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1. Introduction
Precipitation is observed from space through active and passive microwave techniques. Available from several

orbiting platforms, those observations provide continuous global coverage. However, the information content of
satellite observations, on which precipitation analysis rests, is limited by the sampling in space and time.

Satellites observe the global precipitation field asynoptically: Different sites are observed at different times.
Observations are continuous along a satellite’s track, but discrete between successive orbits. These features limit the
space-time resolution of satellite data. For an individual platform, asynoptic sampling resolves about half a dozen
zonal wavenumbers and frequencies less than 1 cpd. The precipitation field, on the other hand, involves variance on
much shorter scales.

Variance at short space and time scales is undersampled in satellite data, lying beyond the Nyquist limits of
asynoptic sampling. Such variance aliases behavior at longer scales, which would otherwise be correctly represented in
asynoptic data. This limitation complicates the gridding of data into synoptic maps of the instantaneous precipitation
field. Through the diurnal cycle, undersampled variance also aliases the time-mean precipitation field.

2. Information Content of Asynoptic Data

Figure 1: Asynoptic sampling along a latitude circle
from a single orbiting platform with a narrow field
of view (solid/open circles) and a wide field of view
(shading).

Rooted in sampling considerations, these errors involve behavior
that is misrepresented in asynoptic data. Figure 1 illustrates the
sampling along an individual latitude circle from a single platform
with about 14 orbits/day. Plotted is the sampling with a Narrow
Field of View (NFOV), characteristic of an active instrument like the
TRMM radar (solid/open circles). Analogous sampling applies to a
Wide Field of View (WFOV), characteristic of a scanning radiometer
(shaded). Although capturing instantaneous structure within 25◦ of
longitude, the WFOV likewise leaves most of the precipitation field
at that time unobserved.

For the NFOV, 28 longitudes are observed during one day: 14
from each side of the orbit. Were those longitudes observed simul-
taneously, this sampling would resolve 14 zonal wavenumbers. On
the next day, 28 different longitudes are sampled. They are nested
nonuniformly within the original 14 longitudes. Collected with those
of the first day, they imply the resolution of 28 zonal wavenum-
bers. After several days, this nested sampling accumulates, yielding
a dense mesh of longitudes that, although nonuniform, implies very
fine spatial resolution.

The consideration which prevents this benefit is transience. The
precipitation field evolves on time scales much shorter than the time
for the globe to be covered. Hence, while precipitation is being ob-
served at one site, it is changing at another.

When observations on the latitude circle are represented in ex-
tended longitude and time (Fig. 2), the non-uniform character of
asynoptic sampling disappears. Observations from the NFOV then
form a uniform grid along two “asynoptic coordinates”: s and r
(Salby, 1982): Each is a mixture of space and time. Much the same picture holds for the WFOV (shaded). Despite
high spatial resolution within the instantaneous field of view, the WFOV likewise leaves large gaps in space and
time between successive orbits. Small-scale structure within the instantaneous WFOV is incoherent between adja-
cent orbits (e.g., Lait and Stanford, 1988). Consequently, it does not lend itself to interpolation into a continuous
description of the global precipitation field.
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Figure 2: Sampling along the latitude circle, as function of extended longitude λ and time t.

Figure 3: Information Content of asynoptic data from a single plat-
form, as function of zonal wavenumber kλ and frequency kt .

Figure 4: Behavior along asynoptic coordinate s of a high-
wavenumber stationary component and a low-wavenumber transient
component (solid circles in Fig. 3), which form an alias pair. Values
actually sampled by satellite indicated in solid circles.

The uniform sampling along asynoptic coordinates
establishes the resolution in space and time. It, in turn,
defines the information content of satellite data. Illus-
trated in Fig. 3 in terms of zonal wavenumber and fre-
quency, the information content corresponds to a rect-
angle oriented along two “asynoptic wavenumbers”: ks

and kr. Analogous to their counterparts in physical
space, ks and kr are mixtures of synoptic wavenumber
and frequency. The boundaries of this rectangle repre-
sent the Nyquist limits of asynoptic sampling. Resolved
are about 7 zonal wavenumbers and frequencies out to
about 1 cpd (0.5 cpd if asymmetry inherent to asyn-
optic sampling is not accounted for; Salby, 1989). The
information content is comparable to that of synoptic
sampling, with 14 longitudes observed simultaneously
twice per day.

