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Part II: D ATA ASSIMILATION

CHAPTER 1   Incremental formulation of 3D/4D
variational assimilation—an overview

Table of contents

1.1 Introduction

1.2 Incremental Formulation

1.3 Practical implementation

1.3.1 Data flow

1.3.2 Formation of high-resolution analysis

1.3.3 Humidity and ozone

1.4 Preconditioning and control variable

1.5 Minimization

1.1 INTRODUCTION

This documentation on 3D and 4D–Var is meant to serve as a scientific guide to the 3D/4D–Var codes, a par

IFS. The documentation is divided into eleven chapters. This, the first chapter deals with the scientific formu

the practical implementation of the incremental method, and it includes some comments on minimization an

conditioning. The code structure and the computational details of the 3D/4D-Var cost-functions and their gra

are explained inChapter 2 ‘3D variational assimilation’. There is a separate chapter on subjects specific to 4D-

(Chapter 3 ‘4D variational assimilation’). Thereafter follows a description of the background term (Chapter 4

‘Background term’) and two chapters respectively on observation operators for conventional data (Chapter 5 ‘Con-

ventional observational constraints’) and satellite data (Chapter 6 ‘Satellite observational constraints’). Chapter

7 ‘Background, analysis and forecast errors’deals with the computation of background and analysis errors a

Chapter 8 ‘Gravity-wave control’is on initialization. The modules for observation sorting and screening are

scribed inChapter 9 ‘Data partitioning (OBSORT)’andChapter 10 ‘Observation screening’. Chapter 11outlines

the snow analysis,Chapter 12describes the Soil analysis,Chapter 13describes the sea surface temperature a

sea-ice analysis and the final chapterChapter 14 provides details of the reduced Kalman filter.

An extensive scientific description of 3D/4D-Var has been published in QJRMS, in ECMWF workshop proc

ings and Technical Memoranda over the years. The incremental formulation was introduced byCourtier et al.

(1994). The ECMWF implementation of 3D-Var was published in a three-part paper byCourtieret al.(1998),Ra-

bier et al. (1998) andAnderssonet al. (1998). The observation operators for conventional data can be foun

Vasiljevicet al.(1992). The methods for assimilation of TOVS radiance data and ERS scatterometer data we

veloped byAnderssonet al. (1994) andStoffelenand Anderson(1997), respectively. The pre-operational exper

mentation with 4D-Var has been documented in three papers byRabieret al. (1998),Mahfouf and Rabier(1998)

andKlinker et al. (1999).

3D-Var was implemented in ECMWF operations on 30 January 1996. The three-part paper mentioned abov

ly presented the scheme as it was at that point in time. There have been very significant developments of the
1
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during its time in operations. The first upgrade took place in connection with the move from a CRAY C90 sy

to a distributed memory Fujitsu VPP700 machine. The observation handling and data screening modules w

placed with new codes, seeChapter 9 ‘Data partitioning (OBSORT)’andChapter 10 ‘Observation screening’,

respectively, and the paper byJärvinenand Undén(1997). Variational quality control of observations (Andersson

and Järvinen, 1999, andSection 2.6) and a new algorithm for computing estimates of analysis and background

rors (Fisher and Courtier 1995, andChapter 7 ‘Background, analysis and forecast errors’ ) were introduced.

In May 1997 there was a complete revision of the background term, seeDerber andBouttier(1999) andChapter

4 ‘Background term’. The old background term, which was described inCourtier et al. (1998), is not covered by

this documentation as it is now considered obsolete. Later that year (25 November 1997) 6-hour 4D-Var wa

duced operationally, at resolution T213L31, with two iterations of the outer loop: the first with 50 iterations

plified physics) and the second with 20 iterations (with tangent-linear physics). In April 1998 the resolution

changed to TL319 and in June 1998 we revised the radiosonde/pilot usage (significant levels, temperature

of geopotential) and we started using time-sequnces of data (Järvinenet al.1999), so-called 4D-screening. Finally

the data assimilation scheme was extended higher into the atmosphere on 10 March 1999, when the TL319L50

model was introduced, which in turn enabled the introduction in May 1999 of ATOVS radiance data (McNaet

al. 1999). In October 1999 the vertical resolution of the boundary layer was enhanced taking the number of

levels to a total of 60. In summer 2000 the 4D-Var period was extended from 6 to 12 hours, whereas the ER

figuration was built as an FGAT (first guess at the appropriate time) of 3D-Var with a period of 6 hours. At the

of writing it is planned to increase the horizontal resolution of 4D-Var to TL511L60, with inner loop resolution

enhanced from T63L60 to TL159L60 using the linearized semi-Lagrangian scheme.

1.2 INCREMENTAL FORMULATION

3D/4D–Var attempt to minimize an objective function  consisting of three terms:

(1.1)

measuring, respectively, the discrepancy with the background (a short-range forecast started from the p

analysis), , with the observations, and with the slow character of the atmosphere, . The -term co

the amplitude of fast waves in the analysis and is described inChapter 8 ‘Gravity-wave control’. It is omitted from

the subsequent derivations in this section.

In its incremental formulation (Courtieret al. 1994), we write

(1.2)

is the increment and at the minimum the resulting analysis increment is added to the background

order to provide the analysis :

(1.3)

 is the covariance matrix of background error while  is the innovation vector,

(1.4)

where is the observation vector. is a suitable low-resolution linear approximation of the observation op

J
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in the vicinity of , and is the covariance matrix of observation errors. Alternatively, inEq. (1.2)can

be replaced by the finite difference , approximated at low resolution. The incremental formulatio

3D/4D-Var consists therefore of solving for the inverse problem defined by the (direct) observation op

, given the innovation vector and the background constraint. The gradient of is obtained by different

Eq. (1.2) with respect to ,

(1.5)

At the minimum, the gradient of the objective function vanishes, thus fromEq. (1.5)we obtain the classical result

that minimizing the objective function defined byEq. (1.2)is a way of computing the following equivalent matrix

vector products:

(1.6)

where and are positive definite, see e.g.Lorenc(1986) for this standard result. may be interpreted

the square matrix of the covariances of background errors in observation space while is the rectangu

trix of the covariances between the background errors in model space and the background errors in obs

space.

Most (if not all) implementations of OI rely on a statistical model for describing and (Hollingsworth

and Lönnberg, 1986;Lönnbergand Hollingsworth, 1986 andBartelloand Mitchell, 1992). 3D-Var uses the obser

vation operator explicitly and, as OI, if a statistical model is required it is only used for describing the stat

of the background errors in model space. Consequently, in 3D/4D-Var it turns out to be easier, from an algor

point of view, to make use of observations such as TOVS radiances, which have a quite complex depende

the basic analysis variables.

1.3 PRACTICAL IMPLEMENTATION

As mentioned earlier inSection 1.2, the formulation used is incremental (Courtier et al. 1994). In the ECMWF

implementaion two different resolutions are used—one for the comparison with observations, which is the s

the deterministic medium-range forecast model, and a lower resolution for the minimization. Several differe

steps are performed:

(i) Comparison of the observations with the background at high resolution to compute the innov

vectorsEq. (1.4). These are stored in the NCMIFC1-word of the ODB (the observation datab

for later use in the minimization. This job step also performsscreening(i.e. blacklisting, thinning

and quality control against the background) of observations (seeChapter 10 ‘Observation

screening’). The screening determines which observations will be passed for use in the

minimisation. Very large volumes of data are present during the screening run only, for the pu

of data monitoring,

(ii) First minimization at low resolution to produce preliminary low-resolution analysis increme

using simplified physics

(iii) Update of the high-resolution trajectory to take non-linear effects partly into account. Obse

departures from this new atmospheric state are stored in the ODB and the analysis problem

linearized around the updated model state,

(iv) Second main minimization at low resolution with tangent-linear physics,

(v) Formation of the high-resolution analysis (described below) and a comparison of the analysis

all observations (also those not used by the analysis, for diagnostic purposes).

H xb R Hδx
Hx Hxb–

δx
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(vi) Computation of analysis and background errors, currently at T42L60, as described inChapter 7

‘Background, analysis and forecast errors’

Each of the job steps is carried out by a different configuration of IFS. They are commonly called:

(i) The first trajectory run (which includes screening and is sometimes calledthe screening run) –

conf=2, LSCREEN=.T.

(ii) The main minimization, simplified physics, conf=131, LSPHLC=.T.,

(iii) The trajectory update, conf=1, LOBS=.T.,

(iv) The main minimization with physics, conf=131, LSPHLC=.F.,

(v) The final trajectory runs , conf=1, LOBS=.T., NUPTRA=NRESUPD, with verification screenin

(vi) The background error minimization, conf=131, LAVCGL=.T.

A truncation operator (the IFS full-pos post-processing package) allows one to go from high-resolution fie

low resolution, using appropriate grid-point interpolations. The steps(iii) and(iv) are referred to as the second it

eration of theouter loop,and these can optionally be iterated further to incorporate additional nonlinear eff

The trajectory update is not normally done in 3D-Var. Theinner looptakes place within the main minimization

job steps(iii) and (v).

1.3.1  Data flow

All files containing model fields are coded in GRIB (the GRIB format is described in GRIB.ps). The high-re

tion background (the input to the first trajectory run) is obtained from a standard MARS retrieve to files r

jshml (model-level spectral fields), reftrajggml (model-level grid-point fields, i.e. and clouds) and reftrajg

(surface grid-point fields).

The is truncated to the resolution of the minimization to form (the low-resolution background), w

is the input to the main minimization. The low resolution file names are backgroundshml, backgroundggs

backgroundggml, for upper-air spectral data, surface grid-point data, and upper-air grid-point data (i.e. clou

spectively. Specific humidity and ozone are represented in spectral space as they are spectral variable

variational analysis. The three files are linked to the namesICMRFxxxx0000, ICMSHxxxxINIT and ICMG-
GxxxxIMIN , ICMGGxxxxINIT, ICMGGxxxxINIUA (wherexxxx is the ‘expver’ identifier of MARS) and read

in by SUSPEC, SUGRIDF from SUECGES.

The main minimization job writes out the low-resolution background (the previous high-resolution traje

in the second minimization) to filesMXVA00000+000hhmm(where hhmm is the time of the field) and the low

resolution analysis to filesMXVA00999+00hhmm. This is done in a call toSTEPOnear the end ofSIM4D,

Section 2.3, by the routineWRMLPP. Both these files are are saved under names starting respectively withspfglr
andspanlr and later read by IFS in the trajectory runs (usingSUINIF, called fromRDFPINC) and transformed to

the higher resolution by filling with zeroes (operator ), and is transformed to gridpoint space. The traje

runs also read in (from thereftraj files) usingSUINIF called fromCSTA. The analysis increment is formed

in RDFPIN:

(1.7)

1.3.2  Formation of high-resolution analysis

The analysis field is the sum of the background and of the pseudo-inverse of the truncation operator applie

low-resolution analysis and background. This pseudo-inverse comprises filling in the spectral wave-number

er than the minimization resolution by zeroes ( , applied inEq. (1.7)). At this stage temperature is converted t

virtual temperature, as required by the model. (note that normal-mode initialization is no longer applied).
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1.3.3  Humidity and ozone

The humidity control variable used in the minimization is specific humidity in spectral space (LSPQ, NAMD

There is no constraint forcing the minimization to produce positive and non supersaturated values for this qu

However, before the computation of TOVS observation departures in the minimization stage, (low-resolution

point values are replaced by where is a differentiable function such that it results in positive humidity

ues (routineQNEGLIM, called fromTOVCLR). Super–saturated humidity gridpoint values can optionally, und

the switch LNEGHYP (=.false., namrinc), be modified to be below 1.2 (hard coded) in terms of relative hum

This would be done in the routineQNEGHYP, called fromSCAN2MDM.

The high resolution analysis of in gridpoint space, is modified (inSUGPQLIMDM, called byRDFPINC) by

resetting negative humidities to zero and supersaturated values to saturated values.

The ozone control variable used in the minimization is ozone in spectral space (LSPO3). The increment is c

ed to gridpoint space when computing the high resolution analysis. For the time being no special security is a

to the ozone increments.

1.4 PRECONDITIONING AND CONTROL VARIABLE

In practice, it is necessary to precondition the minimization problem in order to obtain a quick convergence.

Hessian (the second derivative) of the objective function is not accessible,Lorenc(1988) suggested the use of th

Hessian of the background term . The Hessian of is the matrix . Such a preconditioning may be i

mented either by a change of metric (i.e. a modified innner product) in the space of the control variable, o

change of control variable. As the minimization algorithms have generally to evaluate several inner products

found more efficient to implement a change of variable (underCHAVAR, CHAVARIN etc). Algebraically, this

requires the introduction of a variable  such that

(1.8)

ComparingEq. (1.2)andEq. (1.8)shows that satisfies the requirement. thus becomes thecontrol

variableof the preconditioned problem. This is indeed what has been implemented, as will be explained inSection

4.2. A single-observation analysis with such preconditioning converges in one iteration.

1.5 MINIMIZATION

The minimization problem involved in this 3D/4D-Var can be considered as large-scale, since the number

grees of freedom in the control variable is of the order of 106. An efficient descent algorithm was provided by th

Institut de Recherche en Informatique et Automatique (INRIA, France). It is a variable-storage quasi-Newt

gorithm (M1QN3, auxlib) described inGilbert and Lemaréchal(1989) and in an on-line postscript documen

M1QN3uses the available in-core memory to update an approximation of the Hessian of the cost function (

ray ZVATRA, seeCVA1). In practice, ten updates (NMUPD, namiomi) of this Hessian matrix are used. The

proximation is modified during the minimization by deleting information from the oldest gradient and inse

information from the most recent one. Once per iterationM1QN3calls thesimulator SIM4D (Section 2.3). Some-

times extra simulations have to be performed in order to obtain a good step length for the descent. The num

iterations is limited to 70 (NITER, namvar) and the number of simulations to 80 (NSIMU, namvar). Normally,

very small adjustments of the analysis occur during the second half of the minimization. On the whole, th

function is typically divided by a factor of two and the norm of the gradient by a factor of twenty (printed f

f q( ) f

q

Jb Jb B

χ

Jb χTχ=

χ B 1 2/– δx= χ
5
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sec-
EVCOSTandSIM4D, respectively).

The approximation of the Hessian computed during a 3D/4D-Var minimization (read in bySUHESS) is used as a

first estimate for a subsequent analysis, if the switch LWARM=.true. (namiomi). LWARM is only used in the

ond minimization of 4D-Var (seeSection 3.3).
6
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Part II: D ATA ASSIMILATION

CHAPTER 2   3D variational assimilation

Table of contents

2.1 Introduction

2.2 Top-level controls

2.2.1 Gradient test

2.2.2 Iterative solution

2.2.3 Last simulation

2.3 A simulation

2.3.1 Interface between control variable and model arrays

2.4 Interpolation to observation points

2.4.1 Method

2.4.2 Storage in GOM-arrays

2.5 Computation of the observation cost function

2.5.1 Organization in observation sets

2.5.2 Cost function

2.5.3 tables

2.5.4 Correlation of observation error

2.6 Variational quality control

2.6.1 Description of the method

2.6.2 Implementation

2.6.3 Correlated data

2.1 INTRODUCTION

This part of the documentation covers the top level controls of 3D-Var (CVA1) and gives a detailed description o

a 3D-Var simulation (SIM4D) All of this chapter also applies to 4D-Var with some additions which will be detail

in Chapter 3 ‘4D variational assimilation’. The interpolation of model fields to observation points (OBSHOR) and

the organization of the data in memory (yomsp, yommvo) are also descibed. We explain the structure of th

putation of the observation cost function (FJO and FJOS in yomcosjo1) and its gradient, managed by the r

OBSV andTASKOB. The background term will be explained inChapter 4 ‘Background term’ .
7

(Edited  19  September  2003)



Part II: ‘Data assimilation’

g-

e

d

utine

nction

w

terval

well

n state

d by

string
2.2 TOP-LEVEL CONTROLS

The routineCVA1 controls the variational configuration of IFS—its flow diagram is shown inFig. 2.1 . The first

guess fields (FG) have been read in to the SP7-arrays (inYOMSP) by SUECGES, called fromSUJBSTDwithin

the setup, seeSubsection 4.3.3. The FG is optionally initialized to be consistent with the lower resolution oro

raphy. This is done in a call toCNMI from SUECGES, controlled by the switch LFGNMI (=false if L50 or L60,

in namjg), see alsoChapter 8 ‘Gravity-wave control’ .

At the start ofCVA1 additional setups for the variational configurations are done (SU1YOM). The SP3-arrays, i.e.

the current model state, (inYOMSP) are filled by copying from SP7, usingSP7TO3. A call to CNT2 computes

, which is required for the finite-difference version ofEq. (1.4)of the incremental 3D-Var. This call toCNT2

is charaterized by LOBSREF=.true. (inYOMCT0). The result, stored in the NCMIFC2-word of the ODB, is th

low-resolution departurefrom the FG, , and will be used in later iterations,Eq. (2.5). If, however, the

tangent linear observation operators are used,Eq. (2.6), is not needed. It can optionally be compute

and stored, if LCALCFC2=.true. (in yomrinc).

