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1. INTRODUCTION 

In March 2001 the Japan Meteorological Agency 
(JMA) started the operation of the mesoscale 
model (MSM) to produce 18 hour forecasts four 
times a day (00, 06, 12 and 18 UTC initial) to 
assist forecasters in issuing warnings (JMA, 2002). 
MSM is a hydrostatic spectral model with a 
horizontal resolution of 10 km and 40 vertical levels 
up to 10 hPa.  

The initial condition of MSM was at first 
prepared by a 1-hour cycle analysis system with 
optimum interpolation and physical initialization to 
assimilate 1-hour accumulated precipitation data. 
This analysis system was executed for the 3-hour 
period just before the initial time with the first 
guess at the beginning of the period taken from the 
latest forecast of RSM. This analysis system is 
hereafter referred to as the pre-run system. The 
pre-run system was successfully replaced in March 
2002 by a full forecast-analysis cycle with a 
4-dimentional variational (4D-Var) method with 
3-hour assimilation windows. 

This paper describes the precipitation data 
assimilation to MSM by the mesoscale 4D-Var 
system and reports on the impacts of precipitation 
assimilation on the MSM precipitation forecasts. 
 
2. PRECIPITATION NOWCASTING IN JMA 

JMA has 20 operational C-band radars and 
about 1,300 automatic surface weather stations 
called AMeDAS. Using those observations, a 
precipitation nowcasting product is made as 
follows. 

First, radar echo intensity is converted to 
precipitation rate using the relationship 

. Then, the estimated precipitation rate 
is averaged over eight observations during one 
hour to produce an estimate of one-hour 
precipitation amount. Finally, the estimated  
amounts are calibrated using rain gauges to 
provide one-hour precipitation amount distribution 
all over Japan and surrounding are with 2.5 km 
resolution (cf. Makihara, 2000). 
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This nowcasting product is called 
“radar-AMeDAS precipitation analysis” which is 

up-scaled to model grids and assimilated to MSM. 
 
3. MESOSCALE 4D-VAR STSTEM 

The cost function of mesoscale 4D-Var system 
consists of a background term, observation terms, 
and a penalty term for reducing gravity wave noise. 
The control variables are the initial and boundary 
conditions of unbalanced wind, temperature, 
surface pressure, and specific humidity. The 
background error statistics are obtained by using 
the NMC method. The horizontal background error 
correlations are assumed to be homogeneous and 
Gaussian type to significantly reduce memory 
requirement.  

An incremental method is taken for reducing 
computational time. The forward model in this 
system has the same architecture as the forecast 
model (viz. MSM) except that its horizontal 
resolution is reduced to 20km. The adjoint model 
has the same dynamical process as the forward 
model while its physical processes include moist 
processes, boundary layer processes, long-wave 
radiation and horizontal diffusion only. 

Assimilated data are radiosonde, synop, ship, 
buoy, aircraft, wind-profiler and radar-AMeDAS 
precipitation data. 

It is to be noted that most of precipitation in 
MSM comes from the grid-scale condensation 
although MSM contains a prognostic 
Arakawa-Schubert scheme to parameterize deep 
cumulus convection. Therefore, the absence of 
deep cumulus convection in the adjoint model may 
not cause a serious problem in the 4D-Var system. 
 
4. OBSERVATIONAL COST FOR PRECIPITATION 

Since the precipitation amount has quite 
different error probability distribution from other 
elements such as temperature or wind speed, the 
Gaussian type cost-function is not appropriate for 
precipitation. Fig.1(b)  shows scatter diagram of 
first-guess values of precipitation and departures of 
observation from first-guess. It is not symmetrically 
distributed around zero departure as in the case of 
temperature at 500hPa (Fig.1 (a)). 

Then we assume probability density distribution 



  Considering these properties, we practically 
define the cost function as follows: 

of precipitation as the exponential distribution 
which is suggested from Fig. 1(b). 
According to the maximum likelihood method the 
cost function of precipitation becomes ,)(
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rHowever, this formulation is not appropriate to be 
used in minimization algorithms as it becomes 
singular around x=0. Moreover, it is more 
preferable that the cost function has a quadratic 
form for the stability of optimizing process. 
Therefore, the above function is expanded around 
its minimum point (x=y)  

When y<1mm/h, r1 has a constant value which is 
the forecast error of precipitation for observed 
precipitation less than 1mm/h. Otherwise r1 is 
proportional to observed precipitation amount. 
 
