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Land Data AssimilationLLand and DData ata AAssimilation ssimilation SSystems: ystems: MotivationMotivation

Quantification and prediction of hydrologic variability Quantification and prediction of hydrologic variability 
•Critical for initialization and improvement of weather/climate forecasts
•Critical for applications such as floods, agriculture, military operations, etc.

Maturing of hydrologic observation and prediction tools:Maturing of hydrologic observation and prediction tools:
•Observation: Forcing, storages(states), fluxes, and parameters.  
•Simulation: Land process models (Hydrology, Biogeochemistry, etc.). 
•Assimilation: Short-term state constraints.

“LDAS” concept: “LDAS” concept: 
Bring state-of-the-art tools together to operationally obtain high quality land 

surface conditions and fluxes.

•Optimal integration of land surface observations and predictions. 
•Continuous in time&space; multiple scales; retrospective, realtime, forecast

Obs Model4DDA
Improved 
products, 

predictions, 
understanding



Paul R. Houser, Page 2 11-Sep-03

Land Data AssimilationBackground: Background: Land Surface ModelingLand Surface Modeling

Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to 
propagate or extend scarce observations in time and space.  Based on water and energy balance.

Input - Output = Storage Change
P + Gin –(Q + ET + Gout) = ∆S
Rn - G = Le + H

Overland 
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Mosaic (Koster, 1996):
Based on simple SiB physics.
Subgrid scale "mosaic"

CLM (Community Land Model, ~2001): 
Community developed “open-source” model.
10 soil layers, 5 layer snow scheme.

Catchment Model (Koster et al., 2000): 
Models in catchment space rather than on grids.
Uses Topmodel concepts to model groundwater

NOAA-NCEP-Noah Model (NCEP, ~2001): 
Operational Land Surface model.

BARE SOIL:  15%

10%

GRASSLAND:
50%

SHRUBS:

NEEDLELEAF
TREES:  25%

Also: vic, bucket, SiB, etc.
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Land Data AssimilationLand Surface Observation

Forcing
•Precipitation
•Wind
•Humidity
•Radiation
•Air Temperature

Parameters
•Soil Properties
•Vegetation Properties
•Elevation & Topography
•Subgrid Variation
•Catchment Delineation
•River Connectivity

States
•Soil Moisture
•Temperature
•Snow
•Carbon
•Nitrogen
•Biomass

Fluxes
•Evapotranspiration
•Sensible Heat Flux
•Radiation
•Runoff
•Drainage

Soil Moisture
Snow, Ice, Rainfall Snow

Vegetation
Radiation forcing
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Land Data AssimilationLandLand Parameter Parameter ObservationsObservations

Topography (GSFC) Vegetation (GSFC)

AVHRR/MODIS 1 km LAI -- July

Soils (NWS-OH)
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Land Data AssimilationLandLand Forcing Forcing ObservationsObservations

TRMM Precipitation
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Land Data AssimilationLandLand State State ObservationsObservations
Soil Moisture

Skin Temperature

Skin temperature derived from NOAA/NESDIS GOES.

Snow 
Cover/Depth
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Land Data AssimilationLandLand Flux Flux ObservationsObservations

Surface Fluxes

Streamflow

Oklahoma ARM Site
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Land Data AssimilationGlobal Precipitation MissionGlobal Precipitation Mission

Core Satellite
• Dual Frequency Radar
• Multi-frequency Radiometer
• H2-A Launch
• TRMM-like Spacecraft
• Non-Sun Synchronous Orbit
• ~65° Inclination
• ~400 - 500 km Altitude
• ~4 km Horizontal Resolution (Maximum)
• 250 m Vertical Resolution

Constellation Satellites
• Multiple Satellites with 

Microwave Radiometers
• Aggregate Revisit Time,

3 Hour goal
• Sun-Synchronous Polar Orbits
• ~600 km Altitude

OBJECTIVE:  Understand the 
horizontal and vertical structure of 
rainfall and Its microphysical element.  
Provide training for constellation 
radiometers.

OBJECTIVE:  Provide enough 
sampling to reduce uncertainty in 
short-term rainfall accumulations.  
extend scientific and societal 
applications.