2.2.1  Gradient test

If LTEST=.true. a gradient test will be performed both before and after minimization. This is done by the ro

GRTEST. In the gradient test a test value is computed as the ratio between a perturbation of the co-t-fu

and its first order Taylor expansion:

(2.1)

with . Repeatedly increasing by one order of magnitude, printing at each step should sho

approaching one, by one order of magnitude at a time, provided is approximately quadratic over the in

. The near linear increase in the number of 9’s in the print of over a wide range of (initially as

as after minimization) proves that the coded adjoint is the proper adjoint for the linearization around the give

.

The behaviour of the cost function in the vicinity of in the direction of the gradient is also diagnose

several additional quantities for each . The results are printed out on lines in the log-file starting with the

‘GRTEST:’. To test the continuity of , for example, a test value  is computed:

(2.2)

and printed. For explanation of other printed quantities see the routineGRTEST itself.

Jb

HxLR
b

yo H– xLR
b

yo H– xLR
b

t1

t1
J χ δχ+( ) J χ( )–

J∇ χδ,〈 〉
--------------------------------------------

δχ 0→
lim=

δχ α– J∇= α t1 t1

J χ( )
χ χ δχ+[ , ] t1 α

χ

χ ∇J
α
J t0

t0
J χ δχ+( )
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Figure  2.1   Flow diagram for subroutinecva1.

2.2.2  Iterative solution

When the cost function is exactly quadratic, as is the case in the background error estimation, conjugate g

minimization (CONGRAD) can be used. This is controlled by the switch LAVCGL (namvar), and requires the

of tangent linear observation operators (LOBSTL=.true., namvrtl), tangent linear model (L131TL=.true., nam

no VarQC (LVARQCG=.false., namjo) and de-aliased SCAT data (LQSCATT=.true., namjo).

In normal 3D/4D-Var, the cost function is allowed to be (weakly) nonlinear. The minimization algorithm use

M1QN3, seeSection 1.5. The minimization software keeps calling the simulator (SIM4D) repeatedly until conver-

cval sulyom setups

getmini warm restart of incremental minimizations

<lobs> suobs setup observation arrays (see obs doc)

<nuptra=0> sp7to3 load initial point of minimization

<else> cain load initial increment in control var

chavarin space & go to model space

lobsref=.true.

sucos preset cost-function

cnt2 compute & store linearization trajectory (see model doc)

switch physics off

sim4d compute initial cost-function and gradient

scaas print initial gradient norm

<ltest> grtest(sim4d) test of the gradient at initial point

<lavcgl> congrad(sim4d) conjugate-gradient minimization

for cycling (see cycling doc)

<else> suhess fetch Hessian estimate for warm restart

m1qn3(sim4d) quasi-Newton main minimization

sim4d compute final cost-function and gradient

scaas print final gradient norm and ratio

<ltest> grtest(sim4d) test of the gradient at final point

savmini save final Hessian estimate for next minim

writeoba write observation files with feedback info

<lwrsiga> estsiga,writesd estimate & write sigma-a

<lwrsigf> estsig,writesd estimate &write sigma-f
9
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gence has been reached, or until the maximum number of iterations or simulations has been reached. The

gence criterion is given as a reduction in the norm of the gradient by a factor , in namvar. The o

mode ofM1QN3 is printed in the log-file. The interpretation is:

1) Convergence reached, according to the above criterion.

2) M1QN3 called incorrectly.

3) Line search failed—step too big, > .

4) Maximum number of iterations (NITER) reached

5) Maximum number of simulations (NSIMU) reached

6) Line search failed—step too small, < RDX, (in namvar).

7) Impossible gradient value, ‘descent’ direction points uphill.

2.2.3  Last simulation

After M1QN3 has returned control toCVA1, one final simulation is performed. This simulation is diagnostic, a

characterized by the simulation counter being set to 999, NSIM4D=NSIM4DL, yomvar. The observation dep

from the low-resolution analysis, , is computed and stored in the NCMIOMN-word of the ODB. Fin

at the end ofCVA1, the updated ODB is written to disk, using the routineWRITEOBA.

2.3 A SIMULATION

A simulation consists of the computation of and . This is the task of the routineSIM4D, seeFig. 2.2 for the

flow diagram. The input is the latest value of the control variable in the array VAZX, computed byM1QN3, or

CONGRAD. First  and its gradient are computed (seeSections 1.4 and4.2):

(2.3)

The gradient of  with respect to the control variable is stored in the array VAZG (YOMCVA).

• Copy  from VAZX to SP3-arrays (YOMSP) using the routineYOMCAIN

• Compute , the physical model variables, usingCHAVARIN:

. (2.4)

• Perform the direct integration of the model (if 4D-Var), using the routineCNT3, and compare with

observations. SeeSection 2.5.

Calculate  for whichOBSV is the master routine.

• Perform the adjoint model integration (if 4D-Var) usingCNT3AD, and observation operators

adjoint.

Calculate , and store it in SP3.

• and its gradient are calculated inCOSJCcalled fromCNT3AD, if LJC is switched on (default)

in namvar.

• Transform  to control variable space by applyingCHAVARINAD .

• Copy  from SP3 and add to , already in the array VAZG, usingYOMCAIN

• Add the various contributions to the cost function together, inEVCOST, and print to log file using

prtjo.

• Increase the simulation counter NSIM4D by one.

10 NCVGE–

1 20×10

yo H– xLR
a

J J∇
χ

Jb

Jb χTχ=

Jb 2χ=χ∇

Jb

χ
x

x δx xb+ Lχ xb+= =
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Jox∇
Jc

Jox∇ Jcx∇+
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The new and are passed to the minimization algorithm to calculate the of the next iteration, and

until convergence (or the maximum number of iterations) has been reached.

Figure  2.2   Flow diagram for the subroutinesim4d.

2.3.1  Interface between control variable and model arrays

The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model state that s

be included in the variational control variable. This is controlled by on/off switches such as NVA2D and NV

(yomcva) initialized inSUALCTV. The scalar product used is the one defined by the array SCALP (in yomcva

up in the routineSCALJGScalled fromSUSCAL), which is 1 if , and 2 otherwise. This allows the com

pression of arrays of the type VAZX while using the  norm on the sphere with real fields in spectral spa

CAIN is also the interface between the memory distributed spectral arrays and the non-distributed control va

J Jχ∇ χ

sim4d monvar setup an/gradients write-outs

su2yom

sucos suic,sucosjb,sujo preset cost-functions

pvazg=2*pvazx compute  gradient & cost-function

fjbcost= . . . (simple inner product in cont.var space)

suallt prepare model arrays

cain transfer cont.var pvazx into model arrays spa3/2

chavarin convert spa3/2 from cont.var space to model space

<l131tl> subfgs convert fields in to increments for TL model

cnt3tl run TL model with  computation

<else> cnt3 run model with  computation

cnt3ad run forced adjoint model

chavarinad convert gradient from model to cont.var space

cainad transfer gradient into pvazg array

evcost gathercost I/O gather cost-function from all PEs

calculate and print

<nsim4d=0 or 999> prtio print  breakdown

readoba , obatabs , prtdpst

scaas print cost-functions

<igrats> cain, stepo with ltwegra : write gradient on disk

<ianats> cain, stepo with ltwana : write analysis on disk

nsim4d++ increase simulator counter

Jb

Jo

Jo

Jc Jb Jo, ,

Jo

m 0=

L2
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The distributed spectral arrays SP3/2 are gathered with the routineGATHERSPAto form the control vector on

each processor.

2.4 INTERPOLATION TO OBSERVATION POINTS

2.4.1  Method

COBSLAGis the master routine for the horizontal interpolation of model data to observation points. It is c

after the inverse spectral transform inSCAN2MDM, and after the so-calledsemi-Lagrangian buffershave been

prepared byCOBSandSLCOMM, see the flow diagram inFig. 2.3. The interpolation code is shared with the sem

Lagrangian advection scheme of the dynamics. The buffers contain ahalo of gridpoints big enough to enable in-

terpolation to all observations within the grid-point domain belonging to the processor.COBSLAGcallsOBSHOR

which:

• Performs the interpolation, usingSLINT

• Message-passes the result to the processors where the corresponding observations belong, u

routineMPOBSEQ.

• Copies the model data at observation points to the so-called GOM-arrays (yommvo, des

below), in the routineINSOBSEQ.

There are three methods of horizontal interpolation:

1) LAIDDI : 12-point bi-cubic interpolation, used for all upper-air fields (if NOBSHOR=203) exc

clouds,

2) LAIDLI : Bi-linear interpolation, used for surface fields, and

3) LAIDLIC : Nearest gridpoint, used for cloud parameters.

The interpolation method for the upper-air fields can be switched to bi-linear by specifying NOBSHOR=2

namobs. The default is NOBSHOR=203 (bi-cubic). Lists of interpolation points and weights are prepared

routineLASCAW. In 4D-Var bi-cubic interpolation is used at high resolution (i.e. in the trajectory runs), and

linear is used at low resolution (i.e. in the main minimization). The interpolation is invoked once per 4D-Var

slot.

The adjoint (OBSHORAD) follows the same general pattern but gets further complicated by the fact that the

dient from several observations may contribute to the gradient at a given gridpoint. The summation of grad

to done in the same order, irrespective of the number of processors, as reproducibility is desired.
12
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Figure  2.3   Flow diagram for subroutinesscan2mdm andobsv.

stepo (. . . .) scan2m buffer initializations

cobs setup field pointers

sc2rdg read grid-point data

load grid-point arrays

extmerb grid

extpolb extrapolation

cobslag scan observation arrays

obshor fetch observation lat/lon

slint horiz interpolation

to obs point

(see semilag doc)

mpobseq exchange data

among PEs

insobsec load YOMMVO

arrays GOMx

obsv reset ZFJO cost function

suobarea setup area index for each obs

(mainly according to satellite ID)

ecset define obs sets

sort TOVS/SATEM data

taskob decide whether to call TL/AD obs operators

preset ZFJO cost function

sufaceo (TL/AD) surface obs vertical operator

upperair (TL/AD) upper-air obs vertical operator

satem (TL/AD) SATEM / SSM/I obs vertical operator

tovclr (TL/AD) TOVS radiance obs vertical operator

sum  cost-function for each area (diagnostic only)

sum ZFJO into FJO cost-function

<lprtgom> prtgom debugging printout of yommvo common

Jo
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2.4.2  Storage in GOM-arrays

The GOM arrays (YOMMVO) contain the model values at observation points. The list of upper-air model varia

to appear in the GOM-arrays is under user control. There are five categories of GOM-arrays:

• GOMx for conventional data, containing full model profiles of optionally , , , , (ozon

 (cloud liquid water),  (clod ice) and  (cloud cover)

• GOSx for conventional data, containing surface data of (surface pressure),

temperature). (soil water content), (snow cover), (roughness length) and (

reservoir water content).

• GSMx for TOVS data, containing full model profiles similar to GOMx

• GSSx for TOVS data, containing surface data of , , , , , , and , where

and  are lowest model level wind components.

• GSCx for SCAT data, containing lowest model level data of , , , and , and surface

of and .  (roughness length) is to be added shortly.

The reason for this split is purely to save space in memory. Model profiles of wind for example are not nee

inputs to the TOVS and SATEM operators, so those fields are not interpolated to the TOVS locations, and

stored, unless requested. Upper-air profiles of model data at SCAT locations are also not computed. The s

of model variables to interpolate to GOMx and GSMX arrays, respectively, is flexible and is controlled thr

namelist switches LGOMx and LGSMx (in namdim). The default is that only LGOM-U/V/T/Q and LGSM-T

O3 are ON, with the addition of LGSMCLW/CLI/CC in screening run to enable computation of cloudy radian

The adressing of the GOM-arrays is done by referring to the MAPOMM (YOMOBA) and MABNOB (YOMOB-

SET) tables, e.g. ZPS(jobs) = GOSP(MAPOMM(iabnob)), where iabnob = MABNOB(jobs,kset) is an observ

counter local to each processor.

The trajectory GOM5 arrays (identical to GOM) are allocated in the case that tangent linear observation op

are used. They are to hold the trajectory interpolated to the observation locations, and the GOM-arrays, in th

hold the perturbations.

At the end of the adjoint observation operators the GOM-arrays are zeroed and overwritten by the gradient (iPRE-

INTAD).

The r.m.s. of the GOM arrays is printed (byPRTGOM) if the switch LPRTGOM=.true., (inYOMOBS). The de-

fault is that the print is switched on. It can be located in the log file by searching for ‘RMS OF GOM’. The prin

is done fromOBSV, 1) when the GOM arrays contain the background interpolated to the observation poin

when it contains of the first simulation, 3) when it contains first TL perturpations after the initial call to

minimizer and 4) when it contains  at the final simulation.

2.5 COMPUTATION OF THE OBSERVATION COST FUNCTION

The cost function computation follows the same pattern for all observational data. This common structure

scribed in the following section. It is assumed that all observations are independent of each other, which me

the cost function contribution from each observation station can be computed independently of others. The

observation operators for all data types and variables is detailed inChapter 5 ‘Conventional observational con

straints’  andChapter 6 ‘Satellite observational constraints’ .

2.5.1  Organization in observation sets

The vertical observation operators are vectorized over NMXLEN (yomdimo) data. To achieve this the dat

have to be sorted by type and subdivided into sets of lengths not exceeding that number. NMXLEN is curren

u v T q O3

CLW CLI CC
psurf Tskin

ws sn z0 wl

ps Ts ws sn z0 wl ul vl ul

vl

ul vl Tl ql

ps Ts z0

J∇ o

J∇ o
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to 511, inSUDIMO. The observation sets may span several 4D-Var time slots, as the input to the observatio

erators is the GOM-arrays which have been pre-prepared for all time slots during the tangent linear model i

tion. The organization of the sets is done inECSETandSMTOV and the information about the sets is kept i

yomobset. The only reason to have a separate routine for TOVS data (SMTOV) is that the TOVS sets must not

contain data from more than one satellite. This is controlled by sorting according to the area-parameter, wh

TOVS data is an indicator of satellite ID, prior to forming the sets. The area-parameter is determined inSUOBA-

REA, and is irrelevant for the observation processing for all data other than TOVS.

2.5.2  Cost function

The master routine controlling the calls to the individual observation operators is called HOP. This routine

with all different types of observations.

The HOP/HOPTL/HOPAD routines are called fromTASKOB/TASKOBTL/TASKOBAD (called fromOBSV/

OBSVTL/OBSVAD) in a loop over observation sets. The data type of each set is know from the informatio

tables such as MTYPOB(KSET) stored in yomobset.

The following describesHOP/HOPTL. The adjointHOPAD follows the reverse order.

• First prepare for vertical interpolation using the routinePREINT. Data on model levels are

extracted from the GOM-arrays (YOMMVO). Pressures of model levels are computed usi

GPPRE. Help arrays for the vertical interpolation are obtained (PPINIT) and * and are

computed (CTSTAR). * and are later used for extrapolation of temperature below t

model’s orography,Subsection 5.3.2. The routine PREINTS deals with model surface fields need

for the near-surface observation operators and PREINTR deals with those fields that are spe

the radiance observation operators.

• The observation array is then searched to see what data is there. The ‘body’ of each obse

report is scanned for data, and the vertical coordinate and the variable-number for each da

retained in tables (ZVERTP and IVNMRQ). These tables will later constitute the ‘request’

model equivalents to be computed by the various observation operators. Tables of pointers t

(‘body’ start addresses) and counters are stored (arrays IPOS and ICMBDY).

• Then the forward calculations are performed. There is an outer loop over all known ‘vari

numbers’. If there are any matching ocurrences of the loop-variable number with the conte

IVNMRQ, then the relevant observation operator will be called. A variable-number and

observation operator are linked by a table set up in the routine HVNMTLT. The interface rou

PPOBSA (upperair) andPPOBSAS(surface) are used, which in turn callPPFLEV and the

individual operator routines. For radiance data the interface isRADTR which calls the radiative

transfer code (Subsection 6.4.1).

• In HDEPART, calculate the departure  as

, (2.5)

where the two terms in brackets have been computed previously: the first one in the high reso

trajectory run (Section 1.3) and the second one in the LOBSREF call, described inSection 2.2.

If LOBSTL then  is

, (2.6)

which simplifies to what has been presented inSection 1.2.

T T0

T T0

z

z yo Hx– yo HxHR
b–( ) yo HxLR

b–( )–+=

z

z yo Hδx– yo HxHR
b–( ) yo–+=
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The TOVS radiance bias correction is also carried out at this point by subtracting the bias es

(kept in the NCMTORB-word of ODB) from the calculated departure.

Finally the departure is divided by the observation error (NCMFOE in ODB) to form

normalized departure.

