Stratospheric ozone: satellite observations, data assimilation and forecasts

Henk Eskes,
Royal Netherlands Meteorological Institute,
De Bilt, the Netherlands
1) Ozone and Numerical Weather Prediction
Assimilation of ozone at NWP centres

The major weather centres have programmes on ozone data assimilation (extension of the models into the stratosphere/mesosphere)

- ECMWF
 - ERA-40 (TOMS, SBUV)
 - Operational (GOME, SBUV)
- NOAA/NCEP
- DAO (TOMS, SBUV)
- Meteo France (TOVS)
- UKMO, Univ.Reading (GOME, MLS)
- ...

Henk Eskes, ECMWF seminar, September 2003
Ozone assimilation in numerical weather prediction

Benefits for atmospheric chemistry science community:
- Multi-year data base of 4D ozone fields,
 • consistent with the available (satellite) observations,
 • consistent with the dynamical state of the atmosphere

Science questions:
- Recovery ozone layer
- Chemistry - climate interaction

ECMWF ERA-40:
- satellite observations 1978-present, TOMS, SBUV
Impact of ozone on NWP

Benefits of accurate ozone observations to numerical weather prediction

- Radiation: ozone has strong influence on temperature (and wind)
- Satellite retrieval: TOVS
- Assimilated ozone observations lead to wind increments
- UV forecast

Henk Eskes, ECMWF seminar, September 2003
Impact of ozone on NWP

Wind increments due to TOVS ozone observations

ECMWF model

(EU SODA project)

Wind increments ~ 0.5 m/s
OSSE: Impact of TOVS column retrievals on winds

A. Peuch et al, QJRMS 126, 1641, 2000
With TOMS data

2) Satellite observations of ozone
Satellite instruments

UV-Vis nadir
• TOMS (1978-present), SBUV, SBUV-2, GOME, SCIAMACHY

Occultation
• HALOE, SAGE, POAM, GOMOS

Limb (IR, MW, UV-Vis)
• MLS on UARS, MIPAS, OSIRIS, SMR

Nadir (IR)
• TOVS, AIRS

Information on the troposphere:
TOMS, GOME, SCIAMACHY

Ground-based observations
GOME on ERS-2, 1995 -
SCIAMACHY on ENVISAT, 2002 -

Troposfeer & stratosfeer
- O₃, NO₂, H₂CO, SO₂
- CH₄, CO, CO₂
OMI on EOS-AURA, 2004 -
GOME-2 on METOP, 2005-2020
Ozone column measurements, 1978 - 2020

Nimbus TOMS, 78 - 93
Meteor TOMS, 91 - 94
Adeos TOMS, 96 - 97
EP TOMS, 96-present

GOME, 95 - present
SCIAMACHY, 2002 -
OMI, 2004 -
GOME-2, 2005 -
3) Retrieval
KNMI/ESA GOME Fast Delivery total ozone product

- Availability of ozone observations in less than 3 hours after the measurement (ESA Data User Programme)
- Used in ECMWF operational analyses
KNMI/ESA GOME Fast Delivery total ozone product

Validation:
Dimitris Balis, LAP
Fast Delivery vs.3
KNMI

Henk Eskes, ECMWF seminar, September 2003
Validation:
Dimitris Balis, LAP
DLR GDP v2.7
Ozone retrieval: TOMS retrieval vs. DOAS
Ozone retrieval: DOAS

First OMI ozone measurements

Henk Eskes, ECMWF seminar, September 2003
Ozone retrieval: new DOAS algorithm

Based on the OMI-DOAS operational algorithm (P. Veefkind) Implementations for GOME (P. Valks) and Sciamachy

Innovations compared to Fast Delivery, vs 3
• New treatment of Raman scattering (J. de Haan)
• Empirical air-mass factor approach
• Wavelength window - reduced T dependence
• TOMS v8 ozone profile data base
• Radiative transfer improvement
New approach to Raman scattering

Difference between old and new treatment of Raman
Ozone nadir profile retrieval

Henk Eskes, ECMWF seminar, September 2003
Ozone profile retrieval: challenges

Understanding/ Explaining spectrum
- Radiation modelling:
 - Raman scattering *(Ring effect)*
 - Spherical atmosphere
 - Polarisation