Variance outside this rectangle is undersampled. In
the asynoptic data, it is indistinguishable from vari-
ance inside the rectangle. An example is illustrated
by the two solid circles in Fig. 3: They describe
a high-wavenumber stationary component and a low-
wavenumber transient component. In a continuous rep-
resentation along the asynoptic coordinate s (equivalent
to time in a reference frame moving with the satellite),
those components are mutually distinct (Fig. 4). In the
discrete asynoptic data, however, the two components
are identical.

Variance outside the Nyquist limits is undersam-
pled. It is therefore misrepresented in the asynoptic
data as variance inside the Nyquist limits. Undersam-
pled variance folds back onto behavior at longer (resolv-
able) scales, which would otherwise be correctly repre-
sented.

These sampling considerations are violated by two
important classes of variability: (1) Broad-band vari-
ance is widely distributed over wavenumber and fre-
quency, spilling beyond the Nyquist limits of asynoptic
sampling. (2) Diurnal variations involve harmonics of a
day, which lie at and beyond the Nyquist limits. Those
harmonics alias zero frequency, introducing a bias into
the time-mean distribution. These classes of variabil-
ity challenge the information content of asynoptic data.
They also represent the two major elements of the pre-
cipitation field.
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3. High-Resolution Description of Convection
The impact of undersampled variance has been studied in high-resolution Global Cloud Imagery (GCI), which

has been constructed from 6 satellites simultaneously monitoring the earth (Salby et al., 1991). Illustrated in Fig. 5,
each image represents a nearly instantaneous snapshot of the global convective pattern. With horizontal resolution
of 0.5◦ and temporal resolution of 3 hrs, the GCI resolves the dominant scales of organized convection.

Figure 5: Global Cloud Image (brightness temperature) at 06Z on
Nov 17, 1987.

Cold cloud fraction η
c

provides a proxy for areal-
averaged rainfall (e.g., Richards and Arkin, 1981), serv-
ing as a cornerstone even in diverse analyses like GPCP
that include ground-based measurements (Huffman et
al., 1997). Through ηc , the GCI has been married with
monthly-mean precipitation in GPCP to map the global
distribution of rainfall at horizontal resolution of 2.5◦ and
temporal resolution of 3 hrs. In the sampling experiments
below, we rely on the raw imagery of η

c
in the GCI.

Available at increments of 0.5◦ and 3 hrs, it provides
short-scale behavior that approaches the granularity of
the actual precipitation field. The GCI then provides a
litmus test of asynoptic sampling.

Figure 6 plots the frequency spectrum of cold cloud,
over tropical Africa. The spectrum at individual sites
(dotted) is broad band, punctuated by pronounced spikes
at harmonics of the diurnal cycle. Those harmonics re-
flect brief but heavy rainfall at preferred local times,
which contributes disproportionately to the daily accu-
mulation (Janowiak et al., 1994). More sobering is what
happens if cold cloud is averaged spatially over the con-
vective center. The spectrum (solid) is then dominated
by diurnal variance. Unlike other fluctuations, the di-
urnal variation is spatially coherent across the region of
convection (Bergman, 1996; Bergman and Salby, 1996). Consequently, it is not removed by spatial averaging. It is,
in fact, the large-scale coherent component that is important for climate studies and for refining models.

4. Aliasing by the Diurnal Cycle

Figure 6: Frequency spectrum of cloud over tropical Africa: En-
semble average of spectra at individual 0.5◦ locations (dashed) vs
spectrum of areal average (solid).

We turn now to what undersampled variance implies
for deriving the time-mean distribution. To cope with di-
urnal variance, satellites are flown in a precessing orbit:
Observations on a latitude circle then drift through local
time, eventually sampling all phases of the diurnal cycle.
However, even this sampling is limited by two practical
considerations: (1) The precession period is long, typi-
cally a month or longer. (2) The diurnal variation is not
steady, but random. It varies from one day to the next
according to the presence of convection. These consid-
erations require a population of observations, several at
each local time, to composite the mean diurnal variation.
Only in a large enough population is the mean diurnal
variation truly separated from the time mean.