Global Precipitation Processing Center
• Capable of Producing Global Precip Data Products as 

Defined by GPM Partners
Precipitation Validation Sites  
• Global Ground Based Rain Measurement
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Land Data Assimilation

70 80 90 00

Ground and aircraft development and
 verification of theory (1 m)

Global mapping of soil moisture,
operational feasibility (30 km)

Large scale mapping, hydrologic studies,
first demonstration of STAR (1 km)

Exporation of spatial and temporal 
concepts (100 m)

Higher spatial resolution, (10 km)
higher sensitivity

Field
Experiments

Hydrologic 
Process Mission

Hydroclimate
Mission
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Dielectric constant: Dry soil~3.5, Water ~80 
•Water molecule aligns itself to the 
microwave field
•Penetration depth:  ~10 cm      
•Measurement depth:  ~5 cm
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Land Data AssimilationCold Seasons Experiment/Mission

Daily average air temperature

NSCAT freeze-thaw state

Cold Seasons Hydrology Experiment
Colorado, 2002-2005
NASA, NOHRSC, USFC, BLM, etc.
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Land Data AssimilationHydrologic Altimetry “Streamflow AND inundation from Space”

Potentially laser and/or radar altimetry

IDEA? Continuous river 
imaging from geostationary?

KU-Band 
Wide-Beam 
SAR-Altimeter

Floodplain, delta, braded, and ice flow 
streams are impossible to gage – perhaps 

remote sensing can help?
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Land Data Assimilation

Temporal and Vertical Disaggregation

GRACE-
derived 

terrestrial 
water 

storage 
change

surface water & snow

soil moisture

groundwater
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Terrestrial Water Storage in Illinois, 1983-96
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Gravity Observations – Total Water Changes
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Land Data AssimilationProblem of Observation Integration

Model In
tegration

Data
Insertion of Data 
into the Model

Hydrologic 
Quantity 

Remote-
Sensing 
Technique 

Time 
Scale  

Space 
Scale 

Accuracy Considerations 

Precipitation Infrared 1hr 4km Tropical convective clouds only 
 Passive 

microwave 
3hr 10km Land calibration problems 

e 
Microwave 

10day 10m Land calibration problems 

ace Soil C or L-band 
radar 

10day 10m Significant noise from vegetation and 
roughness 

C- or L- band 
radiometer 

1-3day 10km limited to sparse vegetation, low 
topographic relief 

ace Skin infrared 1hr 10m soil/vegetation average, cloud 
contamination 

 visible/infrared 1hr 10m Cloud contamination, vegetation masking,
bright soil problems 

Snow Water 
Equivalent 

passive 
microwave 

1-3day 10km Limited depth penetration 

 active 
microwave 

10day 10m  

Water 
level/velocity 

laser 10day  Cloud penetration problems 

 radar 10day   
Total water 
storage 
changes 

gravity 
changes 

30day 1000km Bulk water storage change 

Evaporation IR and Models 1hour 4km Significant assumptions 
 

Due to its importance, hydrologic Due to its importance, hydrologic 
data availability will increase. data availability will increase. 

Complete quantification of Complete quantification of 
hydrologic variability requires hydrologic variability requires 

innovative organization, innovative organization, 
comprehension, and integration of comprehension, and integration of 
diverse hydrologic information due diverse hydrologic information due 

to disparity in observation type, to disparity in observation type, 
scale, and error.

 Activ

Surf
Moisture 
 

Surf
Temperature 
Snow Coverscale, and error.
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Land Data AssimilationLand Surface Land Surface DData ata AAssimilationssimilation

Obs Model4DDA
Improved 
products, 

predictions, 
understanding

•Errors in land model prediction result from:
•Initialization error.
•Errors in atmospheric forcing data. 
•Errors in LSM physics (model not perfect).
•Errors in representation (sub-grid processes).
•Errors in parameters (soil and vegetation).

Model In
tegration

Data
Insertion of Data 
into the Model

Data Assimilation merges observations & model predictions to provide a superior state estimate.

State or storage observations (temperature, snow, moisture) are integrated with model predictions.

