ensembles becomes adequate around days 2-3, before it turns deficient at later lead times.  
The largest deficiency at later lead times is observed for the NCEP-EPS, probably due to the lack of any 
model perturbations in that ensemble. Best reliability in terms of outlier statistics is indicated for the MSC-
EPS. This is in contrast with the RMS spread results (Fig. 5) that suggest the EC-EPS as the most reliable of 
the three ensembles. The apparent contradiction between the outlier and RMS spread results might be 
explained by considering that the MSC-EPS outlier results benefit from the use of ensemble members with 
distinctly different time mean errors (biases). Alternatively, one could argue that the MSC-sampling of 
model error is very appropriate but insufficient in the sense that not all model weaknesses are actually 
sampled. Perturbation growth may be influenced more by the addition of random noise during model 
integrations as done in the EC-EPS, where the entire tendency vector obtained from the model physics has 
contributed to the model-error terms. 
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The third measure of statistical consistency is the reliability component of the BSS (lower panel of Fig. 6). 
Interestingly, the reliability component of the BSS score indicates that the EC-EPS is the least reliable at 
short, while the most reliable at longer lead times. These results are consistent with the outlier statistics at 
short, and the rms spread results at longer lead times respectively.   

3.4.4. Measures of resolution 

The resolution component of the BSS (lower panel of Fig. 6) and the Relative Operating Characteristics 
(ROC) Score (Fig. 10) provide two different quantitative measures of the inherent skill of the ensemble 
forecast systems, the statistical resolution. Though there are some quantitative differences between these two 
scores, they agree that the best resolution is obtained by the EC-EPS. At short, up to 2 days lead time the 
NCEP-EPS is competitive, probably due to the beneficial effects of initial perturbations (bred vectors). With 
increasing lead time, the resolution of the NCEP-EPS, just as its reliability, suffer from the lack of model 
perturbations. On the other hand, the MSC-EPS becomes competitive even with the EC-EPS near the end of 
the 10-day forecast period, probably due to the use of multiple model versions.  

 
Figure 10. May-June-July 2002  area under the relative operating characteristics for the EC-EPS (green 
lines), the MSC-EPS (red lines) and the NCEP-EPS (black lines). Values refer to the 500 hPa 
geopotential height over the northern hemisphere latitudinal band 20º-80ºN, and have been computed 
considering 10 equally-cliamatologically-likely intervals. 

3.4.5. Perturbation pattern analysis 

All the previously discussed verification measures of reliability and resolution are used to evaluate ensemble 
forecasts for scalars. In contrast, the Perturbation vs. Error Correlation Analysis (PECA) evaluates directly 
the quality of ensemble perturbation patterns (Appendix A). This score is thought to be insensitive to the 
quality of the deterministic prediction system. The higher the correlation of individual, or optimally 
combined ensemble perturbations with the error in the control forecast, the closer the structure of the 
ensemble perturbations are to the forecast error structure. 

The most visible feature in the results presented in Fig. 11 is that for all three ensemble systems the PECA 
values increase with increasing lead time. This is related to the convergence of both the perturbation and the 
error patterns to a small subspace of growing patterns, characterized by the leading Lyapunov vectors in a 
linear setting, or by the fastest growing non-linear perturbations (Toth & Kalnay, 1997, and Boffetta et al., 
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1998, argue that these coincide with bred vectors or non-linear Lyapunov vectors). Note also that the PECA 
values also increase when the degrees of freedom is reduced due to the use of smaller domain size.  

 
Figure 11. Perturbation vs. Error Correlation Analysis (PECA) for the global (top left), NH (top right), 
North American (bottom left) and European (bottom right) regions for individual (thin) and optimally 
combined (heavy) ensemble perturbations. For further details on PECA, see text and Appendix A. 

When comparing the PECA values for the three ensemble systems, we note first that the EC-EPS scores are 
not above those from the MSC-EPS or NCEP-EPS. Since PECA is insensitive to the quality of the initial 
analysis, this result suggests that the main reason for the better performance of the EC-EPS in terms of the 
RMS, PAC, ROC and Brier Skill Score measures is the superiority of the ECMWF data assimilation (and 
perhaps numerical forecast modeling) system, and not necessarily the strategy used to simulate initial value 
and model related uncertainties in the EC-EPS.  