- Instrumental characteristics (GOME)
 - Degradation
 - Radiometric calibration
 - Wavelength calibration
 - Polarisation correction
4) Ozone assimilation
GOME ozone assimilation: motivation

• Extend the use of GOME data (level-4 products)
 4D ozone data base
 global synoptic maps every 6 hours
• Feedback on error statistics
 Quality of observations
 Quality of model
• Participation in satellite validation
• Ozone forecasts
• Case studies, e.g. mini-holes, 2002 ozone hole break-up

Henk Eskes, ECMWF seminar, September 2003
GOME ozone assimilation

Chemistry-transport assimilation model TM3DAM:
• GOME data: KNMI NRT ozone columns
• 2.5 degree resolution, 44 layers
• ECMWF meteo (60 layer)
• Prather second moment advection
• Parameterised stratospheric chemistry
 - Gas-phase
 - Heterogeneous
• Detailed forecast error modelling
Stratospheric chemistry parametrization

Gas-phase chemistry
Cariolle, Déqué, JGR 91, 10825, 1986

\[
\frac{d\chi}{dt} = \langle S \rangle + \left\langle \frac{\partial S}{\partial \chi} \right\rangle (\chi - \langle \chi \rangle) \\
+ \left\langle \frac{\partial S}{\partial T} \right\rangle (T - \langle T \rangle) + \left\langle \frac{\partial S}{\partial \Phi} \right\rangle (\Phi - \langle \Phi \rangle)
\]

\(\chi\)
ozone concentration

\(S\)
 sources - sinks

\(\Phi\)
ozone column above point
Stratospheric chemistry parametrization

Heterogeneous chemistry
(Peter Braesicke, CAS, Cambridge Univ.)

\[
\frac{d\chi}{dt} = -\frac{1}{\tau} A \chi
\]
\[
\frac{dA}{dt} = \frac{1}{\tau_p} (1 - A) - \frac{1}{\tau_l} A
\]

\[\chi\] ozone concentration
\[A\] activation tracer field (cold tracer)
\[\tau\] ozone depletion time scale
\[\tau_p\] activation time scale
\[\tau_l\] cold tracer life time
Stratospheric chemistry

A serious chemistry scheme for the stratosphere involves order 40 transported species - very expensive for NWP

Alternative:
Import ozone production and loss rates from a lower resolution CTM

\[
\frac{\partial \chi}{\partial t} = P - \frac{1}{\tau_{\text{loss}}} \chi
\]
Observation minus forecast statistics

![Graph showing the comparison of observation and forecast statistics with latitude. The graph displays the root mean square (rms) and bias for different latitudes. The x-axis represents latitude, ranging from -50 to 50 degrees, and the y-axis shows the difference between GOME and forecast (DU). The graph indicates a trend of increasing rms values and fluctuating bias with latitude.]

Henk Eskes, ECMWF seminar, September 2003
Gaussian statistics

Internal consistency
GOME data

Low noise (< 2%)

No quality control needed
7 year GOME data set http://www.knmi.nl/goa
5) Residual circulation and trace gas distributions: Brewer-Dobson, STE
Ozone assimilation: dependence on ECMWF meteorology

- OD (1999-2002)
Observation minus forecast statistics: ECMWF OD

Apr 2001, GDP v3, TM3DAM v3.30, ECMWF OD

observation - forecast (DU)

observation

-50 0 50

latitude

Henk Eskes, ECMWF seminar, September 2003
OmF vs latitude, GDP3, ECMWF ERA-40
Age of air

Bram Bregman, proc. ozone symp, Goteborg, 2002

Henk Eskes, ECMWF seminar, September 2003
Ozone flux from the stratosphere (TM3 CTM)

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Stratospheric influx (Tg/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD 2001</td>
<td>568</td>
</tr>
<tr>
<td>OD 2000</td>
<td>611</td>
</tr>
<tr>
<td>OD 1996</td>
<td>575</td>
</tr>
<tr>
<td>ERA40 1996</td>
<td>1329</td>
</tr>
<tr>
<td>ERA40 1993</td>
<td>1155</td>
</tr>
<tr>
<td>ERA15 1993</td>
<td>530</td>
</tr>
<tr>
<td>ERA40 1991</td>
<td>1168</td>
</tr>
<tr>
<td>ERA40 1974</td>
<td>1055</td>
</tr>
</tbody>
</table>
Trajectory study: Schoeberl et al, jgr 108, 2003
6) Ozone forecasts, based on GOME total ozone

http://www.knmi.nl/gome_fd
GOFAP project (ESA-DUP)