• Departures of correlated data are multiplied by , see2.5.4. The division by has already

taken place inHDEPART, so  at this point is in fact a correlation (not a covariance) matrix.

• The cost function is computed inHJO, as

(2.7)

for all data except SCAT data. The SCAT cost function combines the two ambiguous w

(subscripts 1 and 2) in the following way (also inHJO)

(2.8)

These expressions for the cost function are modified by variational quality control, seeSection 2.6.

The cost-function values are store in two tables, as detailed in2.5.3.

• HJOalso stores the resultingeffective departurein the NCMIOM0-word of ODB, for reuse as the

input to the adjoint. The effective departure is the normalized departure after the effec

observation error correlation and quality control have been taken into acco

, where the QC-weight will be defined below,Section 2.6.

2.5.2 (a)  Adjoint. We have now reached the end of the forward operators. In the adjoint routineHOPADsome

of the tasks listed above have to be repeated before the actual adjoint calculations can begin. The input to the

(the effective departure) is read from the ODB. The expression for the gradient (with respect to the observe

tity) is then simply

(2.9)

which is calculated inHOPADfor all data. The gradient of is much more complicated and is calculate

a separate section ofHOPAD. The adjoint code closely follows the structure of the direct code, with the adjo

operators applied in the reverse order.

2.5.3 tables

There are two different tables for storing the values. One is purely diagnostic (FJO, yomcosjo1), and i

for producing the printed tables in the log-file (PRTJOcalled romEVCOST). The other (FJOS) is the actua

-table. FJO is indexed by observation type, sub-obstype, variable and area. FJOS is indexed by the abso

servation number, iabnob=MABNOB(jobs,kset), so that the contributions from each individual observation c

summed up in a predetermined order (inEVCOST), to ensure reproducibility.

2.5.4  Correlation of observation error

The observation error is assumed uncorrelated (i.e. the matrix is diagonal) for all data except time-seque

SYNOP/DRIBU surface pressure and height data (used by default in 4D-Var,Järvinen et al.1999). There is also

code for vertical correlation of observation error for radiosonde geopotential data (not used by default) and S

thicknesses (not used by default). IN FACT, all vertcal correlations of observation error have been removed i

σo

R 1– σo

R

Jo zTz=

JSCAT

J1
4J2

4

J1
4 J2

4+
-------------------

1 4⁄
=

zeff zTR 1– QCweight[ ]=
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but will be reintroduced again in a later cycle!

The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation function

where =RTCPART=0.3 and =RTCEFT=6.0 hours, under the switch LTC (namjo). The remaining fra

 of the error variance is assumed uncorrelated (seeCOMTC).

The radiosonde geopotential data are vertically correlated (under the switch LRSVCZ) using a continuous

lation function where =RRSZPART=0.8, a tuning constant close to 1 and and are tr

formation values, based on a sixth degree polynomial in of the two pressures involved. The remaining fr

 of the variance is assumed uncorrelated (seeCOMATP).

The vertical correlation of SATEM thickness data is as described inKelly and Pailleux(1988) and is assigned in

SURAD(and kept inYOMTVRAD). There is no horizontal correlation of SATEM and TOVS observation erro

The inter-channel correlation of radiance observation error is also assumed to be zero.

When is non-diagonal, the ‘effective departure’ is calculated by solving the linear system of equa

for , using NAG routines F07FDF (Choleski decomposition) and F07FEF (backwards subs

tion), as is done in UPPERAIR,SATEM, COMTC andJOPDF. The NAG routines will shortly be replaced by the

corresponding LAPACK routines SPOTRF and SPOTRS.

2.6 VARIATIONAL QUALITY CONTROL

The variational quality control, VarQC, has been described byAndersson and Järvinen(1999). It is a quality con-

trol mechanism which is incorporated within the variational analysis itself. A modification of the observation

function to take into account the non-Gaussian nature of gross errors, has the effect of reducing the analysis

given to data with large departures from the current iterand (or preliminary analysis). Data are not irrevoca

jected, but can regain influence on the analysis during later iterations if supported by surrounding data. VarQ

type of buddy check, in that it rejects those data that have not been fitted by the preliminary analysis, often b

it conflicts with surrounding data.

2.6.1  Description of the method

The method is based on Bayesian formalism. First, ana priori estimate of the probability of gross error is

assigned to each datum, based on study of historical data. Then, at each iteration of the variational schema

posterioriestimate of the probability of gross error is calculated (Inglebyand Lorenc, 1993), given the cur-

rent value of the iterand (the preliminary analysis). VarQC modifies the gradient (of the observation cost fu

with respect to the observed quantity) by the factor (the QC-weight),which means that data whic

almost certainly wrong ( ) are given near-zero weight in the analysis. Data with a are

sidered ‘rejected’ and are flagged accordingly, for the purpose of diagnostics and feedback statistics, etc.

The normal definition of a cost function is

(2.10)

where is the probability density function. Instead of the normal assumption of Gaussian statistics, we a

that the error distribution can be modelled as a sum of two parts: one Gaussian, representing correct data

flat distribution, representing data with gross errors. We write:

(2.11)

ae b t1 t2–( )2–

a b
1 a–

ae b x1 x2–( )2– a b x1 x2

pln

1 a–

R zeff

zeffR z= zeff

P G( )i

P G( )f

1 P G( )f–

P G( )f 1≈ P G( )f 0.75>

Jo pln–=

p

pi Ni 1 P Gi( )–[ ] FiP Gi( )+=
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where subscript refers to observation numer . and are the Gaussian and the flat distributions, respe

(2.12)

(2.13)

The flat distribution is defined over an interval which inEq. (2.13)has been written as a multiple of the obse

vation error standard deviation . SubstitutingEqs. (2.11)to (2.13)into Eq. (2.10), we obtain after rearranging

the terms, an expression for the QC-modified cost function and its gradient , in terms of the n

cost function

: (2.14)

(2.15)

(2.16)

where

(2.17)

2.6.2  Implementation

Thea priori information i.e. and are set during the screening, in the routineDEPART, and stored in the

NCMFGC1 and NCMFGC2-words of the ODB. Default values are set inDEFRUN, and can be modified by the

namelist namjo. VarQC can be switched on/off for each observation type and variable individually using LVAR

or it can be switched off all together by setting the global switch LVARQCG=.false. Since an as good as po

‘preliminary analysis’ is needed before VarQC starts, it is necessary to perform part of the minimization w

VarQC, and then switch it on. This is controlled by NITERQC in yomcosjo, and is set to 40 by default. Printi

VarQC results is done by the routinePRTQC.

JOCOST computes  according toEq. (2.15) and the QC-weight—the factor within brackets inEq. (2.16).

2.6.3  Correlated data

The quality control of radiosonde height data (if used) is more complex because of the correlation of obse

error (seeJOPDF). This is one of the reason why we changed to using temperature data instead, from cy18r6

QC for correlated data is no longer supported.
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Part II: D ATA ASSIMILATION

CHAPTER 3   4D variational assimilation

Table of contents

3.1. Introduction

3.2. Organization of data in time slots

3.2.1 Observation preprocessing.

3.2.2 Inside IFS.

3.2.3 Observation screening in 4D-Var

3.3. Inner and outer loops: practical implementation

3.4. Tangent linear physics

3.4.1 Set-up

3.4.2 Mixed-phase thermodynamics

3.4.3 Vertical diffusion

3.4.4 Sub-grid scale orographic effects

3.4.5 Large-scale precipitation

3.4.6 Long-wave radiation

3.4.7 Deep moist convection

3.4.8 Trajectory management

3.1 INTRODUCTION

4D-Var is a temporal extension of 3D-Var. Observations are organized in one-hour time-slots as describedSec-

tion 3.2. The cost-function now measures the distance between a model trajectory and the available infor

(background, observations) over an assimilation interval or window. For a 12-hour window (as currently us

is either (03UTC–15UTC) or (15UTC–03UTC).Eq. (1.2)(seeChapter 1 ‘Incremental formulation of 3D/4D var-

iational assimilation—an overview’ is replaced by

(3.1)

with subscripti the time index. Eachi corresponds to one-hour time slot. is as before the increment at

resolution at initial time, and the increment evolved according to the tangent linear model from the i

time to time indexi. and are the covariance matrices of observation errors at time indexi and of background

errors respectively. is a suitable linear approximation at time indexi of the observation operator . The inno

vation vector is given at each time step by , where is the background propagat

J δx( ) 1
2
---δxTB 1– δx

1
2
--- Hiδx ti( ) di–( )T

i 0=

n

∑ Ri
1– Hiδx ti( ) di–( )+=

δx
δx ti( )

Ri B
Hi Hi

di yi
o Hixb ti( )–= xb ti( )
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time using the full nonlinear model and is the observation vector at time indexi. As SYNOP and DRIBU time

sequences of surface pressure and height data are now usedwith serial correlation of observation error, the obse

vation costfunction computation for those data spans all time slots.Eq. (3.1)therefore needs generalising, as ha

been done in the paper byJärvinen et al. (1999).

The minimization is performed in the same way as in 3D-Var. However, it works fully in terms of incremen

configuration which is activated by the switches L131Tl and LOBSTL, and involves running the tangent-linea

adjoint models iteratively as explained inSection 2.3of Chapter 2 ‘3D variational assimilation’, and using the tan-

gent-linear observation operators.

A way to account in the final 4D-Var analysis for some non-linearities is to define a series of minimization prob

(3.2)

with superscriptn the minimization index.

is the current estimate of the atmospheric flow. It is equal to the background for the first minimiza

is the innovation vector, computed by integrating the model at high resolution from

current estimate. The way the increment is added to the current estimate is similar to that used in 3D-Var (seChap-

ter 1 ‘Incremental formulation of 3D/4D variational assimilation—an overview’ .

(3.3)

The number of times the trajectory is updated, i.e. the number of outer-loops (which corresponds to the num

minimizations performed), is typically a number between one and four. In operational 4D-Var the number of

loops is two.

This can be controlled in the prepIFS set-up, together with the number of inner-loops (iterations of m1qn3)

each minimization. One outer-loop corresponds to what is normally done in 3D-Var. The number of inner-

should then be 70 as in 3D-Var. The most standard 4D-Var uses two outer-loops. The first minimization run

the simplified physics on 50 inner-loops. The second minimization runs with the more complete linear phys

25 inner-loops. Switches for the two sets of physics will be given inSection 3.4.

The variational quality-control (Chapter 2 ‘3D variational assimilation’ Section 2.6) is switched on at the default

iteration number (40) in the first minimization. It is activated from the first iteration in the subsequent minim

tions.

The final 4D-Var trajectory is post-processed every 3 hours. Fields called 4v are created with initial date an

the start of the window (03UTC or 15UTC) and steps every 3 hours. The 4v field valid at 12UTC or 00UTC, is

renamed as the final analysis (type=an) for the atmospheric fields and the waves. The cycling from one cycl

next is performed by taking these analysis fields, together with the surface fields updated by the SST, snow

moisture analyses as input to a 12-hour forecast which produces the background for the next cycle.

The analysis and forecast error calculations are performed as explained inChapter 7 ‘Background, analysis and

forecast errors’, with the inclusion of the time dimension in the minimization. The analysis error variances

available at the beginning of each window, and the forecast error variances at the end.

yi
o

J δxn( ) 1
2
--- δxn xn 1– xb–+( )TB 1– δxn xn 1– xb–+( )=

1
2
--- Hiδxn ti( ) di

n 1––( )T

i 0=

n

∑ Ri
1– Hiδxn ti( ) di

n 1––( )+

xn 1–

di
n 1– yi

o Hixn 1– ti( )–=

xHR
n xHR

n 1– NNMI xHR
n 1– δxHR

n+( ) NNMI xHR
n 1–( )–+=
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3.2 ORGANIZATION OF DATA IN TIME SLOTS

3.2.1  Observation preprocessing.

Observational input data (BUFR-format) is read in by means of 6-hour time-windows in OBSPR

preproc_mpp_makecma. Before input, each time-window has been organised into several BUFR-files base

major observation types. Input BUFR-files are labelled and split so that every processor can read one o

BUFR-files. The prefix of each file indicates the observation type. The suffix “<tw>.<proc>” defines which p

essor <proc> (here within a range [1..16]) will be responsible for inputting data for time-window <tw> (here w

a range [01..02]). The number of files is not necessarily equal to the number of processors, it is really a ma

I/O-load balancing, and the end result is independent of the reading order.

In the case of 4D-Var there are NO6HTSL input time-windows. For 6 h, 12 h and 24 h 4D-Var analysis pe

the NO6HTSL will have values 1, 2 and 4, respectively. This can be set via the namelist namelist/namglp.h (see

also yomglp).

Another affecting parameter (see discussion about reshuffle below) is NOSORTSL (set via OBSPROC na

nammkcma.h and declared in yommkcma). It defines how many time-slots will be used. The rule is to divide

input time-window into 1h out time-slots, but with half an hour lengths for start and end time-slots. Therefor

value of NOSORTSL should be set to 7, 13 or 25 for 6 h, 12 h and 24 h 4D-Var analysis periods (i.e. one plus

of a 4D-Var period in hours), respectively.

Once all BUFR-data has been successfully read in, the unique sequence numbers for reports (before eve

them around!) are generated in OBSORT-routinemakeseqno_obsortcalled bypreproc_mpp_makecma. These

numbers are always independent of the number of processors in use. They form a basis for reproducibility o

ysis results regardless of how many processors were used.

The sequence numbers are generated without honouring the input time-windows. Currently for CONV-da

quence numbers start at offset 0, TOVS at offset 1,000,000, SCAT at 2,000,000 and SSMI 3,000,000. Th

increment is set to 1,000,000 meaning that we may not exceed more than one million reports per major obse

type (CONV, TOVS, etc.) without making a small change into the local variable increment in rou

preproc_mpp_makecma.

After the sequence-number generation, all BUFR data is read in and re-shuffled for better load balancing in

creation under the OBSPROC-routine MAKECMAmakecma. Before that, the number of input time-windows

NO6HTSL has already been reset to one inpreproc_mpp_makecma, and all 4D-Var BUFR input data is regarded

as a one ‘supertime-window’ for initial report creation. However, via NAMELIST parameters NANTIM, NA

DAT, NTBMAR and NTFMAR defined in NAMGLP (namelist/namglp.h and yomglp), full control over valid 4D

Var analysis timerange is maintained. Therefore, observations not in this range will be discarded by the MA

MA.

An essential step to organise observational data for 4D-Var purposes occurs in the OBSPROC r

postproc_mpp_makecma. The aim is to reshuffle and time-slot the initially created CMA files of which there a

currently one CMA file per processor. The CMA data needs not only to be organised in time-slots, but the

need to obtain a better geographical distribution within a given time-slot to have a better load balancing in th

sequent IFS/Screening job.

Before the reshuffle of observations can take place, some crucial information about 4D-Var run characte

needs to be passed on. Parameters NANTIM, NANDAT, NOSORTSL, NTBMAR and NTFMAR are transfor

into the suitable constants for use by the OBSORT by use of SETPARAM_OBSORT in rou

postproc_mpp_makecma. The following conversion takes place (OBSORT parameters in concern are declar
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• NANTIM and NANDAT are used to calculate an absolute start time and date of an analysis pe

The resulting OBSORT parameters are called TIME_INIT_YYYYMMDD an

TIME_INIT_HHMMSS.

• NOSORTSL, NTBMAR and NTFMAR are used to get parameters NUM_TIME_SLOTS a

TIME_DELTA_4DVAR in-line.

• OBSORT parameter vectors TIME_SLOT_YYYYMMDD and TIME_SLOT_HHMMSS t

indicate start date and time of a particular time-slot will be implicitly generated upon start-up o

reshuffle in OBSORTgen_timeslot_datacalled bylib_obsort. This routine makes sure that the firs

and the last time-slot periods will have duration of half an hour (as discussed earlier).

The actual reshuffle is handled via OBSORT routinelib_obsort(in particularmapsort). The initial CMA-data is

read back in and an internal global table (seen by every processor) is established. This table contains sna

formation about each CMA-report. There can be found things like which processor owns/should own the

before/after the re-shuffle, which 4D-Var time-slot observation belongs to, plus information to perform robus

reshuffle itself.

The reshuffle of the CMA data is done per each time-slot. Currently all data is written into one CMA file per

essor. Each time-slot is stacked after each other so that a particular time-slot could in principle be acce

knowing its start address and data length. This offset information is available both in file obs_boxes (genera

OBSORTifs_write) and CMA file’s DDR (Data Description Records). The former one may become obsolet

users should rely only to the information found in DDR number one (see also IFSyomcmddr, DDR#1 words 101–

607).

When time-slot information has been once placed into the DDR#1, it will be propagated automatically into th

sequent CMA files (ECMA and CCMA) in a run cycle, and no regeneration is needed.