To evaluate the systematic error from diurnal alias-
ing, the GCI has been sampled asynoptically from a sin-
gle platform with specified orbital and viewing geome-
tries. The resulting time-mean distribution is then com-
pared against the true time mean in the GCI. Figure 7
plots the relative error recovered from a WFOV, with a
precession period of about a month. After 1 month of
averaging, the bias from undersampled diurnal variance
exceeds 50% over regions of tropical convection. Even
after 3 months of averaging (not shown), the systematic
error still exceeds 30%.

Figure 8 plots the same information, but for a NFOV.
The systematic error is noticeably greater. After 1 month
of averaging, it approaches 80% in regions of tropical con-
vection. Even after 3 months of averaging (not shown), the bias exceeds 40%.
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Figure 7: Relative bias from diurnal aliasing after averaging asynoptic ob-
servations over 1 month. Derived from a precessing orbit with a WFOV (25◦

ground scan).

Figure 8: As in Fig. 7, but for a NFOV (2.5◦ ground scan).

The different systematic errors produced by
these viewing geometries follows from how of-
ten individual sites are sampled (Salby and
Callaghan, 1997). During one month, a
2.5◦ cell is sampled by the NFOV instrument
50–100 times. This yields only 2–4 observations
per hour of local time for each 2.5◦ cell. In con-
trast, the same cell is sampled by the WFOV in-
strument an order of magnitude more frequently.
The larger population better separates the mean
diurnal variation from the time mean, which then
contains a smaller bias.

5. Synoptic Mapping of Large-Scale
Structure
We turn next to undersampled small-scale

variance and its implications for synoptic maps
of global structure. Constructing synoptic maps
is more ambitious than the time-mean distribu-
tion. However, two features work in its favor: (1)
Small undersampled scales are not of primary in-
terest in climate applications. Rather, it is their
organization by large scales that is most impor-
tant. (2) Aliases of those undersampled scales are
random.

A technique has been developed to reject un-
dersampled incoherent variance, leaving a more
accurate representation of large-scale coherent
variance (Salby and Sassi, 2001), As before, the
GCI is sampled asynoptically from a single orbit-
ing platform. Figure 9a plots, from the raw sampled data, the spectrum over asynoptic wavenumber ks. (It is
equivalent to the spectrum over frequency in a frame moving with the satellite.) Broadly distributed over wavenum-
ber, the spectrum is statistically white. It can be shown that only variance within a neighborhood of integer ks lies
within the asynoptic rectangle of Fig. 3. Variance removed from integer ks, which dominates the spectrum in Fig.
9a, is then undersampled. Figure 9b plots the same information, but after the technique has been applied to the
raw asynoptic data. Variance is now concentrated about integer ks. Variability has therefore been discriminated to
those space and time scales that are resolved in the asynoptic data.

Figure 9: Power spectrum of cold cloud, as function of asynoptic wavenumber ks , (a) from raw asynoptic data and (b) after processing
to reject incoherent variance.

This technique has been applied to data sampled asynoptically from the GCI to produce daily synoptic maps
over a 1-month period. The results are then compared against the true synoptic behavior in the GCI. When synoptic
maps are produced from the raw asynoptic data, the error at large scales is as great as the large-scale signal present.
However, when the asynoptic data are processed via this technique, the error variance is reduced to 10% or less.
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Figure 10: Large-scale evolution of cold cloud over central Pacific
(a) in synoptically-mapped behavior and (b) actually present in
GCI.

Figure 11: As in Fig. 5, but simulated in a 2-day forecast by the
BMRC model.

Figure 10 illustrates the synoptically-mapped evolu-
tion over the equatorial central Pacific. The period shown
includes an amplification of the Madden-Julian oscilla-
tion (MJO), which organizes tropical convection. In the
synoptically-mapped evolution (dashed), cold cloud is
magnified during the first week, when convection in the
MJO crosses the dateline. Cold cloud then decreases
sharply, as convection migrates eastward and leaves the
region. The mapped evolution faithfully tracks the true
large-scale evolution in the GCI (solid). So does the
global structure in synoptic maps (ibid.).

