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Canadian Middle Atmosphere Model = CMAM
CMAM is a complex GCM with interactive
chemistry, radiation and dynamics
• T47, 65 levels from 0-95 km
• 127 gas-phase chemical reactions
• heterogeneous chemistry
• Hines GWD scheme

CMAM Data Assimilation
(Polavarapu, Ren, Rochon, Sankey, Yang)

• CMC’s 3DVAR on CMAM’s
• coordinates
• obs: conventional, AMSU-A 4-14
• start-up from climate state 
• Dec. 15, 2001





Comparison of total ozone against data
TOMS+GB+TOVS - WOUDC



Scaling of ozone by observed values,
averaging over one month and over longitudes.



The Global Environmental Multiscale Model GEM
is an online meteorological-chemical transport
model with variable resolution. 

Tangent linear and adjoint meteorological core

Model top 10 mb, upgrade to 1.0 mb 

Tropospheric chemistry.  Currently parametrized CO chemistry
CO + OH  → … loss of CO using a prescribed zonal OH field
CH4 + OH  → CO  +  … production of CO with a global value
for CH4 and will be upgraded soon with ADOM gas phase
chemistry

Surface emission based on GEIA and biogenetic modeling

Tropospheric chemistry based on ADOM (32 advected species), currently
adding aerosols based on the CAM.  Also possibility to run with the CMAM
phase chemistry for stratospheric



Column CO observations from MOPITT 10/12/00 – 10/27/00

CO emissions for October in molecules cm-2 s-1 x 10+11



Time mean analysis increments :  lowest model level



Real-time data

Ozone, ~ 1500 hourly PM 2.5, ~ 300 hourly



Objective analysis  v1.0
Regional air quality model
Surface ozone

Objective analysisModel simulation



Some of the difficulties with chemical data assimilation

Large systematic errors, and in some cases lack of
sensitivity to initial conditions. 
Observations should be used to estimate model error
and chemical state.

Large control space for the analysis scheme.
e.g. gas phase chemistry may have 32 advected species, 

aerosols ; 4 types, 12 bins correspond to 64 advected
species



Some approach for simultaneous state and
model error estimation

Dee and daSilva (1998), Dee and Todling (2000)
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Griffith and Nichols (2001)
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Most schemes do not contain an error cross-covariance  Pux

- In Dee and daSilva, Pux is implicit and in fact equal
to Q.  This arises because of the use of the 
bias-blind approach

- In Griffith and Nichols, the error cross-covariance
is generated implicitly because of the propagation in time,
although is set to zero at initial time.

−

But Pux is the most important error statistic
for model error estimation

- In a bias-aware algorithm the gain matrix for the model
error is 
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Forecast of a chemical tracer with source
• Lets continue with the scalar model,

and parametrized the model evolution
by the simple equation

where L is a constant that represent
chemical life time and diffusion
effects
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where the superscript t denotes
the true value

The error thus follows

where the tilde ~ denotes the
departure from the truth
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~~~• Also let consider a constant source

0=
dt
dS

• In order to compute the evolution of
error, a model of the truth is needed.
To simplify, lets assume that the
main uncertainty arises from modeling
of the source dynamics rather than 
from the modeling of the transport, 



• We get the error covariance system, and can solve 
analytically
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Numerical experiment

0;~~;~~;
days  30
1;%10~~ ;  ppmv 100~ 22222 == csccsscc fQffCfLCC

cyan:red:blue: 222
sscscc fff

No assimilation solid line

With assimilation    R= Q*100
dashed line



The importance of time lag statistics

• In synthetic inversion of the source
long time integration period are
used.  Lets examine how longer
time integrations may carry more
information about the source.  For
this we will examine the time
correlations

we get,
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Numerical experiment
(same conditions as before)

blue:)0(~)(~
cyan:)0(~)(~
red:)0(~)(~

CtC

StS

StC red : gain for the source
blue: gain for the state

The effect of this dynamics is to increase the lag
cross-covariance between state error and source (or bias)
error.



Sequential estimation of state and model error
If there are some variables (such as model error) that
are unobserved, the analysis can be split into two parts:
One leaving the 3D Var scheme intact and the other 
as an additional step for solving for the unobserved 
variables.

From

Decomposing the 4x4 forecast error covariance with a square
root of the form, 

( ) ( ) ( ))()(
2
1

2
1),( 1

1

xyRxyuuxx
PP
PP

uu
xx

ux HHJ Tff
f

uu
f

ux

f
xu

f
xx

T

f

f

−−+−−
















−
−

= −

−

Tf SSP = ( ) 







= −− 2/11 DLP

0L
S T

ux

xuxxuxuu
T

xx PPPPDLLP 11, −− −==



and then with the change of variable
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We get to solve in sequence,
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This splitting may have a computational advantage, as the control
variable remain x in the 3D Var numerical code.  

Also if there are several u to be estimated, the u update equation
can be computed in parallel.



Simple Kalman filtering experiment
One-dimensional advection over a periodic domain.
Estimate a scalar (zonal constant) using a single point observation



optimal Kx and Ku Ku is an order of magnitude
smaller than the optimal value



Lagged-innovation covariances and its
potential use for estimating Pux

Since u is not an observed variable, lag-0 innovations, does not
provide information about Pux. 

Dynamics is needed to enable information about Pux to become
“visible” to the observations.
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Lag-1 is zero when the gain matrices are optimal, i.e.
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For dense observation network, say           , and to estimate
model bias, i.e.           , and if        is optimal and       is small
then we get the surprising result that

IG =
IH ≈

uK~uK

f
ux

k
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Of course in practice, if lag-1 is non zero, then it is not clear
we can have the right state Kalman gain.

This specific issue, the development of a method to estimate 
Pux is currently investigated.



Conclusions

Estimation of model error is an important issue in 
chemical data assimilation
Model error can be considered as an unobserved
variable, and requires the knowledge of cross-error
covariance 
In 3D Var, observed and unobserved variables can be
estimated in sequence, and this may have computational
advantages
Lag-1 innovation covariances contain information about 
the cross-covariance error 
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