Finally, upon the CMA-data reshuffle also the BUFR data is re-shuffled to retain a one-to-one relationship w

sibling CMA reports. This is important, since the OBSPROC FEEDBACK (bufdback) relies on the order of these

‘pseudo-original’ BUFR-files to update observational data for archieving purposes. Actually, by aid of the

SORT, we even manage to get this updated ‘pseudo-original’ BUFR-data back to its original input time-wi

frames (split by the major type CONV, TOVS, etc.), albeit that the original observation order cannot (and ne

to) be preserved.

The CMA format is converted to an ODB database suitable for input to the IFS. This conversion is perform

utility ecma2odb. It will be converted back to CMA for BUFR feedback generation, but the ODB with feedb

information is archived as such.

3.2.2  Inside IFS.

The timeslot information is read into IFS inRD_OBS_BOXEScalled fromOBADAT. It is possible to run 3D-Var

with an ODB prepared with timeslots, the timeslotting information is taken into account only if NSTOP > 1

information that is extracted for each timeslot (only for your own processor) is,

• number of observations (NTSLTOB)

• length of observations (NTSLLEN)

• number of SCAT observations(NTSLSCA)

• number of TOVS observations(NTSLTOV)

• number of non-SCAT and non-TOVS observations(NTSLNTV)

The following global information regarding timeslots is extracted

• number of observations for each processor and time-slot (NTSLTOBP)
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• global number of observations for each time-slot (NTSLTOBG)

• max (over processors) number of observations for each time-slot (NTSLTOBM)

The arrays to contain observation equivalents (the GOM-arrays) are allocated to be able to contain all tim

These arrays are then gradually filled during the forward integration. The reasons for allocating these arrays

tain all time-slots are:

1) that the trajectory is only run once

2) that they are used in screening. The tables needed to message pass the observation equivale

the processor that ‘owns’ the part of the globe in grid-point space corresponding to the obser

and the processor that ‘owns’ the observation is done inMKGLOBSTAB

3.2.3  Observation screening in 4D-Var

The trajectory integration can be performed in the observation screening mode. The part of the IFS code d

to the observation screening is activated via namelist variable LSCREEN inNAMCT0 An array of good quality

observations of desired variables is selected to be used in the minimization. Technically, the extended obse

database (ECMA-ODB) becomes the compressed database (CCMA-ODB) which is the observational input

minimization run. In 4D-Var, the observation screening can be applied either on an hourly or a 6-hourly basis

selection is done via namelist variable LSCRE4D inNAMSCC. Hourly screening has been the default option sin

cy18r6.

At the end of the screening, the CCMA-ODBs are reshuffled for load-balancing in the subsequent minimiza

usingMAPSORT.

Depending on whether the hourly or 6-hourly screening is applied, the division of observations into the se

the appropriate pointers are updated accordingly (SCREEN, ECSET). The bulk of decisions (DECIS) is taken

codewise just in the same way in both cases. In the hourly screening much more surface observations are

for the assimilation. More details of the observation screening can be found inChapter 10 ‘Observation screening’.

3.3 INNER AND OUTER LOOPS: PRACTICAL IMPLEMENTATION

Similarly to 3D-Var, job steps are carried out with different configurations of the IFS:

(i) The first trajectory run  (which includes screening) – conf=2, LSCREEN=.T.

(ii) The background error minimization, conf=131, LAVCGL=.T.

(iii) The main minimization, conf=131

(iv) The update of the trajectory, conf=1, LOBS=.T.

Steps (iii ) and (iv) are performed times where is the number of outer loops or, equivalently, of updates o

trajectory.

The first trajectory run (i), the background-error minimization (ii ) and the first main minimization use the sam

input files as described for 3D-Var inSubsection 1.3.1of Chapter 1 ‘Incremental formulation of 3D/4D variationa

assimilation—an overview’, the only difference being that the background field is a 3-hour forecast from the

vious analysis at synoptic time, compared with a 6-hour forecast in 3D-Var.

The ouput of the minimization steps are the filesMXVAxx000+000000, MXVAxx999+000000(as in 3D-Var),

trajxx+0000000andVATRH . xx is an integer varying from 0 for the first minimization to (n-1) for the last min

imization, where n is the number of updates of the trajectory.VATRH contains useful information for a warm re-

start of m1qn3 (including the diagonal of the Hessian).trajxx+0000000contains the control variable at the end o

the minimization. The filetrajxx+0000000is written out inSAVMINI called at the end ofCVA1. This file will be

n n
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an input to the next minimization in addition to the background file used as in the first minimization. It is re

in GETMINI called fromCVA1. The fileVATRH is written out inSAVMIN , and read inSUHESS, both called

by CVA1.

The input of the second trajectory is the same as in 3D-Var. The output is an analysis at the initial time of t

jectory (type = 4v, step = 0) written out on the FDB. It contains the current estimate of the flow at initial time

other output are the updated observation files, as in 3D-Var. The 4v fields are used in the following traje

replacing the background in the input filesICMSHxxxxINIT , ICMGGxxxxINIT and ICMGGxxxxINIUA
(wherexxxx is the ‘expver’ identifier of MARS). Additional inputs are low resolution files (MXVA ...) created dur-

ing the previous minimization interpolated to high resolution as in 3D-Var. This data flow is represented in t

agram below.

In summary, the first two trajectories use the background as an input, and the following ones use the 4v fie

ated during the previous trajectory as reference files. All the trajectories except for the very first one add incr

computed from the low-resolution files produced by the previous minimization, interpolated to high resolution

first minimization uses only the background field, the following ones also use the control variable from the e

the previous minimization and some information for a warm restart of the minimization package.

The number of updates of the trajectory starting from 0 at the first minimization is carried inside the ODB 

3.4 TANGENT LINEAR PHYSICS

The first minimization uses the simplified physics (vertical diffusion and surface drag) activated by the sw

LSPHLC, LVDFDS, LSDRDS, LVDFLC, LSDRLC, LKEXP in namelistNAPHLC which is also activated for sin-

gular vector computations. A scientific description of the simplified physics is given inBuizza1994) .

The following minimizations use a more complete linear physics activated by the switches LETRAJP, LEVD

LEGWDG2, LECOND2, LERADI2, LERADS2, LECUMF2 in namelistNAMTRAJP, and described in this sec-

tion. The description is focused on technical aspects, since scientific issues can be found elsewhere (Mahfoufet al.,

1997;Rabier et al.1997;Mahfouf 1998).

3.4.1  Set-up

In order to activate the improved linear physics, the switch LSPHLC of the simplified linear physics inNAPHLC

should be set to FALSE. InCVA1 when both logicals LSPHLC and LETRAJP are equal to TRUE, LSPHLC

reset to FALSE and a warning is written in the standard ouput (logical unit NULOUT).

The following switches must be set to TRUE : LEPHYS, LAGPHY (also necessary to activate the ECMWF

linear physics) and LETRAJP (to activate storage of the trajectory at ). The linear physics contains a

five physical processes : vertical diffusion (LEVDIF2), sub-grid scale orographic effects (LEGWD2), large

condensation (LECOND2), longwave radiation (LERADI2, LERADS2), and deep moist convection (LECUM

Tunable parameters of the improved physics (which should not in principle be modified) are defined inSUPHLI.

The logical LPHYLIN is used to activate the simplifications and/or modifications associated with the linear

age in the non-linear physics. This variable is set to FALSE by default , but is forced to TRUE before callin

linear physics (CALLPARTL and CALLPARAD) in CPGLAGTL and CPGLAGAD whenever the logical

LETRAJP is TRUE.

Diagram representing the input and output files during a standard 4D-Var analysis consisting of 3 trajector

and 2 minimisation steps.

t ∆t–
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Figure  3.1   Diagram representing the input and output files during a standard 4D-Var analysis consistin

trajectory steps and 2 minimisation steps.

3.4.2  Mixed-phase thermodynamics

The thermodynamical properties of the water mixed phase are represented by a differentiable weighting fu

between  and :

(3.4)

with  (RLPALP1) and  (RLPTRC).

The tuning parameter controls the intensity of the smoothing, and the temperature has been chosen

 for the same temperature as in the operational quadratic formulation (see functionFCTTRE).

This weighting function is used by the large-scale condensation and moist-convection routines.

trajectory (00)

minimisation (00)

trajectory (01)

minimisation (01)

trajectory (02)

reftrajggml

reftrajshml

reftrajggsfc

backgroundshml

backgrounggsfc

MXVA00000+000000

MXVA00999+000000

traj00+0000000

VATRH
reftrajggml

reftrajshml

reftrajggsfc

MXVA00000+000000

MXVA00999+000000

FDB 4v fields, step 0

backgroundshml

backgrounggsfc

traj00+0000000

VATRH

MXVA01000+000000

MXVA01999+000000

traj01+0000000

VATRH

FDB 4v fields, step 0

MXVA01000+000000

MXVA01999+000000

FDB 4v fields, steps 0, 3, 6
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2
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3.4.3  Vertical diffusion

The linear versions of the vertical diffusion scheme are called from the driversVDFMAINTL andVDFMAINAD .

Vertical diffusion applies on wind components, dry static energy and specific humidity. The exchange coeffi

in the planetary boundary layer and the drag coefficients in the surface layer are expressed as functions of t

Richardson number (Louis et al., 1982). They differ from the operational formulation which uses the Moni

Obukhov length as a stability parameter in stable conditions and a -profile approach for convective bou

layers (see the documentation of the ECMWF physics).

In stable conditions ( ), the drag coefficients are defined as :

(3.5)

and

(3.6)

with the following expressions for the neutral coefficients :

(3.7)

(3.8)

In unstable conditions ( ), the drag coefficients are defined as:

(3.9)

(3.10)

The empirical coefficients  (RLPBB),  (RLPCC) and  (RLPDD) are set to 5 inSUPHLI.

In the planetary boundary layer, the exchange coefficients can formally be writen :

K

Ri 0>

CM CMN
1

1 2bRi
1 dRi+

------------------------+
----------------------------------=

CH CHN
1

1 3bRi 1 dRi++
------------------------------------------------=

CMN
k2

z z0M+

z0M
------------------ 

 log
2

----------------------------------------=

CHN
k2

z z0M+

z0M
------------------ 

  z z0M+

z0H
------------------ 

 loglog

-----------------------------------------------------------------------=

Ri 0<

CM CMN 1 2bRi

1 3bcCMN
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 
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 
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with the following mixing length vertical profile :

(3.12)

The asymptotic mixing lengh for momemtum is set to 150 m, whereas . The pseudo-d

of the boundary layer is defined by km(RLPMIXL), and the reduction factor applied to the mixing len

in the free atmosphere is  ( RLPBETA) [  when ].

If this vertical-diffusion scheme is activated in the nonlinear model (LPHYLIN = .TRUE.), the post-processin

atmospheric parameters at observation level can be performed using the formulation ofGeleyn(1988) inVDFP-

PCFLS(the tangent-linear and adjoint versions ofVDFPPCFLSare not yet coded, but are already available els

where in the IFS for the observation operators).

This modified scheme make use of all the routines from the operational vertical diffusion, exceptVDFSFLX and

VDFHGHT, however the exchange coefficients are computed in a different way inVDFEXCSandVDFEXCU.

The linearization of the surface energy balance is also performed (VDFTSKTL, VDFTSKAD), but perturbations

of the skin temperature are not evolved in time (section 4.4 inCPGLAGTL). This simplification should be relaxed

when the skin temperature becomes part of the control variable.

The logical LEKPERT inNAMTRAJPcontrols the perturbations of the exchange and drag coefficients. It is s

FALSE by default, to prevent the growth of spurious instabilities in the tangent-linear model..

3.4.4  Sub-grid scale orographic effects

The subgrid-scale orographic scheme is a complete linearization of the operational ECMWF scheme desc

Lott and Miller (1997). The linearized schemes are called fromGWDRAGTL andGWDRAGAD. By setting the

constant RLPDRAG to zero, the representation of wave breaking is not activated (The operational value GK

is set to 0.3 inSUGWDand is used to compute the surface stress in the gravity-wave part of the scheme).

3.4.5  Large-scale precipitation

Linearized versions of large-scale condensation scheme areCONDTL andCONDAD. Local supersaturation is re-

moved through a local moist-adjustment scheme (CUADJTQTL , CUADJTQAD). Supersaturation produces pre

cipitation instantaneously (without a cloud stage). The effect of rainfall evaporation in sub-saturated lay

strongly reduced in the linearized versions of the scheme. The constant RLPEVAP is set to 0.05, instead of

the nonlinear parametrization (it indicates that evaporation will take place as long as specific humidity in a

layer is below RLPEVAP times its saturation value).

3.4.6  Long-wave radiation

The linear long-wave radiation is based on a constant emissivity approach, where only perturbations on te

ture are accounted for. Tendencies produced by the linearized long-wave radiation inRADHEATTL andRAD-

HEATAD are damped above a pressure level  (RLPP00) set to 300 hPa inSUPHLI:

K l2 ∂V
∂z
------- f Ri( )=

l
k z z0+( )

1 k
z z0+( )

λ
-------------------+

-------------------------------- γ 1 γ–

1
z z0+( )2

L2
---------------------+

-------------------------------+=

λM λH λM 1.5d=

L 4=

γ 0.2= l γλ→ z L»

pc
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(3.13)

where the net flux arrays (PEMTED5) computed from the full non-linear radiation scheme are stored as

the trajectory during the non-linear integration (see description of the trajectory management).

3.4.7  Deep moist convection

The partial linearization of the ECMWF mass-flux scheme is performed, leading to the following tendenci

the perturbations of the prognostic variables (wind components, specific humidity, dry static energy):

(3.14)

The mass-fluxes profiles associated with the updrafts and the downdrafts and are recompute

tangent-linear and adjoint integrations from the stored basic state. This partial linearization implies that all th

linear routines for the convection scheme have their tangent-linear and adjoint counterparts (starting form th

ing routinesCUCALLNTL andCUCALLNAD). However, most of them are only used to recompute the trajecto

The only routines which contain linear statements areCUININTL (mean thermodynamical properties at half mod

levels),CUDUDVTL (tendencies for the wind components) andCUDTDQNTL (tendencies for dry static energy

and specific humidity).Eq. (3.14) is solved numerically in the following form (seeTiedtke, 1989) :

(3.15)

which requires extra local storage of the profiles of entrainment and detrainement rates and comp

CUASCN and

in CUDDRAFN (variables PDMFEN and PDMFDE).Eq. (3.15)is only applied when deep convection is diag

nosed from the basic state.

3.4.8  Trajectory management

The ECMWF physics uses the tendencies from the dynamics, and variables at as input to compute

dencies of a given process (represented by the operator ) for a prognostic variable :

(3.16)

where the variable has already been updated by the dynamics and by the previous physical processe

are called in the following order: radiation; vertical diffusion; subgrid-scale orographic effects; moist convec

large-scale condensation).

Thus :

(3.17)
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In Eq. (3.16), if the operator is nonlinear, its linearization around the basic state , will require to store

model state at time step (trajectory at ) as well as the tendencies produced by the dyn

. The physical tendencies from the previous processes , require an additional call

nonlinear routines in the adjoint computations (CALLPARAD) and a local storage of the partial tendencies.

The storage of the trajectory at is performed inCPGLAGby the routineWRPHTRAJcalled before the driv-

er of the ECMWF physicsCALLPAR. Fields are stored in grid-point space in an array TRAJPHYS allocated

SUSC2.

The following three-dimensional fields are stored :

• For the atmosphere: the prognostic variables (wind components, temperature, specific hum

and their tendencies produced by adiabatic processes, the vertical velocity, the long-wave flux

the solar transmissivity (these two last fields allow the computation of the radiation tendencies

the trajectory inCALLPARTL andCALLPARAD)

• For the soil: the prognostic variables for temperature and moisture content (used to compu

surface fluxes from the trajectory in the linear vertical-diffusion scheme)

A number of two-dimensional fields used at time step need to be stored: surface pressure, surface

skin temperature, skin reservoir, snow reservoir, roughness lengths (mainly for the vertical diffusion).

The preliminary computations (pressure and geopotential at full and half model levels, astronomy paramete

perfomed inCPGLAGTL andCPGLAGAD before calling the driver of the tangent-linear physicsCALLPARTL

or the driver of the adjoint physicsCALLPARAD, and after reading the trajectory fields fromRDPHTRAJ.

The number of fields to be stored is defined inSUTRAJPfor 3-D atmospheric fields on full model levels

(NG3D95), 3-D atmospheric fields on half model levels (NG3P95), 3-D soil fields (NG3S95), and surface

(NG2D95).

The option to store the trajectory on disk (instead of in memory) also exists through the logical LIOTRPH de

in SUTRAJPbut is not used anymore on FUJITSU VPP computers. Packing of the trajectory is also possible

the variable NPCKFT95 (set to 1 by default, which means no packing) and the packing parameter NEXP

provided packing libraries are compiled with the IFS (routinesEXPANDX1).

