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“Stochastic Physics’

purpose:

* represent unpredictable statistical fluctuations in parametrized
physics

* ‘backscatter’ kinetic energy into the near-gridscales of forecast
model

expected/desired impacts:
* broader ensemble member spread in EPS

e statistically more realistic near-gridscale flow features e.g.
frontal waves, mesoscale vortices, small PV features

 improved tropical flow variability (MJO)

* reduced systematic error, better model climate simulation



Kinetic energy spectra in T799 ECMWEF forecast (day 10)
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Cloud-resolving model of tropical convection
over variable SST

5120 km

8192 km >

+3 K Equatorial B—plane

 use anisotropic grid: e.g. dx=1 or 2 km, dy=40 km

 derive statistics of mesoscale cloud forcing at the “filter
scale’ of an NWP model

« repeat simulation at NWP resolution e.g. dx=dy=40 km
with convective parametrization



SST fields use
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with east-west SST anomaly
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surface energy flux {W/ m"2)
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Surface fields on day 29
< 8192 km >
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xz-section of u along equator (day 26)
dx=2km  E-W SST gradient




zonal-mean u in latitude-height section on day 34
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Hovmuller diagram for zonal SST case




-10 to +10 deg. lat mean precipitation as Hovmuller plot
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Zoomed view of Hovmuller plot from dx=1 km config.
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Hovmuller diagram of precipitation rate with
dx=40 km dy=1.5 km

- high resolution 1n the y-direction




compute apparent convective forcing by
coarse-graining model fields

» average fields over coarse grid boxes
(e.g. 64 x 80 km) diabatic terms

Thermodynamic eq. /

B4 V.V9=V-Vi-V-Vi+D =Q,
N y
Y \

apparent forcing (definition)

Overbar = 1 hour average over coarse grid box
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T tendeney cqarge—grained to 64 x, 80 km grid , 250 z=1.0,km days 17| T tendency cogrse—grained to 512 x, 640, km grid ,r250 z=1.0 km, days
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Q1 (convective) In region 20 N to 20 S 1n the
ECMWTF forecast model (T255)
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diagnosed pdf of Q1 from CRM
from coarse-grained fields
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Probability

Apparent Q1 from coarse-graining to
64 x 80 km boxes in CRM (dx=2 km)
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coarse-grained to a 1024 x 1280 km grid z =5 km
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Prabability

Histogram of QU (total) in ECMWF forecast
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Probability

Histogram of ‘effective’ QU from
coarse-grained CRM fields
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Use convective parametrization scheme (as a
diagnostic only) to compute convective
forcing and CAPE based on coarse-grained
fields (1.e. <Q1> and <CAPE> )

Plot histograms of Q, for:
* different levels of grid coarsening

* sub-samples binned according to diagnosed
<CAPE> or <Q1>



Frabability

Frabability
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parametrized convection runs

* change dx to 40 km (dy= 40 km as before)

 include the Bechtold-Chaboreau convection
parametrization scheme

« test the effect of stochastic forcing at the ‘near-gridscale’

Use a cellular automaton to drive evolving
patterns 1n the near-gridscale convective
tendency fields



Simple cellular automaton

Living cells are red Dead cells are white
00 (01]01{0 |0 00 (01]01{0 |0
0(01(0]0 (00 O (1212|110
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Rules:

Survival: 2 or 3 living neighbours
Birth: 3 living neighbours



CA for mesoscale patterns’

living cells have 32 lives

survival (3/4/5) birth (2/3) counting newly-born
neighbours only

CA works on finer grid than the model

compute normalized weighting function from CA
cell ages functionally-mapped and smoothed to
model grid

associate a time step with successive CA states



animation of CA cell ages

 Blue cells are young
 Red cells are old or dead



CA weighting function

(mapped from cell ages and smoothed)
typically from 0 to ~3



T and g tendency multiplier:

1 +3 (W(Ex,y,t) — 1)

W(x,y,t) 1s the normalized weighting function

* time or space mean of multiplier 1s 1

e treat the convective parametrization tendency as an
ensemble-mean value for the local T and q profile



Hovmuller plots of rain rate and u(850 mb) Wlth parametrized
convection '
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Summary

* anisotropic horizontal grid in CRM allows a mix of
explicitly-resolved convective clouds and equatorially-trapped
waves

* cloud forcing averaged to typical NWP resolutions shows
very broad pdf, particularly for momentum forcing

* convection parametrization needs to reflect the statistical
uncertainty associated with low storm cloud population density

* stochastic perturbations can be used to broaden pdf of
convective forcing
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