Since the PECA results reflect more directly the performance of the three ensemble generation schemes, the 
advantages of the different ensemble systems can be more easily detected. When the PECA analysis is 
restricted to the hemispheric and smaller scales (Figs. 11b,c,d), the NCEP-EPS has a clear advantage for the 
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short, 1 day forecast range. Over the North American/European region, the optimally combined NCEP-EPS 
perturbations, for example, can explain around 38/53% of the 12-24 hour forecast error variance (with PECA 
values around 0.62/0.72), compared with around 25/40% explained error variance (associated with 0.5/0.63 
PECA values) by the other two EPS systems. Assuming that PECA values are independent only every 5th 
day, the differences between the NCEP-EPS, and the ECMWF-EPS and the MSC-EPS are statistically 
significant at the 0.1/0.5% level.  Statistically significant results are also found for day 2 (36-48 hour) lead 
times.  The relatively good performance of the NCEP-EPS at short lead times may be due to the ability of the 
breeding method to efficiently sample analysis errors on the synoptic and smaller scales. When larger, global 
scales are also included in the analysis (Fig. 11a), the MSC ensemble becomes superior, especially at longer 
lead times. This may be due to the value of model diversity in capturing forecast error patterns that are 
potentially affected by large-scale model systematic errors, especially at longer lead times.  

During the first 1-2 days, PECA values for the EC-EPS tend to be lower when compared to the other 
ensembles. This may be due to the use of a norm in the computation of the singular vector perturbations, 
total energy, that is not directly connected with analysis uncertainty. It is also interesting to note that on the 
hemispheric and global domains, it is the ECMWF ensemble that shows the largest gain when individual 
ensemble perturbations are optimally combined to maximize the explained forecast error variance. Likely 
this is an advantage related to the orthogonalization inherent in the calculation of the singular vector 
perturbations. 

4. Future directions 
After more than a decade of intense research, a number of open science questions related to ensemble 
generation methods still remain.  

4.1. Random versus selective sampling 

Ensemble forecasting involves Monte Carlo sampling. However, there is a disagreement on whether random 
sampling should occur in the full space of analysis errors, including non-growing directions, or only in the 
fast growing sub-space of errors. It is likely that the next several years will see more research in this area of 
ensemble forecasting, yielding quantitative results that will allow improvements in operational procedures.  

4.2. Significance of transient errors 

Another open question is related to the role of transient behavior in the evolution of forecast errors. If one 
chooses to explore only the fast growing subspace of possible analysis errors for the generation of ensemble 
perturbations, should one use the leading Lyapunov or bred vectors, or alternatively should one use singular 
vectors that can produce super-Lyapunov error growth?  

4.3. Unification of data assimilation and ensemble generation techniques 

Ensemble forecasting and data assimilation efforts can mutually benefit from each other and the two systems 
can be jointly designed (Houtekamer et al. 1996b). Such an approach is pursued at MSC, and is considered at 
several other centers. In these efforts an appropriate sampling of model error (Dee 1995) and an optimal use 
of a limited number of ensemble members are of critical importance. This is a very complex, yet potentially 
promising area of research that many in the field view with great expectations not only for global, but also 
for limited area modelling applications (Toth et al. 2003). 

4.4. Representation of model uncertainties 

The representation of forecast uncertainty related to the use of imperfect models will be another area of 
intense research. Do the currently used techniques capture flow dependent variations in skill linked with 
model related errors, or only improve statistical reliability of the forecasts that can potentially be achieved 
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equally well through statistical post-processing? Can a new generation of NWP models be developed that 
offer a comprehensive approach to capturing both random and systematic model errors (Toth & Vannitsem 
2002)? Research on these issued will be pursued at all centers in the coming years, with the hope that one 
day case dependent model related errors can be better captured by the ensemble systems. 

5. Ongoing research 
Out of a wider array of activities, the following is a list of the most critical developmental tasks carried out at 
the three centers.  

At ECMWF, ensemble developmental efforts are focused on: 

� Improving the description of initial uncertainties through the use of more physical processes in the 
computation of extratropical singular vectors (Coutinho et al. 2003), and by the use of different 
norms in the singular vector computation; 

� Increasing the resolution of the ensemble system especially for the prediction of severe weather 
events; 

� Revising the scheme used to simulate random errors due to physical processes, and developing a 
more complex scheme to simulate model error, e.g., by using forcing singular vectors (Barkmeijer et 
al. 2003). 

At MSC, the main areas of ensemble related research are: 

� The development of an ensemble Kalman filter that will provide the initial conditions for the MSC-
EPS (Mitchell et al. 2002); 

� The identification of the main uncertain parameters of the physical parametrizations, so that different 
members can use different values for these parameters; 

� The development of products based on an NCEP-MSC superensemble. 

