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Purpose:
Through discussing recent observations of 
the MJO, to motivate further understanding 
of the MJO dynamics and to set a higher 
standard for model validation

Outline:
1.1. The structure: AirThe structure: Air--sea interaction and sea interaction and 

the dynamics the dynamics 
2.2. The annual cycle: Effects of the mean The annual cycle: Effects of the mean 
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850 hPa wind and convective precipitation in 
CCM3/McRAS (from Maloney and Hartmann 2001)



Surface Fluxes During the Two Extreme Phases of the MJO 
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SST perturbations simulated by a
1-D mixed layer modelDefault parameter:

Period = 50 days
c = 5 m s-1

L = 26 x 103 km
Q’net = 55 W m-2

MJO Model II
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Model II

(Houze et al. 2001)



The Annual cycle of the MJO:

- The MJO peaks during boreal winter/spring.
- The MJO migrates in latitude. 

• Observations
• GCM simulations
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Comparison of the seasonal cycle of the MJO in 
observations and GCM simulations:

NCAR Community Atmospheric Model (CAM/SOM) - Maloney

NCEP Global Forecast System (GFS/MOM) - Wang

BOM Atmospheric Model (BAM) - Hendon

MPI ECHAM4/HOPE Model (ECHAM4/HOPE) - Sperber



Conclusions:
• The MJO must be highly sensitive to changes 

in latent heat flux, if SST feedback is 
important. But the mechanism for this 
sensitivity is unknown. 

• It is important to simulate correctly the MJO 
structure when air-sea interaction is allowed. 

• The structure of the MJO must be understood 
in terms of scale interactions between its large-
scale circulation and mesoscale convective 
systems. 



• The seasonal cycle of the MJO poses another 
challenge to understanding the MJO dynamics. 

• The structure and seasonal cycle of the MJO 
set higher standards for the evaluation of 
model simulations.



P* (contours) and V•(qV)850 December - March

P* (contours) and V•(qV)850 June - September

P* (contours) and V•(qV)925 December - March

P* (contours) and V•(qV)925 June - September




	The Structure and Annual Cycle of the MJO