P ψu
n 1–

n 1– t ∆t–

∂ψ ∂t⁄( )dyn ∂ψ ∂t⁄( )phys

t ∆t–

t ∆t–
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Part II: D ATA ASSIMILATION

CHAPTER 4   Background term

Table of contents

4.1 Introduction

4.2 Description of the algorithm

4.3 Technical implementation

4.3.1 Input files

4.3.2 Namelist parameters of

4.3.3 IFS  routines

4.3.4 Background error

4.1 INTRODUCTION

The background term described inCourtieret al.(1998) was in May 1997 replaced by a new formulation byBout-

tier et al. (1997), available online as newjb.ps. The old code is still part of the IFS but will not be described in

documentation.

4.2 DESCRIPTION OF THE ALGORITHM

We use the following notation:

•  is the low–resolution analysis increment, i.e. model field departures from the background

•  is the assumed background error covariance matrix,

• , , and are increments of vorticity, divergence, temperature and surface pres

and specific humidity, respectively, on model levels.

• and are thebalancedparts of the and increments. The concept o

balance will be defined below, and

• and are theunbalancedparts of and , i.e. and

, respectively.

The incremental variational analysis problem,Eq. (1.2)of Chapter 1 ‘Incremental formulation of 3D/4D variation

al assimilation—an overview’, is rewritten in the space defined by the change of variable (Section 1.4)

where satisfies so that takes the simple form ofEq. (1.8). In operational practice, the initial point

of the minimization is the background, so that initially . The minimization can be carried out in

space of , where is the euclidean inner product,Eq. (1.8). At the end of the minimization, the analysis incre

ments are reconstructed in model space by . In order to compare with observations is recons

usingEq. (2.4), in each simulation. Thus the variational analysis can be done with , the inverse change of va

from minimization space to model space (chavarin}, without ever usingCHAVAR.

The background-error covariance matrix  is implied by the design of , which currently has the form

δx
B
ζ η T psurf,( ) q

ηb T psurf,( )bal η T psurf,( )

ηu T psurf,( )unbal η T psurf,( ) η ηbal–

T psurf,( ) T psurf,( )bal–[ ]

δx L χ=

L LL T B= Jb

δx χ 0= =

χ Jb

δx L χ= x
L

B L
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(4.1)

where is a balance operator going from the set of variables , , and , to the model vari

, , and . The operator is the right–hand symmetric square root of the background-erro

variances  of , ,  and , so that

(4.2)

So far, the formulation is perfectly general. Now, we restrict to a simple form and choose a particular ba

operator .

The covariance matrix  is assumed to be block-diagonal, with no correlation between the parameters:

(4.3)

It implies that the analysis is independent from the other variables. However, assuming that the unbalanc

iables are uncorrelated is not too restrictive because, as we shall see below, the design of the balance imp

nificant multivariate correlations between the meteorological variables.

Each autocovariance block in the above matrix is itself assumed to be block-diagonal in spectral space,

correlation between different spectral coefficients, but a full vertical autocovariance matrix for each spectra

ficient. The vertical covariance matrices are assumed to depend only on the total wavenumber . The re

autocovariance model is homogeneous, isotropic and non-separable in grid-point space: the correlation st

do not depend on the geographical location, but they depend on the scale. The shape of the horizontal corr

is determined by the covariance spectra. The same representation was used in the previous formulationRabier

and McNally1993,Courtier et al. 1998). The covariance coefficients are computed statistically using the N

method (Parrishand Derber1992,Rabieret al.1998) on 24/48-hour forecast differences to estimate the total

variances for each total wavenumber , and assuming an equipartition of errors between the ass

spectral coefficients.

The balance relationship is arbitrarily restricted to the following form:

(4.4)

So that the complete balance operator  is defined by:

(4.5)

or equivalently, in matrix form:

L KB u
1 2/=

K ζ ηu T psurf,( )u q
ζ η T psurf,( ) q Bu

1 2/

Bu ζ ηu T psurf,( )u q

Bu Bu
1 2⁄( )TBu

1 2/=

Bu

K

Bu

Bu

Cζ 0 0 0

0 Cηu
0 0

0 0 C T psurf,( )u
0

0 0 0 Cq

=

q

n

Jb

n 2n 1+

ηb M ζ=

T psurf,( )b Nζ Pηu+=

K

ζ ζ=

η M ζ ηu+=

T psurf,( ) Nζ Pηu T psurf,( )u+ +=

q q=
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(4.6)

The matrix blocks , and are, in general, not invertible, but is. As explained above, the inverse of

not actually used in the variational analysis, because the initial point of the minimization is the background

The matrix multiplication of by allows one to write explicitly the implied background error covariance m

trix  in terms of the meteorological variables , ,  and :

(4.7)

The blocks implied by and its transforms by the balance operator blocks , and are thebalancedparts

of the covariances. For instance, the vorticity covariances and the unbalanced temperature cova

are both homogeneous and isotropic, whereas the ‘vorticity-balanced’ matrix t

depends on latitude—it is predominant in the extratropics, negligible near the equator. The term is res

ble for the geostrophic mass/wind coupling.

The , and operators used to define the balance have a restricted algebraic structure. and a

the product of a so-called horizontal balance operator  by vertical balance operators , :

(4.8)

The operator is a block–diagonal matrix of identical horizontal operators transforming the spectral coeffi

of vorticity, independently at each level, into an intermediate variable which is a kind of linearized mass

able defined below. The horizontal operators in have exactly the same algebraic structure as the stand

lytical linear balance on the sphere, and this is where the latitudinal variations of the structures come fr

spectral space,

(4.9)

The , and operators all have the same structure: block-diagonal, with one full vertical matrix per sp

component. The vertical matrices depend only on the total wavenumber .

The actual calibration of the operator requires the following 4 steps; each one uses a set of 24/48-hou

forecast differences as surrogates to background error patterns in order to calculate the statistics:

1) operator. The horizontal balance coefficients of are computed by a linear regres

between the errors in vorticity and in linearized total mass , assuming the functi

relationship defined by the above equation, and building from using the linear

hydrostatic relationship at level ,

K

I 0 0 0

M I 0 0

N P I 0

0 0 0 I

=

M N P K K

Bu K
B ζ η T psurf,( ) q

B KB uK T

Cζ CζM T CζNT 0

MC ζ MC ζM T Cηu
+ MC ζNT Cηu

PT+ 0

NCζ NCζM T PCηu
+ NCζNT PCηu

PT C T psurf,( )u
+ + 0

0 0 0 Cq

= =

Cζ M N P
Cζ

C T psurf,( )u
NCζNT T psurf,( )

NCζ

M N P M N
H M N

M MH=

N NH=

H
Pb

H
Jb

Pb n m,( ) β1 n m,( )ς n m 1+,( ) β2 n m,( )ς n m 1–,( )+=

M N P
n

Jb

H β1 β2,( ) H
Ptot

Ptot T psurf,( )
l
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(4.10)

which relies on the definition of the model vertical geometry and of reference values for

We use (270 K, 800 hPa) currently. The sensitivity to the somewhat arbitrary choice of t

parameters has been tested and it is negligible. Unlike in the previous formulation, is ju

intermediate variable in the linear regression. Modifying the reference values, e.g. to (30

1000 hPa), does change the scaling of , but it is compensated by corresponding changes in

and  operators, so that the effective covariances are virtually unchanged.

2) operator. The vertical blocks of this operator are computed for each wavenumber

a linear regression between the spectral vertical profiles and , respectivel

balanced mass (defined as times the vorticity error patterns) and divergence. The relatio

is assumed to be

(4.11)

so that the statistical sampling is better for the small scales than for the large scales becaus

are spectral profiles to be used per total wavenumber in each forecast error pattern. A

as many independent error patterns as number of model levels are needed in order to have

posed regression problem for the very large scales.

3) and operators. The vertical blocks are computed for each wavenumber exactly like

except that now the linear regression goes from the vertical spectral profiles of

 to the profiles of temperature concatenated with surface pressure:

(4.12)

One notes that the matrix is not square (the output is larger than the input because the

kernel in the hydrostatic relationship) but the resulting covariances are still pos

definite by construction thanks to the  term in the expression of .

4) Error covariances. The vertical autocovariances of the , , and , differen

patterns are computed for each total wavenumber . Again, since there are wavenu

for each and each error pattern, at least as many linearly independent error patterns as

levels (plus one for )mustbe used in order to ensure that the autocovariances are pos

definite at the very large scales. It is strongly advised to use several times more in order to r

the sampling noise at large scales; this is important for the performance of the resu

assimilation/forecast system. In the May 1997 implementation of the 3D-Var system, abou

forecast-difference patterns have been used for 31 levels.

In addition to these 4 steps, some minor preprocessing is performed on the covariances. The vertical corr

of humidity are set to zero above 100 hPa in order to avoid spurious stratospheric humidity increments bec

the tropospheric observations. The , and vertical profiles of total variance are rescaled by

bitrary factor of 0.9 in order to account for the mismatch between the amplitudes of the 24/48-hour-forecast

ences and of the 6-hour forecast errors. In the future this factor will be recalculated more precisely

observation departures from the background in the assimilation, similarly to Hollingsworth and Lönnberg (1

It may be different for 3D-Var than for 4D-Var. The variance spectra are slightly modified in order to ensure

the horizontal error correlations of , and are compactly supported (they are set to zero b

Ptot l( ) RTi∆ pi RT ref psurfln+ln

i L=

l

∑=

T psurf,( )

Jb Pb

H M
N

M M n( ) n
Pb[ ]n

m η[ ]n
m

Pb H

η[ ]n
m M n( ) Pb[ ]n

m=

2n 1+

N P M
Pb Hζ=

ηu η Mζ–=

T psurf,( )[ ]n
m N n Pb[ ]n

m Pn ηu[ ]n
m+=

N n

T psurf,( )
C T psurf,( )u

B
ζ ηu T psurf,( )u q

n 2n 1+

n
psurf

ζ ηu T psurf,( )u

ζ ηu T psurf,( )u
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6000 km). This operation removes the residual sampling noise in the error covariances. No other processing

formed except for a spectral truncation if the analysis resolution is lower than the statistics resolution (cur

T106). It would be easy to extrapolate the statistics to higher resolutions, but it would be very hazardous t

the vertical geometry of the covariances and balance operators. Instead, it is recommended to run a set of f

using a model with the right vertical resolution, and recompute all the statistics from scratch.

4.3 TECHNICAL IMPLEMENTATION

The statistical calibration is done using dedicated scripts outside the IFS code. First, the 24/48-hour foreca

differences for a set of dates are constructed in terms of spectral , , and . This involves ru

a set of MARS requests and building the required GRIB files. Then, the forecast-error differences are re

processed by a Fortran statistics program that finally writes two files in GSA format: one with the coefficie

the balance operator, one with the error covariances of , , and . These files take up a cou

megabytes. They are computed for a given triangular truncation and number of levels (currently T106L31).

covariance file there are 4 sets of vertical covariance matrices. The balance files contain one set of coeffici

the  operator, and three sets of vertical balance matrices for ,  and .

4.3.1  Input files

The IFS needs these two GSA files to use in e.g. the incremental analysis jobs. The configuration de

here corresponds to namelist switch LSTABAL=.true. (NAMJG), and it is identified in the code by the s

CDJBTYPE=‘STABAL96’. LSTABAL=.false. would give the old formulation. The input files must be nam

stabal96.cv andstabal96.bal. They are read in bysujbdat andsujbbal, respectively.

4.3.2  Namelist parameters of

Some other important namelist options in NAMJG are LCFCE (to enforce uniform background err

L3DBGERR (to have a 3D distribution vorticity background errors), and LCORCOSU (to enforce compactly

ported horizontal correlations). The switch LGUESS in NAMCT0 can be used to switch off altogether.

default is LGUESS=.true., i.e.  switched on.

ζ η T psurf,( )u q

ζ ηu T psurf,( )u q

H M N P

Jb Jb

Jb

Jb

Jb

Jb

Jb
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Figure  4.1   Calling tree for subroutinesujbcov.

(This is the  setup code tree in IFS cy16r3, option stabal96)

(namelist namjg has already been read into yomjg in routine sujb below su0yoma)

sujbcov determine  configuration (nonsep93, stabal96 or totenrgy)

allocate work arrays

sujbdat read covariance file ‘stabal96.cv’

commjbdat distribute covariances to all processors

suprecov prepare vertical interpolation

truncate / extrapolate spectrally to IFS resolution

reset q stratospheric correlations

sujbcor < lcorcosu > prepare Legendre polynomials

normalize covariance matrices into correlations

eigenmd factorize inverse vertical correlation matrices
—> arrays FGEDVNx, FGEGVM

generate horizontal correlation spectra

< lcorcosu > sujbcosu generate compactly supported
horizontal correlation spectra

inverse square root of horiz correl spectra —> array FGSCNM

print average vertical correlation matrices

< kprt>1 > print spectra and gridpoint structures of
horizontal correlations

sujbstd calculate total variances at each level

standard deviation vertical profiles times REDNMC
—> arrray FCMN / FCEMNP

suecges horizontal stdev structures (see cycling doc)

sujbbal read balance file ‘stabal96.bal’

commjbbal distribute balance to all processors

convert to IFS truncation —> arrays SDIV, STPS, BFACT/2

sujbmod (modification of vertical correlations, not supported)

sujbmap (modification of  geometry, not yet implemented)

sujbdiag (diagnostic of  structure functions, not supported)

sujbstat (online update of  statistics, not yet implemented)

sujbwrit (rewrite of  operators, not yet implemented)

< ljbtest > sujbtest (Technical test of  code)

setup random vector

cvar2in / cvar2inad adjoint test on them

cvar2 / cvar2in inverse tests on them

cvar2ad / cvar2inad inverse tests on them

Jb

Jb

Jb

Jb

Jb

Jb

Jb
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4.3.3  IFS  routines

Inside the IFS code, is localized in the setups below subroutinesujbcovand in the inverse change of variable

cvar2in(and its adjoint and their inverses,CVAR2INAD, CVAR2 andCVAR2AD). Calling trees are shown inFig.

4.1 andFig. 4.2. The computation of the cost function and its adjoint is done insim4d(Section 2.3in Chapter 2

‘3D variational assimilation’)---it is planned to move it to a dedicated subroutine. The sequence within the se

routine is the following:

(i) SUJBDAT: Reads covariances from filestabal96.cv,
Interpolates in the vertical to the model’s vertical levels (if necessary)

Sets humidity correlations to 0, for pressures less than 100 hPa.

(ii) SUJBCOR: Sets up spectral correlation operator

Covariance matrices (one per ) are converted to vertical correlation matrices and horiz

autocorrelation spectra. The eigenvectors and the eigenvalues of vertical correlations matric

computed usingEIGENMD and stored in FGEDVNS and FGEGVNS-arrays (yomjg), respectively,

for later use in JGVCOR, JGVCORI, JGVCORAD and JGVCORIAD. The horizontal

autocorrelation spectra are stored in the FGSCNM–array (yomjg), for later use inJGHCORand

JGHCORI.

(iii) SUJBSTD: Set up background error standard deviations, seeSubsection 4.3.4.

(iv) SUJBBAL: Set up balance constraint. Read the filestabal96.baland store inyomjg, for later use in

balstat, balstatad, balvert, balvertad, balverti and balvertiad as part of the change of variable

operator.

(v) SUJBTEST: Test of the adjoint of the change of variable, if LJBTEST=.true.

The distributed memory affects the setups belowsujbdatandsujbbalwhen the data files are read in (by the mast

processor only). First, the resolution of the files is read, then the relevant arrays are allocated and the actua

read, truncated if necessary, and broadcast. The code is designed to work at any resolution.

Jb

Jb

n
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Figure  4.2   Calling tree for subroutinecvar2in.

In the change of variable, there is a transposition of the fields between the horizontal and vertical balance op

balstatandbalvert, repsectively. Note that the operator is performed by callingcvar2in, so in IFS parlance

corresponds to theinverse change of variable.

4.3.4  Background error

The background standard errors are set up belowsujbstd(in SUINFCE, called fromSUECGES) and used injgnr

or jgnrs(and their adjoint and inverses,jgnradandjgnrsi). In addition to the covariance files, they use a gridpoi

GRIB file callederrgrib in order to specify the three–dimensional error patterns. The data from the file is conv

to the appropriate parameters and resolution if needed. The background error fields for some parameter

height, temperature and surface pressure) are built for the screening job although they are not needed in the

itself. For more information, refer to the chapter on the cycling of background errors,Chapter 7 ‘Background, anal-

ysis and forecast errors’ .

cvar2in < lskf > (see the simplified Kalman filter doc)

cvaru3i jgcori trmtos mpe_send /mpe_recv for spectral

to column transposition

jgvcori matrix multiplications

by FGEGVNx / FGEDVNx i.e.

sqrt of vertical correlations

trstom mpe_send / mpe_recv for column

to spectral transposition

jghcori division by FGSCNM i.e.

inverse sqrt of horizontal correlations

< lspfce > jgnrsi multiplication by FCEMN i.e.

average background errors

< else > stepo (0AA00XAG0) interface to jgnr(x)

i.e. multiply by

3D background errors

balstat apply horizontal balance operator defined by

BFACT1 / BFACT2 from vorticity to P variable

balvert trmtos mpe_send / mpe_recv for spectral

to column transposition

apply vertical balance operator defined by

SDIV / STPS from P to unbalanced variables

trstom mpe_send / mpe_recv for column

to spectral transposition

< lsubfg > addfgs add SP7A3/2 (trajectory) to SPA3/2

L L

σb
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4.3.4 (a)  Humidity. The humidity background errors are currently not cycled – they are computed (inSUSH-

FCEunderJGNR) by a simple empirical formulation as a function of the temperature and relative humi

 of the background:

(4.13)

(4.14)

The standard deviation in terms of relative humidity is then converted to specific humidity, taking the variati

 of the equation

(4.15)

where is the relative humidity, , is the saturation water-vapour pressure at the temper

in question (Tetens’ formula,Eq. (5.11)in Chapter 5 ‘Conventional observational constraints’) and is pressure.