∂
∂
x
t dynamics physics x= + +∆ A ' B %j

K

k' 1
W ik [O k& B k ]

Data Assimilation Methods: Numerical tools to combine disparate information.
1. Direct Insertion, Updating, or Dynamic Initialization: 
2. Newtonian Nudging:
3. Optimal or Statistical Interpolation:
4. Kalman Filtering: EKF & EnKF
5. Variational Approaches - Adjoint:

Real Time Data 
Collection

Observations have error and are irregular in time and space

Irregular 3D Data Flow in Real Time

Data Assimilation Model
Optimally merges 3D array of observations with previous predictions 

Interpolation in 
time and space
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Land Data AssimilationNASANASA--GSFC Land Surface Data AssimilationGSFC Land Surface Data Assimilation
Data Assimilation merges observations & model predictions to provide a superior state estimate.

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a 
hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding.

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

SSM/I Snow ObservationSSM/I Snow Observation

∂
∂
x
t dynamics physics x= + +∆

Soil Moisture AssimilationSoil Moisture Assimilation

Skin Temperature AssimilationSkin Temperature Assimilation

Snow Cover AssimilationSnow Cover Assimilation Theory DevelopmentTheory Development

Model In
tegration

Data
Insertion of Data 
into the Model

Snow Water AssimilationSnow Water Assimilation



Paul R. Houser, Page 16 11-Sep-03

Land Data AssimilationLLandand DData ata AAssimilationssimilation

Data Assimilation merges observations & model predictions to provide a superior state estimate.

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are 
integrated into a hydrologic model to improve prediction, produce research-quality data sets, and to 
enhance understanding of complex hydrologic phenomenon.

∂
∂
x
t dynamics physics x= + +∆ Obs Model4DDA

Improved 
products, 

predictions, 
understanding

ObservationModel

Model with 4DDA

0% 20%
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Land Data Assimilation

Day 1

No Update
0 cm

1

4

10 cm

True

Day 3

Day 7

Direct Insertion 
Every Hour

Soil Moisture Profile CorrectionSoil Moisture Profile Correction

-600 0
-100

0

Matric Head (cm)

D
ep

th
 

(c
m

)

Hour 1

No Update

0 cm
1 cm

4 cm
10 cm

True

Hour 4

Hour 12

Kalman Filter 
Every Hour

-600 0
-100

0

Matric Head (cm)

D
ep

th
 

(c
m

)



Paul R. Houser, Page 18 11-Sep-03

Land Data AssimilationContinental Scale: Continental Scale: EKF EKF Catchment ModelCatchment Model

Open Loop
(Perturbed IC)

Assimilation

“Truth”
Nature Run

Kalman Filter:
•One-dimensional using linearized soil moisture forecasting 
equations, ignoring infiltration, evaporation, and transpiration.
•A linearization of the observation operator (relating surface soil 
moisture to the model surface excess, root-zone excess, and 
catchment deficit prognostics) using a Taylor series expansion. 

Specifics:
Standard Kalman Filter Forecasting Equations:

•States: Xn+1/n=A•Xn/n + Un+(wn)
•Covariance: Σn+1/n = An•Σn/nAT+Qn

Observation Equation
Z=H•Xn + (v)

Updating Equations:
•States: Xn+1/n+1=Xn+1/n+Kn+1 (Zn+1-Hn+1•Xn+1/n)
•Covariance: Σn+1/n+1 = (I-Kn+1•Hn+1)•Σn+1/n

Walker and Houser, 2001
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Land Data Assimilation

Soil DepthProfile SM error

“Errors” in Assimilated Moisture
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Land Data Assimilation

Open Loop “Truth” Assimilation
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0.36 mm/d
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Monthly 
Evapotranspiration

Open Loop “Truth” Assimilation
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0.65 mm/d0.65 mm/d0.79 mm/d

Monthly Runoff

Impact of Soil Moisture Assimilation on Fluxes
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Land Data Assimilation

Snow DepthSMMR Surface Precipitation

Model ProfileModel Root ZoneModel Surface

Assim Surface Assim Root Zone Assim Profile
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Land Data AssimilationExtended or Ensemble KF?Extended or Ensemble KF?

•EKF and EnKF provide satisfactory estimates 
of soil moisture.
•EKF cheaper, but EnKF more accurate for 6 
(or more) ensemble members.
•EKF error estimates diverge occasionally.
•EnKF error estimates noisy for small 
ensemble (Ne=10).
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Land Data Assimilation
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NOTE: 
Assimilation of 
near-surface soil 
moisture can 
degrade profile 
soil moisture if 
errors are not 
known perfectly
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Land Data AssimilationAn OSSE OSSE for the HYDROSHYDROS soil moisture mission concept

Spinning 
6m dish

HYDROS L-band 
Mission Concept

GOAL: 9km retrieval
~36km radiometer (h, v)
~3km radar (hh, vv, hv)
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Land Data AssimilationFraternal Twin StudiesFraternal Twin Studies

•“Truth” from one model is assimilated into a second model with a biased parameterization
•The “truth” twin can be treated as a perfect observation to help illustrate conceptual problems 
beyond the assimilation procedure.