NCEP focuses its ensemble related activities on: 

� Increasing the horizontal resolution (to T126 resolution out to 180 hours) and the frequency (4 times 
a day) of ensemble forecasts for increased forecast skill; 

� Enhancing the generation of initial perturbations through modifications to the breeding algorithm (6-
hour cycling, use of the Ensemble Transform Kalman Filter for rescaling the perturbations, Wang & 
Bishop 2003); 

� Long-term efforts aimed at the development of an NWP model capable of simulating different types 
of model related uncertainty in ensemble applications; 

� Statistical post-processing of ensemble forecasts for the reduction of systematic errors; and the 
combination of bias-corrected ensemble forecasts originating from different NWP centers (including 
ECMWF and MSC), for the generation of probabilistic weather forecast products. 

6. Conclusions 
In a chaotic system like the atmosphere, probabilistic information is recognized as the optimum format for 
weather forecasts both from a scientific and a user perspective. Ensemble forecasts are well suited to support 
the provision of such probabilistic information. In fact, ensembles not only improve forecast accuracy in a 
traditional sense (by reducing errors in the estimate of the first moment of the forecast probability 
distribution), but also offer a practical way of measuring case dependent variations in forecast uncertainty 
(by providing an estimate of the higher moments of the forecast probability density function).  
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Ensemble forecasting has gained substantial ground in numerical weather prediction in the past decade. 
Today, many numerical weather prediction centers use ensemble methods in their global modelling suite. 
Beyond ECMWF, MSC, and NCEP, global ensemble forecasting is currently operational at the Fleet 
Numerical Meteorology and Oceanography Center (FNMOC, Rennick 1995); the Korean Meteorological 
Agency (KMA 2001), the Japan Meteorological Agency (Kyouda 2002) and the Bureau of Meteorology in 
Australia (Bourke et al. 2003). In addition to the centers mentioned above, global ensemble forecasting 
systems have also been adapted and tested at the South African Weather Service (Tennant 1997, personal 
communication), the National Centre for Medium-Range Weather Forecasting in India (Iyengar 1998, 
personal communication) and the UK Meteorological Office (Harrison et al. 1999).  

Since the mid 1990s, the ensemble techniques have also gained ground in limited area modelling 
applications both in research (Meteo-France, Nicolau 2001; the Royal Dutch Meteorological Institute, 
Hershbach et al. 2000) and operations (at NCEP, Du & Tracton 2001, and at the Regional Meteorological 
Service of Emilia Romagna, Marsigli et al. 2001 and Molteni et al. 2001). Various ensemble products based 
on global or regional ensemble applications established themselves as indispensable tools for a large group 
of users in public and private weather forecasting operations. 

In this paper ensemble techniques such as the singular vector, multiple analysis cycle, and breeding methods 
for the generation of initial perturbations, and the stochastic perturbation and multiple model version 
techniques for representing model related uncertainty were reviewed and compared. To assess the merit of 
the different existing approaches, operational ensemble forecasts generated at three operational numerical 
weather prediction centers were comparatively verified over a 3-month period, May-June-July 2002. Since 
NCEP generates only 10 perturbed forecasts from each initial time, for ease of comparison and interpretation 
the quantitative analysis has been limited to 10-member ensembles (the reader should be aware that this 
induces an under-estimation of the actual skill of the ensemble systems, especially for systems with a large 
member-ship, Buizza & Palmer 1998).   

Most verification measures indicate that the ECMWF ensemble forecast system has the best overall 
performance, with the NCEP system being competitive during the first, and the MSC system during the last 
few days of the 10-day forecast period. These verification methods, however, measure the overall value of 
ensemble forecasts influenced by the quality of the data assimilation, numerical weather prediction 
modelling, and ensemble generation schemes. The results therefore are not directly indicative of the value of 
the different ensemble generation schemes. When the forecasts are evaluated using a new technique (PECA) 
that measures the correlation between ensemble perturbations (instead of the full forecasts, thus eliminating 
the effect of the quality of the analysis on the scores) and forecast error patters, the three ensemble systems 
are found to perform rather similarly.  

From a careful analysis of the results based on small-size (10-perturbed members only) ensemble systems for 
May-June-July 2002, consensus emerge on the following aspects of the systems:  

i. The EC-EPS gave overall the most skilful performance when measured using all (RMS, PAC, BSS and 
ROC-area) but PECA and the outlier statistic as performance measure. 

ii. Using PECA to measure the correlation between perturbation and forecast-error patters, the EC-EPS 
does not show any superior performance. By contrast, the breeding technique at NCEP describes better 
error patterns for small areas at the short-range, and the MSC-EPS describes them better in the medium 
forecast range (say for forecast day 3 to 5). 

iii. These two results suggest that the superior skill of the EC-EPS may be mostly due to its superior 
model and data-assimilation systems, and should not be considered as a proof of a superior 
performance of SV-based initial perturbations. 
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iv. The multiple model versions technique used at MSC provides added value at longer lead times by 
capturing large-scale model related errors in the forecasts. This could explain the superior outlier 
statistics of the MSC-EPS. 

v. After forecast day 3, which is the time when the three systems have approximately a comparable 
ensemble spread, the spread of the multi-model MSC-EPS does not grow as fast as forecast error grow. 
By contrast, the spread in the single-model EC-EPS grows faster, due to a combine effect of sustained 
SV-based perturbations’ growth and of the stochastic simulation of random model errors. This 
indicates that the addition of stochastic model perturbations at ECMWF improves the statistical 
reliability of the forecasts. 

vi. The relatively low quality of the ensemble of data-assimilation cycles in the MSC-EPS has a negative 
impact on the quality of the ensemble mean of that system.  

