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OutlineOutline
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Convective rainfall Shows similar organisation to 
T511 operational model
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Spectral Power of 
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EOF Analysis of T95 and ERA40EOF Analysis of T95 and ERA40
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How does water vapour favour preconditioning?How does water vapour favour preconditioning?

Entrainment into 
Updraughts

Entrainment into 
Updraughts

Boundary Layer 
Theta_e

Boundary Layer 
Theta_e

Complication of downdraughts and organisation!Complication of downdraughts and organisation!



MJO Workshop 2003      A.Tompkins and T. Jung 13

Water Vapour 
feedback

Water Vapour 
feedback

This cloud resolving 
model integration 
showed a strong “water 
vapour” mode 

Packets of convection 
were modulated by the 
phasing of boundary 
layer theta_e and free 
tropospheric moisture 
structure

This cloud resolving 
model integration 
showed a strong “water 
vapour” mode 

Packets of convection 
were modulated by the 
phasing of boundary 
layer theta_e and free 
tropospheric moisture 
structure



MJO Workshop 2003      A.Tompkins and T. Jung 14

Reminder: The IFS Tiedtke scheme is a bulk 
mass flux model
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Interannual Variability and the Aqua Planet Interannual Variability and the Aqua Planet 

Common EOF - Velocity Potential (Oct-Mar)

0 1 2 3 4 5 6 7 8 9 10 11
Rank #

0

200

400

600

800

1000

Pa
rti

al 
Ei

ge
nv

alu
e

(a)

Considerable interannual 
variability

T95
and

ERA40

Interannual variability considerable in standard setup

Use Aqua Planet investigation to allow phase space investigation

Interannual variability considerable in standard setup

Use Aqua Planet investigation to allow phase space investigation



MJO Workshop 2003      A.Tompkins and T. Jung 17
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Wave-number frequency Spectra – Control RunWave-number frequency Spectra – Control Run
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Convective systems do not appear alteredConvective systems do not appear altered
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5 x Entrainment5 x Entrainment
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Effect on LSP/CP balanceEffect on LSP/CP balance

Control 5 x Entrainment
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world
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Increasing Large-scale activity increases MJO-like 
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This is not to say water vapour does not have an 
influence
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Large-Scale Latent Heating, and the ENB ParadigmLarge-Scale Latent Heating, and the ENB Paradigm

Unlike ENB model, gross moist 
stability for large scales not always 
positive in IFS

A significant proportion of the 
large-scale rainfall is not associated 
with the stratiform mode 

Rather it is expressed in gridscale
convective motions 

Moreover the cloud scheme permits 
negative effective moist stability to 
occur before the gridpoint attains 
saturation
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Large-scale precipitation in Kelvin WaveLarge-scale precipitation in Kelvin Wave
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Convective-scale precipitation in Kelvin WaveConvective-scale precipitation in Kelvin Wave
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Conclusions IConclusions I

The MJO-like eastward propagating signal in the 
the ECMWF appears to independent of resolution 
resolution and coupling

T95,T159,T255,T95-coupled, T511
T159 and higher resolutions show weaker signal

The phase speed is approx. 20 m/s, peak at 
wavenumber 1 
In these faster phase speeds (>20m/s) models 

produces interannual variability well

The MJO-like eastward propagating signal in the 
the ECMWF appears to independent of resolution 
resolution and coupling

T95,T159,T255,T95-coupled, T511
T159 and higher resolutions show weaker signal

The phase speed is approx. 20 m/s, peak at 
wavenumber 1 
In these faster phase speeds (>20m/s) models 

produces interannual variability well



MJO Workshop 2003      A.Tompkins and T. Jung 34

Conclusions IIConclusions II

Sensitivity tests showed little evidence of “water 
vapour-convection” feedback mode in the model

Is there a fundamental physical 
process missing from the model?

The 20 m/s mode appears to be a consequence of 
coupling between large-scale dynamics and 
GRIDSCALE latent heating 

The convective parameterization scheme damps this mode
But does not affect the propagation velocity

What should the LSP/CP balance be? 

Sensitivity tests showed little evidence of “water 
vapour-convection” feedback mode in the model

Is there a fundamental physical 
process missing from the model?

The 20 m/s mode appears to be a consequence of 
coupling between large-scale dynamics and 
GRIDSCALE latent heating 

The convective parameterization scheme damps this mode
But does not affect the propagation velocity

What should the LSP/CP balance be? 

Stolen from Kenneth Sperber
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Conv/vaporcontrol

Previous “old” (25r1) model cycle produced 
slow water vapour mode: Role of shallow convection?
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EOF Analysis of T95 and ERA40EOF Analysis of T95 and ERA40

First two (independent) EOFs in quadrature 
signifying propagating signal at wavenumber 1.
First two (independent) EOFs in quadrature 

signifying propagating signal at wavenumber 1.
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