Model A
“Truth”

Model B
“Model”

Model B
“Assimilating Truth”

Small

Large

•SM

•ET

•SM

•ET

•SM

•ET

Model B is 
biased SM 

high and ET 
low

SM analysis is 
improved, but ET is 

degraded due to model 
bias

assimilation

Assume linear SM-ET 
relationship

We must not only worry 
about obtaining an 

optimal model constraint, 
but also understand the 

implications of that 
constraint.
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Land Data AssimilationSnow Assimilation:Snow Assimilation: Background & MotivationBackground & Motivation

• In the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycle.
• The high albedo, low thermal conductivity and large spatial/temporal variability impact energy/water budgets.
• Snow/bare soil interfaces cause wind circulations.
• Direct replacement does not account for model bias.

-107.5 latitude; 40.0 longitude

Unique Snow Data Assimilation Considerations:
• “Disappearing” layers and states
•Arbitrary redistribution of mass between layers
•Lack of information in SWE about snow density or depth
•Lack of information in snow cover about snow mass & depth
•Biased forcing causing divergence between analysis steps
•OBSERVATIONS: Snow Cover, Snow Water Equiv., Tskin, Snow Fraction

3Z 3/15/99 3Z 3/16/990Z 3/16/99

Update
Time Update

Time
Melt
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Land Data AssimilationSnow Data AssimilationSnow Data Assimilation

Develop a Kalman filter snow assimilation to overcome 
current limitations with assimilation of snow water 
equivalent, snow depth, and snow cover.

• Investigate novel snow observation products such as 
snow melt signature and fractional snow cover.

• Provide a basis for global implementation.
Unique Snow Data Assimilation Considerations:

• “Disappearing” layers and states
•Arbitrary redistribution of mass between layers
•Lack of information in SWE about snow density or depth
•Lack of information in snow cover about snow mass & depth
•Biased forcing causing divergence between analysis steps

SSM/I Snow ObservationSSM/I Snow Observation

Truth run Assimilation run Control run
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Land Data AssimilationGLDAS ObservationGLDAS Observation--based Snow Correctionbased Snow Correction

C

A

G

F

E

D
B

This is used to update the modeled 
snow on a daily basis. Output snow 
depth (mm H2O) is shown for 30 
November 2000, after running the 
Mosaic LSM without E and with F the 
snow correction for 30 days.  Map G
shows the difference (mm H2O) 
between the two results.

Original MODIS visible snow 
cover (%) A is modified using 
MODIS confidence index (total 
visibility; %) B and a snow 
impossible mask C in order to 
produce an enhanced snow field 
D.  
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Land Data AssimilationSnow Data Assimilation: Snow Data Assimilation: Impact of temperature biasImpact of temperature bias

No Bias -1o Bias

+10% SW Bias

No Bias

+2o Bias 
+0.5o

Bias
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Land Data Assimilation

Observation

Assimilation with 
Bias Correction

Assimilation
No Assimilation

DAO-PSAS Assimilation of ISCCP (IR 
based) Surface Skin Temperature into a 
global 2 degree uncoupled land model.

Data Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results

Surface temperature has very little memory
or inertia, so without a continuous correction, it 
tends drift toward the control case very quickly.
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Land Data AssimilationData Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results

Comparison with 
NCEP Reanalysis

•Skin temperature 
improves significantly

•Sensible heat flux 
degrades due to 
modified near-
atmosphere 
temperature gradient

NOTE: NCEP not equal to TRUTH



Paul R. Houser, Page 32 11-Sep-03

Land Data AssimilationData Assimilation: Data Assimilation: TTss Assimilation ResultsAssimilation Results
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Land Data AssimilationNorth American North American LDASLDAS: : Specifics 1Specifics 1

Goal: provide accurate, near-real-time and retrospective land surface states over North America
Resolution: 1/8 degree;  continental U.S;  <1 hour time step;  near real time & retrospective.  
Models: Mosaic, VIC, NOAH, Sacramento, CLM, Catchment, TOPLATS, Bucket.
Assimilation: Surface temperature, snow, soil moisture.
Forcing: Eta model and observed Stage-4/gage precipitation, GOES insolation (NCEP).
Timing: real-time, short-term retrospective, long-term retrospective.