Humidity increments are forced to be negligibly small above the tropopause to avoid a systematic drift of

ospheric humidity over extended periods of data assimilation. This is achieved by setting a very low value o

for everywhere the pressure is lower than 70hPa, and at anyother point where the pressure is lower than

and the background temperature and pressure fields are such that the square of the buoyancy frequency

 everywhere between that level and the 70hPa level.

More specifically, for each grid column is set to for model levels such that , where the leve

is determined by requiring either that it is the highest level with hPa for which

(4.16)

or, if no such level can be found for  in the range from 500 to 70hPa, that it is the lowest level for which

.

Here  and  are the background temperature and pressure at level  of the grid-column.

In addition, any values of  lower than  are reset to .

For pressures less than  = 800 hPa, and over the sea, the model of background errors above is modifie

(4.17)

where  (where LSM = land–sea mask) and =12500.

Tb

Ub
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Part II: D ATA ASSIMILATION

CHAPTER 5   Conventional observational constraints

Table of contents

5.1 Introduction

5.2 Data usage

5.2.1 Controls

5.2.2 Overview of observation operators

5.3 The observation operator for geopotential height

5.3.1 Quadratic vertical interpolation near the top of the model

5.3.2 Below the model’s orography

5.4 The observation operator for wind

5.5 The observation operators for humidity

5.5.1 Saturation vapour pressure

5.5.2 Relative humidity

5.5.3 Precipitable water

5.5.4 Specific humidity

5.6 The observation operator for temperature

5.7 Surface observation operators

5.7.1 Mathematical formulation

5.7.2 Surface values of dry static energy

5.7.3 Transfer coefficients

5.7.4 Two-metre relative humidity

5.1 INTRODUCTION

The observation operators provide the link between the analysis variables and the observations (Lorenc, 1986,Pail-

leux, 1990). The operator inEq. (1.4)signifies the ensemble of operators transforming the control variable

into the equivalent of each observed quantity, , at observation locations. The 3D/4D–Var implementation

to be (weakly) non-linear, which is seen to be an advantage for the use of TOVS radiance data, for exam

this chapter we define the content of each of the observation operators and describe the observational data

3D/4D–Var. The use of satellite data is described inChapter 6 ‘Satellite observational constraints’ .

H x
yo

H
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5.2 DATA USAGE

Observation operators for all observation types that were used by OI have also been implemented in 3D/4

In addition 3D/4D–Var uses TOVS cloud-cleared radiances, scatterometer ambiguous winds and SSMI to

umn water vapour.Table 10.6lists the observing systems currently used by 4D–Var in ECMWF’s operational d

assimilation. The table also indicates important restrictions on data usage and thinning of data. TOVS, SC

SSMI data are further discussed inChapter 6 ‘Satellite observational constraints’. Additional data types such as

meteosat radiances and TOVS and ATOVS 1C-radiances are used experimentally. ATOVS 1C radiance u

described in a separate chapter. 3D/4D–Var uses the data from a six-hour time window centred at the analy

In 3D-Var there is no interpolation in time of the background, which means that all data are used as if they

observed at the analysis time. In 4D-Var, on the other hand, the background trajectory is available on a one

interval (Chapter 3 ‘4D variational assimilation’). If there are multiple reports from the same fixed observing s

tion within that time window (6 hours in 3D-Var, 1 hour in 4D-Var), the data nearest the analysis time are se

for use in the analysis. Some thinning is applied for the moving platforms reporting frequently. These tasks a

formed in the screening configuration of IFS, seeChapter 10 ‘Observation screening’ .

5.2.1  Controls

Theblacklist mechanism is very flexible and allows the complete control of which data to use/not use in the

ational assimilation. The blacklist is applied in the screening job, which removes the blacklisted data from the

pressed CMA observation file. Data-selection rules should be coded in the blacklist files rather than in the IF

itself.

Classes of data can also be switched on and off using the NOTVAR array inNAMJO, however it is preferable to

use the blacklist mechanism for this purpose. The second dimension in thisarray is the observation type. T

dimension is variable number, area and subobs-type, respectively—see the documentation of obsproc fo

tions. The elements of the NOTVAR array\ can take either of three values:

• 0, means that the data will beused,
• –1, means that the data willnot beused,and

• –2, means that the data will bepassive,i.e. departures will be calculated but there will be n

contribution to

5.2.2  Overview of observation operators

The operator is subdivided into a sequence of operators, each one of which performs part of the transfo

from control variable to observed quantity:

(i) The inverse change of variable (CHAVARIN) converts from control variables to model variable

(seeSection 2.3 in Chapter 2 ‘3D variational assimilation’ ).

(ii) The inverse spectral transforms put the model variables on the model’s reduced Gaussia

(controlled bySCAN2MDM).

(iii) A 12-point bi-cubic or 4-point bi-linear horizontal interpolation gives vertical profiles of mod

variables at observation points (controlled byCOBS, COBSLAG, Section 2.4). The surface fields

are interpolated bi-linearly to avoid spurious maxima and minima. The three steps (i) to (iii ) are

common to all data types. Thereafter follows:

(iv) Vertical integration of, for example, the hydrostatic equation to form geopotential (Section 2.3), and

of the radiative transfer equation to form radiances (if applicable,Subsection 6.4.1), and

(v) vertical interpolation to the level of the observations.

The vertical operations depend on the variable. The vertical interpolation is linear in pressure for temperaturePPT)

Jo

H
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and specific humidity (PPQ), and it is linear in the logarithm of pressure for wind (PPUV). The vertical interpola-

tion of geopotential (PPGEOP) is similar to wind (in order to preserve geostrophy) and is performed in terms

departures from the ICAO standard atmosphere for increased accuracy (Simmonsand Chen, 1991, seeSection 5.3

below). The current geopotential vertical interpolation together with the temperature vertical interpolation a

exactly consistent with hydrostatism. A new consistent and accurate vertical interpolation has been devised

teo-France, which may be important for intensive use of temperature information. The new routines have be

ed by ECMWF and as the results were not unambiguously positive the new routines have not yet been ad

and they are not described in this documentation. In the meantime, the old routines are still used (

LOLDPP=.true. innamct0), under the namesPPT_OLD, PPGEOP_OLDandPPUV_OLD, with tangent linear

PPTTL_OLD, PPGEOPTL_OLDand PPUVTL_OLD and adjoint PPTAD_OLD, PPGEOPAD_OLDand

PPUVAD_OLD.

The vertical interpolation operators for SYNOP 10 m wind (PPUV10M) and 2 m temperature (PPT2M) match an

earlier version of the model’s surface layer parametrisation. The vertical gradients of the model variable

strongly in the lowest part of the boundary layer, where flow changes are induced on very short time and

scales, due to physical factors such as turbulence and terrain characteristics. The vertical interpolation ope

those data takes this into account following Monin–Obukhov similarity theory. Results using such operators,

follow Geleyn(1988) have been presented byCardinali et al. (1994). It was found that 2-metre-temperature da

could not be satisfactorily used in the absence of surface skin temperature as part of the control variable, a

alistic analysis increments appeared in the near-surface temperature gradients. The Monin–Obukhov base

vation operator for 10 m wind, on the other hand, is used for all 10 m winds (SYNOP, DRIBU, TEMP, PILOT

SCAT). SCAT 10 m winds may optionally (setting LSCASUR=.F. in namobs) be used through a simple logari

relationship between lowest model level wind (at approximately 32 m) and wind at 10 m (seePPOBSAS, Subsec-

tion 6.4.4).

Relative humidity is assumed constant in the lowest model layer to evaluate its 2 m value (PPRH2M), seeSubsec-

tion 5.7.4. The model equivalent of SSMI total column water vapour data is obtained by vertical integration

(in GPPWC andPPPWC). Observation operators also exist for SATEM precipitable water content (alsoPPPWC)

and SATEM thicknesses (PPGEOP), but these data are currently not used operationally.

The variational analysis procedure requires the gradient of the objective function with respect to the control

ble. This computation makes use of the adjoint of the individual tangent linear operators, applied in the reve

der. The details regarding observation operators for conventional data can be found inVasiljevicet al. (1992),

Courtier et al. (1998), and in the following sections.

5.3 THE OBSERVATION OPERATOR FOR GEOPOTENTIAL HEIGHT

The geopotential at a given pressure is computed by integrating the hydrostatic equation analytically us

ICAO temperature profile and vertically interpolating , the difference between the model level geopotenti

the ICAO geopotential (Simmons and Chen, 1991). The ICAO temperature profile is defined as

(5.1)

where is 288 K, is the geopotential above 1013.25 hPa and is 0.0065 in the ICAO tropos

and 0 in the ICAO stratosphere (the routinePPSTA). The ICAO tropopause is defined by the level where the ICA

temperature has reached 216.5 K (SUSTA). Using this temperature profile and integrating the hydrostatic equat

provides and the geopotential as a function of pressure (PPSTA). We may then evaluate the geo

q

p
∆φ

T ICAO T0
Λ
g
----φICAO–=

T0 φICAO Λ K m 1–

T ICAO φICAO
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levels

e tem-

t ),
potential  at any pressure  following

(5.2)

where is the model surface pressure and , the model orography. is obtained by vertical interpo

from the full model level values . The interpolation is linear in up to the second model level (PPINTP)

and quadratic in for levels above it (PPITPQ, see below). The full model level values are obtained integr

ing the discretized hydrostatic equation using the routineGPGEOof the forecast model, followingSimmonsand

Burridge (1981):

(5.3)

with

for  and .

5.3.1  Quadratic vertical interpolation near the top of the model

Above the second full level of the model, the linear interpolation (PPINTP)is replaced by a quadratic interpolation

in , performed in the routinePPITPQ:

(5.4)

where , and are constants determined so that the above equation fits the heights at the top

( ). The interpolation formula is:

(5.5)

where 1,2 and 3 refer to levels , respectively.

5.3.2  Below the model’s orography

The extrapolation of the geopotential below the model’s orography is carried out as follows: Find (surfac

perature) by assuming a constant lapse rate , from the model level above the lowest model level (subscrip

see the routineCTSTAR,

(5.6)

(5.7)

φ p( ) p

φ p( ) φsurf– φICAO p( ) φICAO psurf( )– ∆φ+=

psurf φsurf ∆φ
∆φk p( )ln

p( )ln

∆φk Rdry Tv j
T ICAO j

–( )
p j 1 2⁄+

p j 1 2⁄–
----------------- 

  αkRdry Tvk
T ICAOk

–( )+ln

j L=

k 1+

∑=

αk 1
pk 1 2⁄–

pk 1 2⁄+ pk 1 2⁄––
-----------------------------------------

pk 1 2⁄+

pk 1 2⁄–
------------------ 

 ln–=

k 1> α1 2( )ln=

pln

z pln( ) a b pln( ) c pln( )2+ +=

a b c
k 1 2 and 3,=

φ pln( ) z2

z2 z1–( ) pln p2ln–( ) pln p3ln–( )
p2ln p1ln–( ) p1ln p3ln–( )

---------------------------------------------------------------------------------------
z2 z3–( ) pln p1ln–( ) pln p2ln–( )

p2ln p3ln–( ) p1ln p3ln–( )
---------------------------------------------------------------------------------------–+=

k 1 2 and 3,=

T∗
Λ l 1–

T∗ Tl 1– Λ
Rdry

g
----------Tl 1–

psurf

pl 1–
-----------ln+=

T∗ T∗ max T y ,min Tx ,T∗( )[ ]+{ }
2

--------------------------------------------------------------------------------=
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Find the temperature at mean sea level,  (also inCTSTAR)

(5.8)

(5.9)

where is 290.5 K and is 255 K. The geopotential under the model’s orography is (inPPGEOP) calculated

as:

(5.10)

where .

5.4 THE OBSERVATION OPERATOR FOR WIND

In PPUVa linear interpolation in (PPINTP) is used to interpolate and to the observed pressure lev

to the second full model level, above which a quadratic interpolation is used (PPITPQ, seeSubsection 5.3.1.1). Be-

low the lowest model level wind components are assumed to be constant and equal to the values of the lowes

level.

5.5 THE OBSERVATION OPERATORS FOR HUMIDITY

Specific humidity , relative humidity and precipitable water content are linearly interpolated in

PPQ, PPRHandPPPWC, respectively. Upper air relative humidity data are normally not used, but could be u

if required. The use of surface relative humidity data is described inSubsection 5.7.4.

5.5.1  Saturation vapour pressure

The saturation vapour pressure  is calculated using Tetens’s formula:

(5.11)

using FOEEWM (mixed phases, water and ice) in the model and FOEEWMO (water only) for observations

use of water-phase only is in accordance with the WMO rules for radiosonde and synop reporting practice

that these statement functions compute , with the parameters set according to Buck (198

the AERKi formula ofAlduchovand Eskridge(1996), i.e. hPa, and K

over water, and for FOEEWM and K over ice, with K. Furthermore

FOEEWM the saturation value over water is taken for temperatures above and the value over ice is ta

temperatures below . For intermediate temperatures the saturation vapour pressure is computed as

bination of the values over water  and ice  according to the formula

(5.12)

T0

T0 T∗ Λ
φsurf

g
---------+=

T0 min T0 ,max Tx ,T∗( )[ ]=

Tx T y

φ φsurf

RdryT∗
γ

------------------ p
psurf
---------- 

  γ
1––=

γ
Rdry

φsurf
---------- T0 Tsurf–( )=

pln u v

q U PWC p

esat T( )

esat T( ) a1exp
a3

T T3–

T a4–
----------------- 

 
=

Rdry Rvap⁄( )esat T( )
a1 611.21= a3 17.502= a4 32.19=

a3 22.587= a4 0.7–= T3 273.16=

0oC

–23oC

esat(water) esat(ice)

esat T( ) esat(ice) T( ) esat(water) T( ) esat(ice) T( )–[ ]
T T i–

T3 T i–
------------------ 

  2

+=
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5.5.2  Relative humidity

In GPRH relative humidity  is computed:

(5.13)

and then inPPRHinterpolated to the required observed pressure levels (usingPPINTP). Below the lowest model

level and above the top of the model is assumed to be constant. Saturation vapour pressure is calculat

FOEEWMO if GPRH has been called form the observation operator routines, and using FOEEWM if called

the model post processing.

5.5.3  Precipitable water

In GPPWC precipitable water is calculated as a vertical summation from the top of the model:

(5.14)

and then inPPPWCinterpolated to the required observed pressure levels (usingPPINTP). is assumed to be

zero above the top of the model. Below the model’s orography is extrapolated assuming a constant

5.5.4  Specific humidity

Specific humidity is inPPQinterpolated to the required observed pressure levels (usingPPINTP). Below the

lowest model level and above the top of the model is assumed to be constant and equal to and ,

tively.

5.6 THE OBSERVATION OPERATOR FOR TEMPERATURE

Temperature is interpolated linearly in pressure (PPINTP), in the routinePPT. Above the highest model level the

temperature is kept constant and equal to the value of the highest model level. Between the lowest model le

the model’s surface the temperature is interpolated linearly, using:

(5.15)

Below the lowest model level the temperature is extrapolated by

(5.16)

with , for , but is modified for high orography to ,

T3 T i– 23=

U

U
pq

Rvap

Rdry
-----------

1
Rvap

Rdry
----------- 1– 

  q+ esat T( )
-------------------------------------------------------------=

U

PWCk
1
g
--- qi pi pi 1––( )

i 1=

k

∑=

PWC
PWC q ql=

q
q ql q1

T
psurf p–( )Tl p pl–( )T∗+

psurf pl–
------------------------------------------------------------------=

T T∗ 1 α p
psurf
----------ln

1
2
--- α p

psurf
----------ln 

  2 1
6
--- α p

psurf
----------ln 

  3
+ + +=

α ΛRdry g⁄= φsat g⁄ 2000 m< α α Rdry T0′ T∗–( ) φsurf⁄=
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where

(5.17)

for , and

(5.18)

for . If then is reset to zero. The two temperatures and are comp

ed usingEqs. (5.6) to (5.9).