During the past decade different ensemble generation techniques received significant attention and 
underwent substantial refinements. Yet a number of open questions still remain. On-going ensemble related 
research in the coming years is expected to provide a better understanding of the still remaining scientific 
issues. The inter-comparison of the performance of the ECMWF, MSC, and NCEP ensemble forecast 
systems reported in this paper can be considered as a first necessary step toward answering some of the open 
questions. Continued future collaboration, where in a controlled experiment initial ensemble perturbations 
from the three different systems are introduced in the analysis/forecast system of a selected center, could 
potentially provide further useful information, contributing to improved forecast operations.   
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Appendix A: performance measures 
Root Mean Square error (RMS). The RMS is one of the most commonly used measures of forecast error. It is 
defined as the root of the area mean squared difference between an (ensemble mean) forecast field e(t) and 
the corresponding verification field (either an observed or analysed field) o(t): 

 )()()()();()( totetotetoteRMS −=>−−<=  (A.1) 

As a norm (and corresponding inner product <..;..>), the Euclidean inner product is used. Higher RMS errors 
indicate poorer forecast quality.  

Pattern Anomaly Correlation (PAC). The PAC measures the correlation between predicted and observed 
fields. It is defined as: 
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where c denotes the climatology. The more the forecast anomaly taken from the climate mean correlates with 
the observed anomaly, the higher the PAC is. A forecast with a perfect anomaly pattern would have PAC=1. 

Outlier statistics. An ordered series of N ensemble values define N+1 intervals, including two open ended 
bins at the extremes. With an N-member ensemble one may define N + 1 intervals at every gridpoint. For a 
reliable ensemble the likelihood of the verifying analysis falling into either of the two extreme intervals is 
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2/(N+1). The excessive number of outliers measures the percentage of cases (averaged over all gridpoints 
and forecast cases) where the verifying analysis falls in the two extreme categories in excess of the value 
2/(N+1) expected for a reliable ensemble. Larger/smaller than zero values indicate too many/few outliers 
(too small/large ensemble spread).  

Brier Skill Score (BSS). The Brier Score (BS) averages the squared difference between pairs of forecast 
probabilities and a corresponding binary observation variable with a value of 1 (the forecast event occurred) 
or 0 (did not occur). The Brier Skill Score is defined with respect to the Brier Score of a reference (often 
climatology based) forecast system (BSref): 
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A BSS value of 1 (higher/lower than zero) indicates perfect (better/worse than reference) performance.  

Relative Operating Characteristics (ROC). The ROC is defined using a two-category contingency table. The 
hits are defined as the percentage of forecasts of an event that verify and the false alarms are the percentage 
of forecasts of the event that did not verify. In case of an ensemble, forecasts for the occurrence of an event 
can be issued depending on the number of the total of N ensemble members predicting the event. This yields 
N progressively more stringent decision criteria. The N pairs of hit and false alarm rates define the ROC 
points. An ROC curve is generated by connecting these points to each other and to the points (0,0) and (1,1). 
The area on the right of the curve defines the ROC area (ROCarea). Perfect/random/no skill corresponds to a 
ROC area of 1/0.5/0. The ROC Skill Score (RSS) is defined as RSS=(ROCarea-0.5)*2.  

PECA (Perturbation versus Error Correlation Analysis).    PECA is defined as the correlation between 
perturbation and forecast error fields: 
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n,...,1=   is the number of ensemble 
members. For the a posteriori determined combination of ensemble perturbations optimized to explain the 
maximum error variance in the control forecast, jα  is defined by the solution of the least-square problem: 

 
21

min
L

n

j

c
jj

c PE ∑
=

− α  (A.6) 

PECA provides a measure of how well individual or optimally combined ensemble perturbations can explain 
forecast error variance.  As defined, this measure evaluates the performance of ensemble perturbations, not 
the full forecast fields. By reducing the influence of the magnitude of initial errors (that reflect the quality of 
the analysis scheme), PECA offers a more direct measure of ensemble performance. The higher the PECA 
values, the more closely ensemble perturbations, on average, are correlated with forecast error. 
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