•Real-Time (NCEP): LDAS results and forecasts available within 24 hours of real-time
•Short-Term Retrospective (GSFC): Identical to real-time for modern forcing (1996-present)
•Long-Term Retrospective (UW-P): 50+ years using reduced resolution and best available forcing.

Parameters:
•Vegetation: UMD classification, parameter mapping (GSFC).
•Soil: Soil Maps and Parameters (OH).
•Topography: Digital Elevation Models (GSFC).

Topography (GSFC) Vegetation (GSFC) Soils (NWS-OH)

Position Column Row Longitude Latitude
Lower Left 1 1 -124.9375 25.0625
Lower Right 464 1 -67.0625 25.0625
Upper Right 464 224 -67.0625 52.9375
Upper Left 1 224 -124.9375 52.9375

Overland 
Flow

Subsurface 
Flow

Total Flow

ET and 
Precip

Infiltration

Source Area
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Land Data AssimilationNorth American North American LDASLDAS: : Specifics 2Specifics 2

Vegetation:  DeFries et al., University of Maryland
•Can be modified by 1km Max Fractional Vegetation, Zeng & Dickinson
•Seasonal cycle specified by NESDIS green vegetation product

Data Availability: Real-time and short-term retrospective
•“Modern” forcing available from 1996 - uses the same modern forcing 
and resolution as is used in the real-time LDAS

Other Data: GOES-Temps, Snow, Streamflow, SSMI Products

LDAS Forcing Product Time Res. Space Res. Archive Real-Time
Eta EDAS Analysis 3hr 40km June 1996 5hr
Eta 3hr Forecast 3hr 40km June 1999 5hr
Eta 6hr Forecast 6hr 40km June 1996 5hr
NESDIS GOES SW dwn 1hr 1/2 degree June 1999 2hr
Pinker GOES SW dwn 1hr 1/2 degree Jan 1996 2hr
Stage-4 Gage-Radar Ppt 1hr 4, 15km May 1996 10hr
RFC Gage-Only Precip 24hr 4km Jan 1998 18hr
CPC Gage Only Precip 24hr 1/4 degree July 1997 12,24hr

Skin temperature derived from NOAA/NESDIS GOES.
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Land Data AssimilationNorth American North American LDASLDAS: : PrecipitationPrecipitation
Data Advantages Disadvantages

NCEP Stage II Doppler radar / RFC gauge Hourly, 4km Errors in radar magnitude
Holes in coverage

CPC daily rain gauge data Accurate Coarse temporal resolution
Sparse coverage over Canada, Mexico

0.25 Degree Resolution
CPC Reprocessed daily rain gauge data Most accurate Coarse temporal resolution

(additional stations Light coverage over Canada, Mexico
and qc checks) 0.25 Degree Resolution

Only through 1998

Doppler Radar Precipitation Interpolated Gage Precipitation Merged LDAS Precipitation

• Use ETA model, Stage II and CPC data to form best available 
product—a temporally disaggregated hourly CPC gage value
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Land Data Assimilation

North American North American LDASLDAS: Mosaic : Mosaic ResultsResults
Paul R. HouserPaul R. Houser,, NASA/GSFC Hydrological SciencesNASA/GSFC Hydrological Sciences

LDAS Predictions: Hourly Sept. 2000 Precipitation and Soil Moisture
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Land Data AssimilationEuropean Land Data Assimilation System (ELDAS)

precipitation

radiation

evaporation

Soil moisture
correction scheme

Soil moisture
content

(sub)surface
runoff

Observations driving
soil moisture correction

Synops data
METEOSAT or 

MSG

Land surface
parameterization
scheme

Development of a European Land Data Assimilation System to predict floods and droughts
B.J.J.M. van den Hurk, A.J. Feijt,  Han The

Develop and test a system to generate high quality regional scale soil moisture, and assess the 
improvements it can cause in predicting drought or flood events in coupled model predictions.

