Representation of ozone in the ECMWF model

Antje Dethof ECMWF

- 1) Ozone in the ECMWF model
- 2) Ozone in the ECMWF analysis system
- 3) Validation of the ozone field
- 4) Bias correction for ozone
- 5) Monitoring of new data
- 6) Summary and outlook

C

1) Ozone in the ECMWF model

• Ozone mass mixing ratio is prognostic variable in IFS

$$\frac{dO_3}{dt} = RO_3$$

Simple chemistry parametrization

(Cariolle and Déqué, 1986)

$$RO_{3} = c_{0} + c_{1}\left(O_{3} - \overline{O}_{3}\right) + c_{2}\left(T - \overline{T}\right) + c_{3}\left(\sum O_{3} - \sum \overline{O}_{3}\right) + \underbrace{c_{4}Cl_{eq}^{2}O_{3}}_{\mathsf{T} < \mathsf{195 K}}$$

- c_i relaxation rates
- photochemical equilibrium values, f(lat, p, month)
- Cl_{eq} equivalent chlorine content of stratosphere, f(year)

2) Ozone in the ECMWF analysis system

- Ozone included univariately in analysis system (minimize effect of ozone on the rest of analysis system)
- Assimilation of retrieved ozone columns and partial columns
- No interaction with radiation at present
- Stable ozone field, no trend
- Model bias at certain times of year,
 e.g. positive bias in NH in winter/spring.

Ozone assimilation in ERA-40 (3D-Var) and operations (4D-Var)

ERA-40:

- Ozone assimilation included for years after 1978
- 6-hour 3D-Var assimilation system, $T_L 159 ~(\approx 125 \text{ km})$

Operations:

- Assimilation of ozone retrievals since April 2002
- 12-h 4D-Var assimilation system $T_L 511 (\approx 40 \text{ km})$

Ozone data used in ERA-40 (1) • <u>TOMS</u> (Total Ozone Mapping Spectrometer): - Total column ozone - nadir viewing instrument - 35 FOV along 1 scan - 6 wavelengths: 312, 317, 331, 340, 360, 380nm - ca. 200000 obs daily (≈20000 used) Daylight measurements SBUV (Solar Backscatter UltraViolet): only - 6 ozone layers: Daily global coverage 0.1-1 hPa, 1-2 hPa, 2-4 hPa, 4-8 hPa, Both datasets have 8-16 hPa,16hPa - surface been reprocessed - nadir viewing instrument - instantaneous FOV - 12 wavelengths: 252 (256), 273, 283, 288, 292, 298, 302, 306, 312, 318, 331, 340 nm - ca. 1400 obs daily (1200 used)

Ozone data used in ERA40 (2)

Instrument	Satellite	Year
TOMS	Nimbus-7	12/78 - 5/93
TOMS	Meteor-3	4/93 - 12/94
TOMS	Earthprobe	9/96 -
TOMS	ADEOS-1	10/96-2/97
SBUV	Nimbus-7	12/78-6/90
SBUV	NOAA-9	1/95 - 2/98
SBUV	NOAA-11	1/91 - 10/94, 1/98 - 5/01
SBUV	NOAA-16	5/01 -

Ozone data assimilated operationally since 9 April 2002

 <u>GOME (Global Ozone Monitoring Exp.)</u>: On ERS-2 Total column ozone Spectral range: 240 -790 nm NRT retrievals from KNMI (version FD 3.1) approx. 20000 obs daily (14000 used) 	 Blacklist criteria: at solar elevations < 10° at latitudes > 40° in NH at latitudes < -50° in SH QC flag > 0
• <u>SBUV/2 (NESDIS retrievals):</u> - NOAA-16 - NOAA-14 passive	• <u>Blacklist criteria:</u> - at solar elevations < 6° - QC flag > 0
 NOAA-17 passive (since 20020804,18z) 6 ozone layers: 0.1-1 hPa, 1-2 hPa, 2-4 hPa, 4-8 hPa, 8-16 hPa, 16hPa - surface approx. 1400 obs daily (1200 used) 	

Background error covariance matrix for ozone

- Determines how analysis increment from column observations is spread in vertical
- Calculated with analysis ensemble method
- Anti-correlations between stratosphere and troposphere in original covariances (used in ERA-40 between 1991- 10/1996)
- Modified covariances used in ERA-40 before 1991 and after 10/1996. Also used in operational system.
- Problems with vertical ozone profiles in situations when analysis increment is large

Original background error covariance matrix

Ozone observation of 247 DU, 66 DU lower than background

C

Modified background error covariance matrix

Ozone observation of 247 DU, 66 DU lower than background

3) Validation of the ozone field

Total column ozone validation

Total column ozone validation

Total column ozone validation

Total column ozone – Ozone hole

No O3 assim.