5.7 SURFACE OBSERVATION OPERATORS

All surface data are processed in the routineSURFACEO. Preparations for the vertical interpolation is done as f

all other data inPREINT (seeSubsection 5.3.2), and for surface data there are a few additional tasks which

performed in a separate routine,PREINTS. In PREINTS surface roughness over sea, dry static energy (SUR-

BOUND), Richardson number, drag coefficients and stability functions (EXCHCO), are computed, as detailed in

the following.

5.7.1  Mathematical formulation

An analytical technique (Geleyn, 1988) is used to interpolate values between the lowest model level and the

face. When Monin–Obukhov theory is applied:

(5.19)

(5.20)

(5.21)

where  are wind and energy variables,  are friction values and  is von Kármán’s constan

The temperature is linked to the dry static energy  by:

(5.22)

(5.23)

Defining the neutral surface exchange coefficient at the height  as:

T0′ min T0 ,298( )=

φsurf g⁄ 2500 m>

T0′ 0.002 2500 φsurf g⁄–( )T0 φsurf g⁄ 2000–( )min T0 ,298( )+[ ]=

2000 φsurf g⁄ 2500 m< < T0′ T∗< α T∗ T0

∂u
∂z
------

u*
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z z0+
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-------------- 

 =
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s*

κ z z0+( )
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z z0+

L
-------------- 

 =

L
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g
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κ
----

u*
2

s*
-----=

u s, u* s*, κ 0.4=

s

s cpT φ+=
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cpdry
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(5.24)

The drag and heat coefficients as:

(5.25)

(5.26)

we can set the following quantities:

, , (5.27)

and considering the stability function in stable conditions as:

(5.28)

we obtain integratingEqs. (5.19) and(5.20) from 0 to  (the lowest model level):

(5.29)

(5.30)

In unstable conditions the stability function can be expressed as:

(5.31)

and the vertical profiles for wind and dry static energy are:

(5.32)

(5.33)

The temperature can then be obtained from  as:
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(5.34)

When is set to the observation height,Eqs. (5.29)and(5.30)andEqs. (5.32)–(5.34)give the postprocessed wind

and temperature. To solve the problem, we have to compute the dry static energy at the s

(Subsection 5.7.2), with , and values depending on the drag and heat excha

coefficientsEq.  as detailed inSubsection 5.7.3.

5.7.2  Surface values of dry static energy

To determine the dry static energy at the surface we useEqs. (5.22)and(5.23)where the humidity at the surface is

defined by:

(5.35)

 is given by (Blondin, 1991):

(5.36)

with

(5.37)

where is the soil moisture content and is the soil moisture at field capacitiy (2/7 in volumetric un

Eq. (5.36)assigns a value of 1 to the surface relative humidity over the snow covered and wet fraction of th

box. The snow-cover fraction  depends on the snow amount :

where m is a critical value. The wet skin fraction is derived from the skin-reservoir wa

content :

,

where

with m being the maximum amount of water that can be held on one layer of leaves,

a film on bare soil,  is the leaf-area index, and  is the vegetation fraction.

5.7.3  Transfer coefficients

Comparing theEqs. (5.19)– (5.20)integrated from to withEqs. (5.24)to (5.26), and can be

T z( ) s z( ) zg
cp
------–=

z

s̃ s̃ Tsurf q 0=,( )= BM BN BH

q̃ q z 0=( ) h Csnow Cliq, Cveg,( )qsat Tsurf psurf,( )= =

h

h Csnow 1 Csnow–( ) Cliq 1 Cliq–( )h+[ ]+=

h max 0.5 1 cos
πϑsoil

ϑcap
-------------– 

  min 1
q

qsat Tsurf psurf,( )
-----------------------------------------, 

 




,




=

ϑsoil ϑcap

Csnow Wsnow

Csnow min 1 ,
Wsnow

Wsnowcr

----------------- 
 =

Wsnowcr
0.015= Cliq

W liq

Cliq min 1
W liq

W liqmax

---------------, 
 =

W liqmax
W layermax

1 Cveg–( ) CvegAleaf+{ }=

W layermax
2 10 4–×=

Aleaf 4= Cveg

zo z z0+ CM CH
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analyt-

func-
analytically defined:

(5.38)

(5.39)

Because of the complicated form of the stability functions, the former integrals have been approximated by

ical expressions, formally given by:

(5.40)

where  is given byEq. (5.24). The bulk Richardson number  is defined as:

(5.41)

where is the virtual potential temperature. The functions and correspond to the model instability

tions and have the correct behaviour near neutrality and in the cases of high stability(Louis, 1979;Louiset al.1982)

(a) unstable case

(5.42)

(5.43)

C=5

(b) Stable case

(5.44)

(5.45)
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5.7.4  Two-metre relative humidity

In GPRHrelative humidity is computed according toEq. (5.13). The relative humidity depends on specific humid

ity, temperature and pressure ( and , respectively) at the lowest model level. It is constant in the surfac

el layer, seePPRH2M.

q T, p
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Part II: D ATA ASSIMILATION

CHAPTER 6   Satellite observational constraints

Table of contents

6.1 Introduction

6.2 Set-up of the radiative-transfer code

6.2.1 Satellite identifiers

6.2.3 Fixed pressure levels and RT validation bounds

6.2.4 Radiance observation errors, bias and emissivity

6.3 Set-up for geopotential thickness and PWC

6.3.1 Layers

6.3.2 Observation errors

6.4 Observation operators

6.4.1 Radiances

6.4.2 Thicknesses

6.4.3 Precipitable water from SATEM and SSM/I

6.4.4 Scatterometer winds

6.1 INTRODUCTION

The processing within 3D/4D–Var of satellite data follows the general layout presented inSections 2.4and2.5of

Chapter 2 ‘3D variational assimilation’. The same vertical interpolation routines as inChapter 5 ‘Conventional

observational constraints’are used whenever possible. The main difference in the organization is that the rad

transfer code, RTTOV-5 (Saundersand Matricardi1998), currently requires the model profiles to be interpolat

to 43 fixed pressure levels from 1013.25 hPa to 0.1 hPa on which the radiative transfer coefficients are deter

The current operational configuration uses TOVS radiances (Anderssonet al. 1994), SCAT ambiguous surface

winds (Stoffelenand Anderson, 1997), SSM/I total column water vapour and wind speed (Gerard and Saund

1999;Phalippou, 1996;Phalippouand Gérard, 1996) and SATOB cloud motion winds of various types (Tomassini

et al.1997). Operators also exist for SATEM thicknesses and PWC (Kelly and Pailleux, 1988;Kelly et al.1991),

and radiances from geostationary satellites. Cloud motion winds (SATOBs) are used just like any other uppe

wind observations (Chapter 5 ‘Conventional observational constraints’ ) and will not be discussed any further.

At the introduction of 21r1 (May 1999) we move from the use of RTOVS cloud-cleared radiances to 1C, or ‘

radiances, which do not require the 1D-Var retrieval step.

6.2 SET-UP OF THE RADIATIVE -TRANSFER CODE

There are two set–up routines (GETSATID andRTSETUP) for the radiative transfer computations and both a
53
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called fromSURAD. The routineRTSETUPcallsRTTVI (tovscode) which reads in the transmittance coefficien

to memory for the satellites present. The file containing these coefficients isrt_coef_ieee.datfor TOVS and all

satellites from VTPR through to NOAA-15 are supported.

6.2.1  Satellite identifiers

Satellite identifiers are dealt with in just one place in the IFS and that is in the routineGETSATID. The ODB con-

tains the identifiers as given in the original BUFR messages. Lists of identifiers for which data exist in any

ODB are prepared in the routine MKGLOBSTAB. The routineGETSATID matches those BUFR satellite identi

fiers with the more traditional satellite numbers, used by the RT–code (e.g. 10 for NOAA–10 and 5 for ME

SAT). The id–conversion tables can be modified through a series of namelists: NAMTOVS; NAMDM

NAMMETEOSAT; NAMGOES; and NAMGMS. The satellites are furthermore associated with an ‘area’ num

(between 1 and 20) to be used as an array index in the table (FJO,Subsection 2.5.3), and with a sequence

number for addressing the transmittance coefficients within the RTTOVS code, for example. Note that th

quence number is universally determined across all processors, so if NOAA-12 (BUFR id=202) is satellite

one processor then it will be satellite-1 on all other processors, too.

6.2.2  Satellite sensors

The various types of radiance data are classified by sensor. Each satellite sensor is assigned a number, inyomtvrad:

currently HIRS=0, MSU=1, SSU=2, AMSUA=3, AMSUB=4, SSMI=6, VTPR1=7, VTPR2=8 and METE

SAT=20. The sensor number is used as index to various tables containing observation errors, BgQC thre

VarQC parameters, et cetera. See the routineDEFRUN.

6.2.3  Fixed pressure levels and RT validation bounds

The list of the 43 fixed pressure levels is passed from the RTTOV library (where they have been read from the

mittance coefficients file) toRTSETUPandSURAD and copied toyomtvrad. RTSETUPalso similarly obtains

(from RTTOV) lists of temperature, humidities and ozone limits indicating the vaild range of the RT transmit

regression. The RT code is not reliable in conditions beyond these limits. Checks are applied inRADTR.

6.2.4  Radiance observation errors, bias and emissivity

Observation errors and bias corrections for 1C radiances are written to the odb in a call toRAD1COBE(from

HRETR). The bias correction is stored in the NCMTORB word and later applied at each iteration of 3D/4D

in the routineHDEPART, Subsection 2.5.2of Chapter 2 ‘3D variational assimilation’. Microwave (EMIS_MW)

and infrared (EMIS_IR) emissivity are computed in RAD1CEMIS and stored in the odb for later use by RT

6.3 SET-UP FOR GEOPOTENTIAL THICKNESS AND PWC

NESDIS or 1D-Var thickness and/or PWC data are currently not used in operations (since August 1997, cy

but may be switched on by blacklist changes. 1D–Var thicknesses were assimilated in 3D–Var north of

layers from 1000 hPa to 100 hPa and NESDIS thicknesses were assimilated above 100 hPa globally from

1996 to August 1997. Lower resolution 500 km SATEM thicknesses are also available as a backup.

6.3.1  Layers

The extended odb (prior to screening) contains the reported layers of SATEM thickness and PWC. The sp

Jo

70°
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tion of the layers that will be used by 3D/4D-Var is given inSURAD. The reported layers may need splitting

(THINUP) or summing up (SUMUP). This is done in the routineTHICKPWC, called fromSATEM, in the screen-

ing configuration of IFS. The compressed ODB after screening contains only those layers to be used by the

sis. The splitting and summing up of thickness layer is not desired unless the thickness data are actually g

be used actively. As the data are only used for monitoring, operationally, it is preferable to calculate departu

the reported layers. This is controlled by the switch LSUMUPTOVS=.F. (default since L50) in NAMSCC.

6.3.2  Observation errors

The observation errors are given inSURAD and assigned inTHICKPWC. Observation errors are otherwise nor

mally assigned in obsproc. Thicknesses and PWC are an exception because the layers to be used by the

are not known by the obsproc program. (TOVS radiances observation errors are another exception – they

signed by 1D-Var, seeChapter 10 ‘Observation screening’for more details). The thickness errors (but not PWC

include a persistence error which is calculated using a routine of obsproc (PEREREV). There are no realistic

ness observation errors available for the ‘un-summed up’ reported layers (see LSUMUPTOVS=.F. abov

these data an ad-hoc thickness error corresponding to 1 K layer-mean temperature is inserted in ODB and

the (diagnostic!) costfunction computation. Those data cannot be used actively unless realistic observatio

are set.

The PWC errors are given by

(6.1)

where is the saturation PWC for the temperature profile of the background, is the truncation

original BUFR report ( ), and is the relative accuracy of the PWC observation, set to 0.15 (

in YOMTVRAD). is calculated usingEq. (5.14)in a call toPPOBSAfrom SATEM with replaced by

the saturation specific humidity  from FOQS:

(6.2)

with , the saturation vapour pressure, computed byEq. (5.11).

6.4 OBSERVATION OPERATORS

The computation of radiances is initiated and controlled by theHOProutine. Thicknesses, PWC and TPW are als

computed inHOPand SCAT data too are processed inHOP. The general structure ofHOPhas been detailed in

Subsection 2.5.2.

6.4.1  Radiances

The routineHOPinterpolates the model profiles of temperature, humidity and ozone ( , and ) to the 4

levels ( and ) and calls the interfaceRADTR to the RT codeRTTOV. The standard routinesPPT(Section 5.6

of Chapter 5 ‘Conventional observational constraints’) andPPQ(Section 5.5) are used to carry out the vertica

interpolation, and they are called through the PPOBSA interface, as usual. Various radiance preparations ha

gathered in the new routineHRADP. In HRADPThe model’s pressure at the surface height of the observation

σPWC αrelPWCsat( )2 σtrunc
2+=

PWCsat σtrunc

0.5 kg m 2–= αrel

PWCsat q
qsat

qsat

Rdry

Rvap
-----------

esat T( )
p

-----------------

1
Rdry

Rvap
----------- 1– 

  Rdry

Rvap
-----------

esat T( )
p

-----------------–

----------------------------------------------------------------=

esat
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Ṫ q̇
55

IFS Documentation Cycle CY23r4 (Edited  19  September  2003)



Part II: ‘Data assimilation’

d

e cal-

proach

rt of the

replac-

ur-

on).

ins only

odel ra-

ts the

t size

pointers

dient to

r

C data.

C for

nd -

part. In

cost-

back-
cation (given in the report) is calculated, usingPPPMER. For the purpose of radiance calculations an

. These quantities represent a very shallow layer of air near the surface and contribute little to th

culated radiances—it was not considered necessary to usePPT2MandPPRH2M(Section 5.7) in this context. In

order to make the radiance cost function continuous in it was necessary to ensure that and ap

and as the pressure on any of the RT levels approches . This is done in a section ofHRADP. More

details on the radiative transfer codeRTTOV can be found inEyre (1991), updated bySaundersand Matricardi

(1998), (available on-line ps–file).

Some of the radiance channels are highly sensitive to the surface skin temperature, which is also not pa

variational control variable when RTOVS data are used. It was found that the best results were obtained by

ing the model’s with those retrieved by 1D-Var. The 1D-Var retrieval is carried out in a call toADVAR from

HRETR, called fromTASKOB in the screening configuration only.

In the case of 1C, or ‘raw’ radiance data, as used since May 1999 (McNallyet al. 1999) 1D-Var is no longer re-

quired. The radiance processing inHOPis similar for both 1C and RTOVS radiances, with the exception that s

face skin temperature is retrieved by 4D-Var at each 1C-field of view, if the switch LTOVSCV is on (default is

In HOPthe observation array is searched for radiance data. The compressed ODB (after screening) conta

those data to be used by the analysis. A list of existing channel numbers for each report is constructed. M

diances for exactly those channels are then requested from the RT–code, via the interfaceRADTR. The routine

RADTR checks that the input model profile is within the valid range of the transmittance regression. It packe

profiles into chunks of work of the appropriate maximum size for the RT–code (currently 65). The RT packe

has been communicated to IFS in the call toRTSETUP. The output is radiances for the channels requested.

The tangent linearHOPTLand the adjointHOPADfollow the same pattern asHOP. In both the TL and the adjoint

and have to be recomputed before the actual tangent linear and adjoint computations can start. The

to the radiance data in observation array are obtained just as it was done in the direct code. The input gra

the adjoint is obtained as explained inSubsection 2.5.2.

6.4.2  Thicknesses

The pressures of layer bounds (top T, and bottom B) are found (inHOP) by scanning the observation array fo

thickness data. The geopotential for the top and the bottom of the layer are computed, usingPPGEOP(Section 5.3),

and the thickness is given by the difference .

6.4.3  Precipitable water from SATEM and SSM/I

As for thicknesses, the pressures of layer bounds are found by scanning the observation array for TOVS PW

For SSMI TPW, the top pressure is set to the top of the model and the lower pressure bound is . The PW

the top and the bottom of the layer are computed, usingPPPWC(Section 5.5), and the layer PWC is given by the

difference .

6.4.4  Scatterometer winds

In HOP, the observation array is scanned for SCAT data. Normally two ambiguous pairs of –component a

component observations are found at each SCAT location—with directions approximately 180 degrees a

3D/4D-Var both winds are used and the ambiguity removal takes place implicitly through the special SCAT

function, Eq. (2.8), in HJO (Stoffelenand Anderson,1997 ;Gaffard et al. 1997). If however LQSCATT=.true.

(namjo), the normal quadratic will b e used. In this case only the SCAT wind nearest the high resolution

ground will be used (which is determined in a section ofHOP).

T2m Tl=

q2m q̇40=

psurf Ṫ q̇
T2m q2m psurf

Tsurf

Ṫ q̇

φT φB–

ps

PWCB PWCT–

u v
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same

l. The
As PPUV10M(Section 5.7) is used also for SCAT data (since cy18r6), the observation operator is exactly the

as for SYNOP. SHIP and DRIBU winds. The (surface roughness) comes from the coupled wave mode

simpler logarithmic wind law can be used optionally under the switch LSCASUR=.F. inNAMOBS (true by de-

fault).