5. ASSIMILATION TEST 
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yJ rain −+−++=      (3) Figure 3 shows an example of precipitation 
assimilation. By assimilating one hour precipitation 
amounts during three hour assimilation window, 
precipitation distribution is well reproduced. The 
forecast starting from the initial condition to which 
precipitation data were assimilated also shows 
good agreement with observation (fig. 4).  

If truncated at the second order of (x-y), the 
function becomes Gaussian type with the 
observation error equal to y.  
  On the other hand, the function (2) is not 
symmetric around its minimum point (fig. 2) which 
means that the observation error is assumed 
smaller in the case of x<y than in the case of x>y. 
This asymmetricity is seen from Fig. 1(b). 

 
6. IMPACTS ON FORECASTS 

In order to evaluate the performance of 4D-Var 
and the impact of precipitation assimilation, several 
analysis-forecast cycle experiments were 
performed. 

 

 

First, two sets of one-month experiments during 
June and September 2001 were made to compare 
the 4D-Var and pre-run systems. The result shows 
that the precipitation forecasts starting from 4D-Var 
are much better than those from the pre-run 
(figures not shown).  

Second, an observation system experiment 
(OSE) for precipitation data was performed for 
June 2001 using the 4D-Var system. Threat scores 
(fig.5 left) show that the precipitation forecasts 
were improved by assimilating precipitation data 
especially for first few hours and bias scores (fig. 5 
right) show that the spin-up problem of MSM is 
alleviated by precipitation assimilation. 

Fig. 1 scatter diagram of first-guess value and 
departure of observation from first-guess. (a) 
temperature at 500hPa, (b) one-hour precipitation 
amount. 

 

However, the 4D-Var system sometimes failed to 
assimilate the precipitation data when the first 
guess was in a dry condition in spite of the fact that 
the full-physics nonlinear model is used as the 
inner-loop forward model. This is an inherent 
problem with 4D-Var assimilation of precipitation 
data using model physics that contain “on-off” 
switches. That problem may be ameliorated by 
assimilating moisture data.  

Then the third experiment is an OSE for TMI 
(TRMM Microwave Imager) precipitable water data 
and combined use of TMI-PW and precipitable 

Fig. 2 Function (2) around its minimum point in the 
case of y=1 
 



water data from ground-based GPS observation. 
Figure 6 shows an example of first three hour 

forecasts. A spurious heavy rain area (“A” in fig. 6) 
produced by precipitation assimilation was reduced 
by using TMI-PW data though it was a little bit too 
much suppressed (“B”). Complemental use of 
TMI-PW (moisture information over sea) and 
GPS-PW (moisture information over land) gave the 
best result among them. Threat scores of 1mm per 
3 hour precipitation (fig. 7) show that the combined 
use of TMI and GPS improves the precipitation 
forecasts all through the 18-hour forecast time. 
 
7. CONCLUDING REMARKS 

Precipitation forecasts of JMA mesoscale model 
are improved by assimilating precipitation data 
especially for first few hours of forecast time, that 
means that the NWP precipitation of first few hours 
may become more reliable by assimilating 
precipitation data. However, the 4D-Var is not 
always successful in assimilating precipitation as 

stated in the previous section, hence the 
assimilation of moisture data from GPS, satellite 
microwave observation and others is 
indispensable. 

A negative aspect of the NWP precipitation is 
that it has considerable errors even for short 
forecast time and its probability density distribution 
is sometimes different from the nature (see fig. 1). 
Whether spatial or temporal averaging can 
alleviate the problem requires further investigation. 
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 Fig.3 The 3-h precipitation accumulated over

the assimilation window for (a)observation
and (d)4D-Var analysis. The target analysis
time is 00UTC 16 March 2000. The operational
forecast with JMA regional spectral model
from initial condition of 12UTC 15 March 2000
is used as the first guess. 

Fig.4 The 3-hour precipitation accumulated 
over 0-3hours for (a)observation and (d) 
forecast starting from the initial condition 
produced by precipitation assimilating 
4D-Var. 
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Fig. 5 Threat score (left) and bias score (right) of 3-hour accumulated precipitation 
over Japan plotted against forecast time for one month period of June 2001. 
Threshold value is 10 mm with a horizontal resolution of 10 km. Red (solid) 
and blue (dashed) lines are with and without assimilating the precipitation 
data, respectively. 
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Fig.6 Three hour precipitation amount during 12 – 15 UTC 19th June 2001 of control run, TMI run, TMI+GPS 
run and observation from left to right respectively. Initial time of forecasts is 12 UTC 19th June 2001. 
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