6. Representation of Convection in Models
Analyzed precipitation, derived through a model,

must contend with the misrepresentation of scales in
asynoptic data. A precipitation analysis also relies on the
model’s representation of precipitation. It competes with
observed precipitation where measurements are available,
but serves in place of them where they are not.

In general, cumulus convection is poorly represented
in models, as is its diurnal variation. Although details of
its simulation vary with model and convective parameter-
ization, certain forms of pathological behavior are com-
mon to many GCMs. Figure 11 plots, from the BMRC
model, the forecast distribution of cloud brightness tem-
perature for the same time as in Fig. 5. Comparison
shows that the model reproduces observed structure re-
markably well at middle and high latitudes, where cloud
is organized by sloping convection. In the tropics, how-
ever, where cloud is organized by cumulus convection, the
simulation is less successful. Not only does the instanta-
neous structure differ, but so does the evolution.

The simulation in the tropics deviates from observed
behavior on the time scale of days and, most conspicu-
ously, in relation to the diurnal cycle. This form of patho-
logical behavior is not unique to the BMRC model. In
fact, it is intrinsic to many GCMs, including the COLA
model and the NCAR CCM (Ricciardulli and Garcia,
2000). Figure 12 compares the power spectrum of areal-
averaged precipitation over the equatorial Pacific (inside
the window shown in Figs. 5 and 11) represented in the
GCI vs that simulated during the same period by the
COLA model. The observed behavior (Fig. 12a) involves
a red spectrum, in which variance is distributed broadly
out to 1 cpd. The diurnal cycle, although present, is com-
paratively minor because the region considered is princi-
pally maritime. In the simulated behavior (Fig. 12b),
however, power is sharply concentrated at low frequency
and at the diurnal cycle. At intermediate scales, where
convection is organized through interaction with the cir-
culation, power is virtually absent. Analogous behavior
is evident in other models (ibid.). Depending on the con-
vective parameterization, the diurnal cycle can be even stronger, dominating the organization of tropical convection.

7. Implications
Aliasing by undersampled diurnal variance is significant over much of the tropics. This is especially true near

land, where convection undergoes a pronounced diurnal variation. The time-mean precipitation field can therefore be
determined only as accurately as can the mean diurnal variation. This systematic error requires data from a single
platform to be averaged over several months – even if that platform is in a precessing orbit.

The random component of sampling error can be sharply reduced by rejecting incoherent variance. Large-scale
coherent structure, describing the organization of precipitation, can then be mapped synoptically on individual days.
This opens the door to a wide range of scientific applications, including issues surrounding how precipitation interacts
with the general circulation.
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(b) Model(a) GPI

Figure 12: Power spectra of areal-averaged precipitation over equatorial Pacific, indicated in Fig. 5, (a) represented in the GCI and
(b) simulated by the COLA model.

The foregoing limitations stem from sampling error, which leads to a misrepresentation of scales in asynoptic data.
Once the precipitation field has been undersampled, aliased behavior is difficult to distinguish from behavior that is
genuinely present. This feature is an important consideration for assimilating satellite measurements into a forecast
model. Beyond incorporating observed behavior, the model generates precipitation at other locations and times,
for which observations are absent. The characteristic scales of precipitation are much shorter than space-time gaps
in asynoptic data from a single platform. For this reason, only the large-scale organization and statistics of observed
precipitation can be interpolated reliably into a continuous description of the global precipitation field. An accurate
analysis of global precipitation will require (1) the input data to be properly interpreted and (2) statistical properties
and the organization of precipitation in the model, inclusive of the diurnal cycle, to faithfully represent counterpart
behavior in the atmosphere.

The ultimate solution to these limitations is more frequent sampling in space and time. This feature is provided by
multiple orbiting platforms. If details of the combined sampling are accounted for, such precipitation measurements
make possible accurate monthly-mean structure, as well as synoptic maps with enhanced frequency and horizontal
resolution.
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