•The design of a flexible soil moisture estimation system and the production of soil moisture fields
•The evaluation of the impact of using these soil moisture fields in Numerical Weather Prediction (NWP), in flood-
and drought predictions, and climate applications.

Participants
•6 met centres (KNMI,ECMWF,DWD,INM,SMHI,CNRM)
•2 hydro institutes (SMHI,CEH)
•3 university research groups (Alterra,MIUB,VUW)

External Advisory Board
Paul Houser, Jan Polcher, Joost Nieveen, 
Michael Berger, Carlos Da Camara, 
Sten Bergström, Jim Haywood
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Land Data Assimilation

Objective: A 1/4 degree (and other) global land modeling and assimilation system that uses all relevant observed forcing, 
storages, and validation.  Expand the current N. American LDAS to the globe. 1km global resolution goal

Paul R. HouserPaul R. Houser,, NASA/GSFC Hydrological SciencesNASA/GSFC Hydrological Sciences
Paul.Houser@gsfc.nasa.govPaul.Houser@gsfc.nasa.gov

Model In
tegration

Data
Insertion of Data 
into the Model

Land Data 
Assimilation

Obs Model4DDA
Improved 
products, 

predictions, 
understanding

CEOP

Observed 
Forcing

U.MD AVHRRU.MD AVHRR--
VegVeg CoverCover

Merged Merged PptPpt
ForcingForcing

TsurfaceTsurface

ETET

Snow WESnow WE

SW downSW down
Soil Soil 

Moisture Moisture 
(May 2001)(May 2001)

Consistent Global Intercomparison  
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Land Data AssimilationSummary of Data Sources for GLDASSummary of Data Sources for GLDAS

Type of Data Source Original 
Spatial 

Resolution 

Time Period 

NASA Goddard Earth Observing System (GEOS) 1.0° 12/2000 – present 
NOAA Global Data Assimilation System (GDAS) ~ 0.7° 1/1999 – present 
ECMWF forecasts and analyses ~ 39 km 10/2001 – present 
Berg et al. (2002) bias corrected ECMWF reanalysis 0.5° 1/1979 – 12/1993 

Modeled Forcing 

Berg et al. (2002) bias corrected NCEP/NCAR reanalysis 0.5° 1/1985 – 12/1993 
Observation-Based SW 
and LW Radiation Forcing 

Derived at NASA/GSFC using U.S. Air Force Weather Agency cloud and 
snow analyses 

0.25° 3/2001 – present 

U.S. Naval Research Laboratory 0.25° 4/2001 – present 
NASA/GSFC Mesoscale Atmospheric Processes Branch 0.25° 3/2002 – present 

Observation-Based 
Precipitation Forcing 

NOAA Climate Prediction Center 2.5° 1/1979 - present 
Observation-Based Snow 
Cover 

Derived at NASA/GSFC using Terra-MODIS satellite observations 0.125° 11/2000 - present 

Observation-Based Leaf 
Area Index 

Boston University Department of Geography 16 km 7/1982 – 5/2001 

Observation-Based 
Surface Temperature 

Television Infrared Observation Satellites (TIROS) Operational Vertical 
Sounder (TOVS) 

~ 15 km 1/1998 – 12/1998 

University of Maryland, AVHRR-derived 1 km static Vegetation Class 
Boston University, MODIS-derived 1 km static 

Soils USDA Agricultural Research Service 5’ static 
Elevation GTOPO30 digital elevation model 30” static 
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Land Data AssimilationSeasonal Observed Vegetation; July

AVHRR 8 km LAI -- July

AVHRR Reconstructed 1 km LAI -- July

AVHRR Reconstructed 1 km LAI -- July

AVHRR Reconstructed 1 km LAI -- July

GLDAS 0.25° LAI -- July
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Land Data AssimilationImpact of observed LAI on Predictions

Observed LAI 
Impact on Surface 

Temperature

Observed LAI 
Impact on Soil 

Moisture

Observed LAI 
Impact on 

Transpiration

Improvement in 
Surface 

Temperature
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Land Data AssimilationTotal MAM Precipitation (mm) Evaluation

Radar

IR

MW-IR

DAO

ECMWF

NCEP

Pentad

Gage
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Land Data AssimilationMonthly Mean Surface SW↓ March 2003

DAO

ECMWF

AGRMET
(GEO Obs)
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Land Data AssimilationDAO vs ECMWF GLDAS Results