Products:
¥ NRT GOME level-2 ozone columns
¥ NRT ozone profiles
¥ Cloud properties (Fresco)
¥ Clear-sky UV index
¥ Assimilated ozone fields (level-4)
¥ Daily ozone and UV forecasts
¥ Data base of assimilated fields, 1999-2002
¥ Ozone hole statistics

http://www.knmi.nl/gome_fd
(service discontinued 22 June 2003)

Henk Eskes, ECMWF seminar, September 2003
KNMI Ozone analyses and forecasts

• Transport-chemistry model for ozone
 driven by ECMWF meteorological analyses and forecasts
• GOME ozone data
 near-real time
• Data assimilation scheme
 sub-optimal Kalman filter

--> Daily ozone analyses and 5-day forecasts (9-day from 2002)
Anomaly correlation, RMS error

Anomaly correlation
\[C = \frac{\langle (f-c)(a-c) \rangle}{\sqrt{\langle (f-c)^2 \rangle} \sqrt{\langle (a-c)^2 \rangle}} \]

Root mean square error
\[E = \sqrt{\langle (f-a)^2 \rangle} \]

(\(f = \) forecast, \(a = \) analysis, \(c = \) climatology)

- Anomaly defined w.r.t. climatology "c": Not useful for ozone - artificially high scores
- Alternative: "c" = running monthly mean
April 2001
Monthly mean

Assimilated GOME total ozone, monthly mean
April 2001

Henk Eskes, ECMWF seminar, September 2003
Analysis
15 April 2001

Assimilated GOME total ozone, 12h local time
15 Apr 2001

Henk Eskes, ECMWF seminar, September 2003
TOMS
15 April 2001
Anomaly correlation
RMS error
Tropics

In tropics anomaly forecast score lower than in extratropics
- Anomaly small (2-3% compared to 5-10%)
- More sensitive to observation noise, retrieval errors
- Anomaly mainly tropospheric
 No tropospheric ozone chemistry in model
Breakup 2000 ozone hole

15 November 2000 analysis based on GOME ozone observations
Breakup 2000 ozone hole

19 November 2000
4-day forecast

Forecast (15 Nov + 4)
19 Nov 2000, Oh
Breakup 2000 ozone hole

19 November 2000 analysis
Low ozone episode

5-day forecast
9 November 2001
Low ozone episode

3-day forecast
9 November 2001
Low ozone episode analysis
9 November 2001
UV forecast

20 November 2001
(5-day forecast)
GOME measurements at 25 September 2002
Ozone hole breakup, 2002

26 September 2002
Analysis based on GOME
Ozone hole breakup, 2002

26 September 2002
5-day forecast
Ozone hole breakup, 2002

26 September 2002
7-day forecast
Ozone hole breakup, 2002

26 September 2002
9-day forecast
Summary (1)

Satellite instruments measuring ozone
• GOME, Sciamachy, OMI, GOME-2 will play important role to continue the TOMS ozone record

Total ozone retrieval
• Total ozone products of GOME can be improved
• New KNMI total ozone algorithm:
 applied to GOME, Sciamachy, OMI
Summary (2)

Ozone assimilation
- CTM driven by ECMWF winds describes features of stratospheric ozone in fair detail
- (O-F) total ozone typically 3-4 %
- Noise level GOME total ozone small: < 2 %

Age of air, strat-trop exchange
- Assimilation models: too strong mixing tropics-extratropics (M. Schoeberl)
- ERA-40 compared to OD: small age of air, large STE
Summary (3)

Ozone forecasting
- Meaningful forecast up to one week in extratropics
- Tropics: forecast up to 2 days
 (small anomaly, measurement noise, no tropospheric chemistry)
- Examples
 * Breakup 2002 ozone hole
 * Ozone "mini-holes" over Europe