Recent developments in the vertical discretization of the ECMWF model with impact on the stratosphere and tropopause

Agathe Untch and Mariano Hortal ECMWF, UK

with help from many colleagues at ECMWF

Outline

- Finite-element discretization for the vertical
- Cubic spline interpolation in the vertical semi-Lagrangian advection
- Numerical instability during sudden stratospheric warming events at T_L511
- Increase in vertical resolution (60 levels \rightarrow 90 levels)

Finite-element (FE) discretization for the vertical

- We use cubic B-splines as basis functions with compact support (finite elements).
- No staggering of variables used. All (including pressure) are held on the same set of levels (full levels). (Good for semi-Lagrangian advection.)
- Only non-local operations are evaluated in FE space, products of variables are evaluated in physical space. (Similar to spectral transform method in the horizontal.)
- In the semi-Lagrangian version of the ECMWF model, the only non-local operations in the vertical are <u>integrations</u> (no derivatives). Therefore, we have derived the FE form only for the integration operator.

FE scheme: Integral operator in finite-element form

$$F(x) = \int_{0}^{x} f(y) dy$$

Expanding f and F in terms of sets of linearly independent functions with compact support {e_i} and {d_i}, respectively: $\sum_{i=1}^{M} C_i d_i(x) = \sum_{i=1}^{N} c_i \int_{0}^{x} e_i(y) dy$

Using the Galerkin method with $\{d_i\}$ as test functions

$$\sum_{i=1}^{M} C_{i} \int_{0}^{1} d_{j}(x) d_{i}(x) dx = \sum_{i=1}^{N} c_{i} \int_{0}^{1} [d_{j}(x) \int_{0}^{x} e_{i}(y) dy] dx, \quad j = 1, ..., M$$

In matrix form:
$$\underline{\underline{AC}} = \underline{\underline{BC}} \iff \underline{\underline{C}} = \underline{\underline{A}}^{-1} \underline{\underline{BC}} \quad \text{(integral in FE space)}$$

ECMV

4

Incorporating the transformation to finite-element space and back into the Intergal operator, i.e. $\underline{C} = \underline{\underline{S}}^{-1} \underline{f}$ & $\underline{F} = \underline{\underline{S}} \underline{\underline{C}}$ $\Rightarrow \underline{F} = \widetilde{\underline{S}} \underline{\underline{A}}^{-1} \underline{\underline{B}} \underline{\underline{S}}^{-1} \underline{f}$

FE scheme: Cubic B-splines as basis functions

No staggering of basis set {d_i} with respect to set {e_i} (good for semi-Lagrangian adv.)

Condition F(0)=0 enforced by incorporation into basis functions, i.e. $d_i(0)=0$ for all i. Basis functions d_0 , $d_1 \& d_2$ computed by linear combination of e_{-1} with e_0 , $e_1 \& e_2$, respectively.

Not restricted to regular spacing of nodes.

FE scheme: Hat-functions (linear splines) as basis functions

6

ECMWF

FE scheme: Accuracy

<u>Test</u>: numerical integration of $\sin(6\pi x)$, $x \in [0,1]$ for different resolutions with N equidistantly spaced nodes <u>Reference</u>=analytical integral I_A. <u>Error</u> =max{(I_N-I_A)/I_A} in %

	FD scheme	Linear FE	Cubic FE	Cubic collocation
N=60	0.82e+0	0.14e-2	0.90e-8	0.14e-2
N=120	0.21e+0	0.85e-4	0.31e-10	0.85e-4
estim. order	2	4	8	4

On nodes $O(h^{2(k+1)})$ where k is the degree of the basis functions Superconvergence and h the distance between nodes

7

Benefits from the FE scheme

- FE scheme improves the treatment of the gravity wave terms and dampens the computational (zigzag) mode in the vertical present in finite-difference schemes with no staggering of winds and temperature (Lorenz grid).
 - => Reduces the amplitude of grid-wave noise in the stratosphere.

Improved vertical integration of the continuity equation leads to a more accurate vertical velocity for semi-Lagrangian advection. => improved tracer conservation

Cubic spline interpolation for the vertical in the semi-Lagrangian advection

Ozone conservation

Numerical noise during sudden stratospheric warming (1)

Noise appears only in integrations at high horizontal resolution ($T_L 511$)

It is highly predictable (up to 8 days ahead) suggesting that it is linked to a specific well-predicted feature of the large-scale flow.

Forecasts don't fail, noise disappears again when flow pattern changes

ECMV

Numerical noise during sudden stratospheric warming (2)

Noise during sudden stratospheric warming (3)

Vertical trajectory calculation for semi-Lagrangian advection:

$$\eta_A(t+\Delta t) = \eta_D(t) + \Delta t \frac{\dot{\eta}_A(t) + \left[2\dot{\eta}(t) - \dot{\eta}(t-\Delta t)\right]_D}{2}$$

Smoothing of vertical velocity by least square fit through 4 surrounding points instead of just linear interpolation between 2 points. Done only for vertical velocity used in vertical trajectory calculation.

Numerical noise during sudden stratospheric warming (4)

Vertical cross section of Divergence: 20020925 12h step 24h, T511L60 0.000025 (0.0001) Model Levels 20 24 150°W 100°W 50'W 50°E 0° -65.0S "Divergence at level 13: 20020925 12h step=24h T511L60 120*

20**

40°W

14

Vertical cross section of Divergence: 20020925 12h step 24h, T511L60

Increase in vertical resolution

L90: Fit to Radiosonde Temperatures in the Analysis

ECMW

16

Tropical Cold-Point Tropopause in L90 / L60

Averaged over the deep tropics [10S to 10N]. Analyses and radiosondes averaged in time from 20020601 to 20020615 Forecasts averaged over whole month of June.

ECMW

17

L90: Impact on ozone conservation

Model top raised from 0.1hPa to 0.01hPa

L91

ECMWF

19

L91: Comparison with CIRA86 Climatology for July

L91: Comparison with CIRA86 Climatology for January

L91: Reduction in vertical velocity in the tropics

Future work

Based on the L90 or L91 model version, try to

- improve vertical transport in the stratosphere
 - benefit for ozone assimilation and interactive ozone with radiation
- reduce large model errors near the stratopause
 - less problems with assimilation of satellite data
- Continue work on the use of vertical spline interpolation in the semi-Lagrangian advection.
- Improve upper boundary condition (Nils Wedi).