DAO

ECMWF

DAO-ECMWF
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Land Data AssimilationLand Information System: A high-performance extension of GLDAS

The 1-km resolution land surface data assimilation possible with 
LIS will approach that of an aerial photo.
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Land Data AssimilationLand Information System: A high-performance extension of GLDAS
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Land Data AssimilationWater Cycling Research: coupling LDAS results

• Objective: To better understand 
the water cycle by quantifying
geographic sources (local and 
remote) of precipitating 
waterSoil water anomalies likely 
affect the local continental 
source of water for precipitation 
in the monsoon (e.g. Atlas et al. 
1993)

• Controlled sensitivity 
experiments can be performed, 
using GLDAS initial conditions 
for the FVGCM

• Using realistic perturbations, 
what is the impact of wet and 
dry anomalies on the monsoon 
precipitation, and the relative 
sources of water

North America: Water evaporates from the 
Caribbean Sea moving westward (white 

isosurface) as the circulation changes this water 
is transported northward into the US. (The red 
isosurface shows water that has evaporated 

from the central US)

Bosilovich and Schubert, 2002; Bosilovich 2002Bosilovich and Schubert, 2002; Bosilovich 2002
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Land Data Assimilation
Simulations performed: For each year between 1979 and 1993,

9 AGCM simulations, run in
parallel with observed SSTs, 

provide 9 realizations of rainfall 
over a given region

The 9 JJA rainfall totals are
averaged to give a mean rainfall 

“forecast” in absence of land 
surface initialization

Jan Feb AprMar May JulJun SepAug

precipitation
over region X

1. AMIP
ensemble

Jan Feb AprMar May JulJun SepAug

precipitation
over region X

The 9 new JJA rainfall totals are
averaged to give a mean rainfall 
forecast reflecting soil moisture 

initialization
2. LDAS

ensemble Impose the offline LDAS 
surface states on June 1
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Land Data AssimilationScaling Approach

LDAS
pdf

pdf

µLDAS

aσLDAS

µAGCM

aσAGCM

XLDAS XAGCM

AGCM

XAGCM - µAGCM

σAGCM

XLDAS - µLDAS

σLDAS

=Use standard normal deviates:
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Land Data Assimilation

Observations Predicted: AMIP

Predicted:  Scaled LDASPredicted: LDAS

1988 Midwestern U.S. Drought

(JJA precipitation anomalies, in mm/day)
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Land Data Assimilation

Predicted: LDAS

-10

0
0.2

-0.2

0.5

-0.5

1.

-1.

3.

-3.

Observations Predicted: AMIP

1993 Midwestern U.S. Flood

(JJA precipitation anomalies, in mm/day)

Predicted:  Scaled LDAS 10

With soil 
moisture

initialization

Without
soil moisture
initialization
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Land Data AssimilationLand Assimilation: Land Assimilation: ProgressProgress

Current Status:
•Soil moisture, skin temperature, and snow assimilation are underway.
•Operational LDAS systems are developing and show promise for forecast improvement.

Land Surface Data Assimilation Realities
•Large-scale land data assimilation is severely limited by a lack of observations.
•We need to pay attention to the consequences of assimilation, not just the optimum assimilation technique.  i.e. 
does the model do silly things as a result of assimilation, as in snow assimilation example. 
•Assimilation does not always make everything in the model better.  In the case of skin temperature assimilation 
into an uncoupled model, biased air temperatures caused unreasonable near surface gradients to occur using 
assimilation that lead to questionable surface fluxes.

Data Assimilation Algorithm Development:
•Land models are highly nonlinear -> push for model independent assimilation algorithms.
•Radiance Assimilation – use forward models in the assimilation to assimilate brightness temperatures directly.
•Link calibration and assimilation in a logical and mutually beneficial way.
•Understand the potential of data assimilation downscaling

Land Modeling:
•Better correlation of land model states with observations
•Advanced processes: River runoff/routing, vegetation and carbon dynamics, groundwater interaction
•Parallel development of land model and their adjoints

Assimilate new types of data: 
•Streamflow, Vegetation dynamics, and Groundwater/total water storage (Gravity)
•Boundary layer structures/evapotranspiration

Coupled feedbacks: 
•Understand the impact of land assimilation feedbacks on coupled system predictions.

Model In
tegration

Data
Insertion of Data 
into the Model
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