Analytic Representation of the Largescale Organization of Tropical convection

Mitch Moncrieff, Cloud Systems Group, NCAR

ECMWF/CLIVAR Workshop on Simulation and Prediction of Intra-seasonal Variability with Emphasis on the MJO, ECMWF, Reading UK, 3-6 November 2003.

What's resolved using ~1-km grid ?

... organization of convection ~10's km +

Super-parameterization represents the mesoscale organization of convection and its large-scale interaction

... what's its physical basis?

Towards a physical basis ..

- The prevalence of organized convection is an outstanding result of field campaigns *and* 1-km grid-resolution numerical models during the past three decades
- Underpinned by nonlinear analytic models (author and colleagues)
- But this result is not captured by conventional convection parameterizations
- That organized convection is prominent in superparameterization (and multiscale modeling) suggests the analytic models should be revisited

Basic distinction ...

Ordinary convection

Organized convection

Ordinary and organized convection occur together

Superclusters and organized convection observed from space

Super-parameterization: Two regimes

Convectivelycoupled system (c = 3.5 m/s)

MJO-like system (c = 8 m/s)

Grabowski (2001)

Vertical structure (20-day average)

Convectively-coupled system

MJO system

Horizontal structure (20-day average)

2D-analytic mesoscale parameterization

Idealization

Two-layer large-scale circulation

Two interacting scales

- Analytic parameterization of the mesoscale organization of deep convection
- Explicit large-scale coherent circulations

"The structure of MJOs must be understood in terms of scale interactions between large-scale circulation and mesoscale systems"

-Chidong Zhang, this workshop

Interlocking the scales

 Transformation between vertical and horizontal vorticity equations (Rossby number → convective Richardson number)

• Dynamical closure

• Integral constraint

Vorticity transformation

Horizontal (y-vorticity)

$$\eta - \int_{z_0}^{z} \left(\frac{\partial B}{\partial \psi} \right)_{z} dz = S_{z}(\psi)$$

Vertical (z-vorticity)

$$\zeta + \int_{y_0}^{y} \left(\frac{\partial C}{\partial \varphi}\right)_{y} dy = S_{y}(\varphi)$$

Dynamical closure

a) Retrogressive

 $\mathbf{C}_m = \mathbf{C}_l$

b) Stationary

Vertical plane

Horizontal plane

Integral constraint

• In a bounded domain with free-slip boundary conditions momentum

ρuw ρuv

... may be redistributed but not generated:

a) Mesoscale circulation: convective Richardson number

b) Large-scale circulation: generalized inverse Rossby number

$$\lambda = \sqrt{\frac{\beta - \alpha}{c}} L$$

c) Propagation speed: Bernoulli number

$$\mathsf{E} = \frac{\Delta \mathsf{p}}{\frac{1}{2}\,\mathsf{p}\mathsf{c}^2}$$

Another propagation formula

Brutal simplification ... the archetype Mesoscale parameterization

Large-scale circulation

Summary of key results

- Convection interlocked with large-scale circulation
- Convectively-coupled waves and MJO-like systems captured by same dynamical theory
- Lower-tropospheric Rossby gyre the distinguishing feature – upper-tropospheric gyre driven by mesoscale outflow from (families of) mesoscale systems
- Westward tilt of mesoscale convection with height
- Another propagation formula for the MJO
- Distinctive vertical and meridional transports of zonal momentum (multi-scale coherence)

Open gyre: westerly wind burst, super-rotation

Closed gyre: westerly wind burst, no super-rotation

Convectively coupled systems

Convectively coupled systems

Meridional flux of zonal momentum (MJO-like)

Vertical flux of zonal momentum (MJO-like)

Mesoscale momentum transport

Meridional momentum transport

Day 80

Super-cluster in ECMWF T213

TOGA COARE)

Moncrieff & Klinker (1997)

Grid-scale convection, not parameterized convection

Heat-generated low \rightarrow low-troposphere/upper-troposphere eastward/westward acceleration as in squall-lines

Conclusions

- Theoretical basis for super-parameterization, mesoscale organization of convection a key aspect
- Organized convection and MJO dynamics interlocked through remarkable dynamical relationships
- Organized convection represented by (surrogate) grid-scale circulations in NWP models
- No fundamental impediment to representing organized convection by conventional methods, need to represent systems of scale much larger than the grid