Total ozone in DU from ERA40

30 Sept. 1990

With O3 assim

Total ozone in DU from EXP

Total ozone in DU from TOMS

TOMS

South Pole ozone profiles: April 1964

Ozonesonde data obtained from WOUDC

 \square

South Pole ozone profiles: October 1965

Ozonesonde data obtained from WOUDC

NH mid-latitudes ozone profiles

- 1967-1969: Before assimilation of satellite data
- 1973–1975: Assimilation of VTPR data
- 1979-1981: Assimilation of TOMS and SBUV from Nimbus-7; modified covariances
- 1992–1993: Assimilation of TOMS from Nimbus-7 and SBUV from NOAA-11; old covariances

Summary NH mid-latitude ozone profiles

- Ozone profiles reasonable during large part of year
- Bias during winter/spring months:
 O3 values below the maximum too large
- Bias worse when VTPR data are assimilated
- Assimilation of ozone retrievals improves profiles, except at times when biases are present
- Bad profiles when ozone retrievals are assimilated in presence of bias

Summary NH mid-latitude ozone profiles

4) Developing a bias correction for ozone

- Bias between model and observations violates underlying assumption of DA that obs and fg are unbiased
- Model AND ozone data can have bias

- Understand model bias
- Correct model bias

- Develop a bias correction for ozone data, based on independent observations
- Use ground-based Brewer and Dobson observations (obtained from WOUDC: http://www.msc-sms.ec.gc.ca/woudc)

Developing a bias correction for ozone

Relative difference between GOME and Brewer obs. (1999)

Developing a bias correction for ozone

 \mathbf{C}

Developing a bias correction for ozone

C

4) Monitoring of new data

- Use assimilation system to evaluate
 - Data quality
 - Biases
 - Instrument and algorithm stability
- ENVISAT retrievals are currently monitored passively
 - SCIAMACHY total ozone
 - MIPAS ozone, temperature, water vapour profiles
 - (GOMOS ozone, temperature, water vapour profiles)

SCIAMACHY total ozone

MIPAS ozone data

Global means: 1.5.-15.5.2003

Obs and Ana

Departures

MIPAS water vapour data

Global means: 1.5.-15.5.2003

MIPAS moister than ECMWF analysis

5) Summary

- Ozone is prognostic variable in ECMWF model
- Cariolle and Déqué chemistry parametrization
- Ozone included uni-variately in 3D-Var and 4D-Var
- Ozone retrievals from TOMS and SBUV/2 are assimilated in ERA40 (3D-Var)
- Ozone retrievals from GOME (KNMI, v. FD 3.1) and SBUV/2 are assimilated operationally since 9 April 2002 (4D-Var)

Summary

Total column

- Good total ozone field when ozone observations are assimilated
- Realistic seasonal cycle, interannual variability, Antarctic ozone hole
- Total column ozone field also reasonable in earlier years of ERA-40
- Some biases, particularly in NH winter/spring.
- Biases worse after 1972 (when VTPR data are assimilated)
- Total column ozone over Antarctica too low before 1979

Summary cont.

Profiles

- Ozone profiles reasonable during large part of year
- Bias during winter/spring months:

O3 values below the maximum too large

- Bias worse when VTPR data are assimilated
- Assimilation of ozone retrievals improves profiles, except at times when biases are present
- Bad profiles when ozone retrievals are assimilated in presence of bias

Monitoring

Need for bias correction. Need to understand model bias. Background error covariances?

 Assimilation system is powerful tool for data monitoring. Can help to detect biases, instrument/algorithm changes, assess data quality