In the adjoint (SURFACAD) there is a separate section ofHOP for the calculation of the .

z0

∇obsJSCAT
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Part II: D ATA ASSIMILATION

CHAPTER 7   Background, analysis and forecast errors

Table of contents

7.1 Nomenclature

7.2 Input and ‘massaging’ of background errors

7.3 Diagnosis of background error variances

7.4 Calculation of eigenvalues and eigenvectors of the Hessian

7.5 The Preconditioner

7.6 Calculation of analysis-error variances

7.7 Calculation of forecast error variances

7.1 NOMENCLATURE

The calculation of standard deviations of background errors is unfortunately an area where the use of ina

nomenclature is widespread. For example, standard deviations of background error are almost universally

to as ‘background errors’. Likewise, standard deviations of analysis and forecast error are referred to as ‘a

errors’ and ‘forecast errors’. Although inaccurate, this nomenclature has been adopted in the following for th

of brevity.

A second source of confusion is that terms ‘background error’ and ‘forecast error’ are often used interchang

This confusion has even crept into the code, where the buffer which contains the standard deviations of back

error is called FCEBUF. Such confusion is clearly unwise when discussing the calculation of forecast error

following sections will describe the processing of error variances during a single analysis cycle. The term

ground error’ will refer exclusively to the standard deviations of background error which are used in the

ground cost function. The background errors are an input to the analysis. The term ‘forecast error’ will refer

estimate of the standard deviation of error in a short-term forecast made from the current analysis. The f

errors are calculated by inflating an estimate of the standard deviation of analysis error, and are an output f

analysis system.

7.2 INPUT AND ‘MASSAGING’ OF BACKGROUND ERRORS

Background errors for use in are initialised by a call toSUINFCE. This is part of the set-up descibed in

Subsection 4.3.3. First, a call toINQGRIB is made. This returns a description of the data in the background e

file (filenameerrgrib ). COMMFCE1communicates the description of the data to other processors. After chec

some parameters and allocating arrays to hold the background errors, a call toREADGRIB reads the errors into a

local array. The errors are communicated to the other processors by a call toCOMMFCE2. Optionally (under the

control of LFACHR) the errors may be increased in the tropics at this stage. (This is not done by default, and

recommended.) The background errors may be on a regular latitude–longitude, or reduced Gaussian grid. T

interpolated bilinearly in latitude and longitude onto the reduced Gaussian analysis grid by a call toSUHIFCE.

Jb Jb
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At this stage, all processors have complete fields of background error. Each processor now allocates a buff

fusingly called FCEBUF) inyomfcebto hold background errors for those gridpoints which are local to the pr

essor.

A large loop over variables follows. For each variable, the GRIB parameter code is examined. Depending

setting of LSTABAL, LRDQERR, and on the presence or absence of vorticity errors in the background erro

the variable may be ignored (by cycling VARIABLE_LOOP) or an offset, IOFF, into the background error b

is calculated.

The background errors are interpolated onto the model levels by a call toSUVIFCE. A number of variable-depend-

ent things now happen. First, geopotential height errors are converted to geopotential by multiplying by . S

wind component errors are converted to vorticity errors by anad hocscaling. (Note that if vorticity errors are avail-

able in the file, then these will be used by preference. Wind component errors will be ignored.) Finally, if erro

the unbalanced components of temperature, divergence, ozone or surface pressure are not present in th

corresponding elements of the background error buffer are initialized to sensible values.

Background errors for specific humidity are read from the background-error file if the namelist variable LRDQ

is set. Currently, it is usual to calculate specific humidity errors as a function of background humidity and va

other parameters. This is done by a call toSTEPO(‘0IB00Z000’), which in turn callsSUSHFCE. The calculation

of background errors for specific humidity is described inSubsection 4.3.4.

Next, one of two routines is called.SUMDFCEcalculates a vertically average ‘pattern’ of background error. T

is required if the background errors are to be represented as a product of a vertical profile of global mean er

a horizontal pattern, and was the default with the ‘old’ . The pattern is stored in FGMWNE. Note in parti

thatSUMDFCEis called if horizontally-constant background errors are requested by setting LCFCE. In this

all elements of FGMWNE are set to one.

Alternatively,SUPRFFCEis called to calculate global mean profiles of the input background errors. This is

default. The profiles are stored in FCEIMN.

The final step in processing the background errors is to callSTEPO(‘00000Y000’). This, in turn, callsSUSEPFCE

to modify the background errors. The modification takes one of two forms. If separable background error

been requested, the contents of the background error buffer are replaced by the product of the vertical profil

in FCEMN and the horizontal pattern stored in FGMWNE. Otherwise, the background errors for each varia

each level are multiplied by the ratio of the corresponding elements of FCEMN and FCEIMN. The result o

operation is to adjust the global mean profiles of background error to match those stored in FCEMN.

7.3 DIAGNOSIS OF BACKGROUND ERROR VARIANCES

The analysis errors are calculated by subtracting a correction from the variances of background error. The fir

in the calculation is therefore to determine the background error variances. This is done by subroutineBGVECS,

which is called fromCVA1. One of two methods may be employed, depending on whether NBGVECS is equ

or greater than, zero. In either case, the estimated variances of background error are stored in the analy

buffer, ANEBUF (inyomaneb).

If NBGVECS is zero, as it is by default, then background errors for variables which are explicitly present i

background error buffer, FCEBUF, are copied into ANEBUF and squared. Errors for those variables whose

ground errors are defined implicitly through the change of variable are estimated using simple scaling of ap

ate explicit errors. This scaling is performed by a call toESTSIGA.

If NBGVECS is non-zero, then the variances of background error are estimated using randomization. This m

g
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assumes that the change of variable transforms the background error covariance matrix into the identity m

sample of NBGVECS vectors drawn from a multi-dimensional Gaussian distribution with zero mean and id

covariance matrix is generated by calls to the Gaussian random number generatorGASDEV. These vectors are

transformed to the space of physical variables byCHAVARIN. The transformed variables form a sample draw

from the distribution of background errors. A call toSTEPO(‘0AA00A000’) transforms each vector to gridpoint

space and accumulates the sums of squares in ANEBUF. Finally, the sums of squares are divided by the nu

vectors by a call toSCALEAEto provide a noisy, but unbiassed estimate of the variances of background erro

tually used in the analysis. The noise may be filtered by a cal toFLTBGERR, which transforms the variances to

spectral coefficients, multiplies each coefficient by , and then transform

grid space. The default is to filter with a very large value of NBGTRUNC. Effectively, the background error

simply spectrally truncated. It is highly recommended that the filtering is performed, since it prevents a grid

numerical instability which occurs when the error growth model introduces spatial features which cannot

solved by the spectral control variable.

The code allows two further configurations of the background error estimation. Neither is operational at pr

The two configurations are controlled by switches LBGOBS and LBGM (namvar), respectively. If LBGOBS

then the full set of tangent-linear observation operators will be applied to the NBGVECS random vectors, in

grid point space. This is done in the routineBGOBScalled fromVEC2GP, under SCAN2MTL. The TL routines

are required as the observation operators have been linearized around the background state. The resultback-
ground errors in observation space. They are stored and accumulated in ANEBUF and written out as grib-fie

for geopotential, temperature, wind, humidity, total ozone, total column water vapour, TOVS and ATOVS rad

channels, 10 metre wind and 2 metre temperature. If in addition LBGM=.T. then the randomized estimate of

ground error will be propagated in time, using the adiabatic tangent linear model, i.e. a call toCNT3TL from

BGVECS. The eigenvectors of the analysis Hessian (next section) are also propagated similarly in time, by

to CNT3TL from XFORMEV, to obtainflow dependent background errors. The number of model integrations

required by LBGM is NBGVECS+invtot, which is typically 50+100=150. If LBGM=.T. then the simplified err

growth model (Section 7.7) is not used. In that case the routine ESTSIG is used only to limit the error growth

duced by the model to within 10 and 90 % of the climate variance for vorticity.

The background errors diagnosed byBGVECSmay be written out for diagnostic purposes by setting LWRISIG

The errors are written by a call toWRITESD (called fromCVA1)..

7.4 CALCULATION OF EIGENVALUES AND EIGENVECTORS OF THE HESSIAN

The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvectors of the

of the cost function. This is done using a combined Lanczos and conjugate-gradient algorithm,CONGRAD, called

from CVA1 under the control of LAVCGL. Note thatCONGRADrequires that the cost function is strictly quad

ratic. The tangent linear model and observation operators must be invoked by setting L131TL and LOB

(L131TL should be set even in 3D-Var.) Variational quality control must be disabled by unsetting LVARQCG

LQSCATT must be set to request a quadratic cost function for scatterometer observations.

CONGRADstarts by transforming the initial control variable and gradient to a space with euclidian inner pro

Typically, this transformation is simply a multiplication by SCALPSQRT, but may also involve precondition

via calls toPRECOND. The transformed initial gradient is normalized to give the first Lanczos vector. Depen

on the setting of LIOWKCGL, the Lanczos vectors are stored either on the MIO file associated with unit N

CGL, or in the allocated array VCGLWK.

Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of the Hessian

latest search direction. This is calculated as . This finite difference form

cos2 min n NBGTRUNC⁄( ) 1,( )π 2⁄( )

J″d d J x0 d d⁄+( )∇ J x0( )∇–( )=
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The optimal step is calculated as the point at which the gradient is orthogonal to the search direction. The

variable and gradient at the optimal point are also calculated. Once the gradient at the optimal point is know

orthogonalized with respect to previous gradients, and the search direction and gradient for the next itera

calculated. The tridiagonal matrix of the Lanczos algorithm is initialized and its eigenvalues and eigenvecto

determined by a call to the NAG routineF08JEF.

The leading eigenvalue of the tridiagonal system is compared against the leading converged eigenvalue of

sian matrix. This provides a sensitive test that the algorithm is behaving correctly. Any increase in the lead

genvalue provides an early indication of failure (for example, due to a bad gradient) and the algorit

immediately terminated. The calculation is not aborted, since the test detects the failure of the algorithm bef

converged eigenvalues and eigenvectors become corrupted.

The new Lanczos vector is calculated by normalizing the gradient and the subroutine loops back to perfo

next iteration.

After the last iteration, the converged eigenvectors of the Hessian are calculated by callingWREVECS. Note that

the criterion used to decide which eigenvalues have converged is relaxed at this stage to ,

is given by EVBCGL. The default vaule for EVBCGL is .The eigenvectors are passed toXFORMEV, which

calculates the analysis errors. This part of the calculation is described inSection 7.6.

Finally,CONGRADtransforms the control vector and gradient from the euclidian space used internally to the

space of the control variable.

7.5 THE PRECONDITIONER

CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the He

matrix of the cost function. The preconditioner used inCONGRAD is a matrix of the form

(7.1)

where the vectors are orthogonal. The pairs are calculated inPREPPCM, and are intended to approx-

imate some of the eigenpairs (i.e. eigenvalues and associated eigenvectors) of the Hessian matrix of the c

tion. They are calculated as follows.

A set of  vectors, , is read in usingREADVEC. These vectors are assumed to satisfy

(7.2)

where is the background-error covariance matrix, and is the analysis-error covariance matrix. Vectors

meet this criterion can be written out from an earlier forecast error calculation by setting LWRIEVEC. The ve

are transformed to the space of the control vector by calls toCHAVAR to give an approximation to the inverse o

the Hessian matrix

J″v λv– ε v<
ε 0.1

I µi 1–( )wiwi
T

i 1–

L

∑+

wi µi wi,{ }

L ui

B uiui
T

i 1=

L

∑– Pa≈

B Pa
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(Here,  denotes the change-of-variable operator implemented byCHAVAR.)

Let us denote by the matrix whose columns are the vectors . A sequence of Householder transforma

now performed to transform to upper triangular. Let us represent this sequence of Householder trans

tions by the matrix . Then is upper triangular, which means that is zero except fo

 block in the top left hand corner.

It is clear that has only non-zero eigenvalues. Moreover, the non-zero eigenvalues are t

genvalues of the block matrix, and the eigenvectors of are the eigenvectors of the

matrix, appended by zeroes. These eigenvalues and eigenvectors are calculated by a call to the NAG

F02FAF.

Now, since  is an orthogonal matrix, we have . So, we may writeEq. (7.3) as

(7.4)

Let us denote the eigenpairs of  by . Then we may writeEq. (7.4) as

(7.5)

The orthogonality of and the orthonormality of the eigenvectors , means that the vectors are orth

mal. They are, in fact, the required vectors,  of the preconditioner matrix.

InvertingEq. (7.5) gives

(7.6)

Defining  gives the required approximation to the Hessian matrix.

The preconditioner vectors are sorted in decreasing order of , and all vectors for which are rejected.

vectors cannot be good approximations to eigenvectors of the Hessian matrix, since the eigenvalues of the

matrix are all greater than or equal to one. A final refinement to the calculation is to reduce large values of

maximum of 10. This was found to be necessary in practice to avoid ill-conditioning the minimization.

The numbers  are stored in RCGLPC. The vectors,  are stored in VCGLPC.

Application of the preconditioner is straightforward, and is performed by subroutinePRECOND. This routine can

also apply the inverse, the symmetric square root, or the inverse of the symmetric square root of the precon

matrix. Application of the latter matrices relies on the observation that if

I Lu i( ) Lu i( )T

i 1=

L

∑– J″( ) 1–≈

L

U ui

LU
Q QLU QLU( ) QLU( )T

L L×

QLU( ) QLU( )T L
L L× QLU( ) QLU( )T

Q QQT I=

I Q T QLU( ) QLU( )TQ– J″( ) 1–≈

QLU( ) QLU( )T ρi vi,{ }

I ρi QTvi( ) QTvi( )
T

i 1=

L

∑– J″( ) 1–≈

Q vi QTvi

wi

I
1
ρi
----wiwi

T

i 1=

L

∑– J″≈
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with orthonormal , then the expressions for , and result from replacing inEq. (7.7)by

,  and  respectively.

7.6 CALCULATION OF ANALYSIS -ERROR VARIANCES

The eigenvectors and eigenvalues of the Hessian matrix calculated byCONGRAD are passed toXFORMEV,

which uses them to estimate the analysis error variances. If preconditioning has been employed, then the e

tors and eigenvalues provide an approximation to the preconditioned Hessian, , of the form

(7.8)

The approximation is equivalent to setting to one all but the leading eigenvalues of the preconditioned H

The first step is to undo the preconditioning. Multiplying to the left and right by , gives

(7.9)

Substituting for the preconditioner matrix fromEq. (7.7), gives the following

(7.10)

where

(7.11)

Operationally, preconditioning is not used. HoweverXFORMEV makes no particular use of this fact. It simply se

 to zero inEqs. (7.10) and(7.11).

The first step inXFORMEV is to calculate the vectors . They are stored in VCGLWK.

The next step is to invert the approximate Hessian matrix defined byEq. (7.10). Let be the matrix whose columns

are the vectors . Then, applying the Shermann–Morrison–Woodbury formula, the inverse of the appro

Hessian matrix is

M I µi 1–( )wiwi
T

i 1–

L

∑+=

wi M 1– M 1 2⁄ M 1 2⁄– µi

1 µi⁄ µi 1 µi( )⁄

M 1 2⁄– J″M 1 2⁄–

M 1 2⁄– J″M 1 2⁄– I λi 1–( )vivi
T

i 1=

K

∑+≈

K

M 1 2⁄

J″ M λi 1–( ) M 1 2⁄ vi( ) M 1 2⁄ vi( )
T

i 1=

K

∑+≈

J″ I sisi
T

i 1=

L K+

∑+≈

si
µi 1–( )1 2⁄ wi for i 1…L=

λi L– 1–( )1 2⁄ M 1 2⁄ vi L– for i L 1…L K+ +=





=

L

si

S
si
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(7.12)

The matrix is formed and its Cholesky decomposition is calculated using the NAG routine F07FDF.

gives a lower triangular matrix  such that

(7.13)

The matrix  is calculated by back-substitution.

The final stage in the calculation of the analysis errors is to transform the columns of the matrix t

space of model variables by appplying the inverse change of variable,CHAVARIN. This gives the required ap-

proximation to the analysis error covariance matrix

(7.14)

where , and where represents the inverse of the change of variable. The columns of m

written out (e.g. for diagnostic purposes, or to form the preconditioner for a subsequent minimization) by s

LWRIEVEC. The columns of are then transformed to gridpoint space, and their sums of squares (i.e. the

onal elements of in gridpoint space) are subtracted from the variances of background error which were

in ANEBUF before the minimization byBGVECS.

The analysis errors are calculated as the difference between the background errors and a correction deriv

the eigenvectors of the Hessian. If the background errors are underestimated, there is a danger that the co

will be larger than the background error, giving negative variances of analysis error. This is unlikely to hap

the background errors are estimated using randomization, or for variables whose background errors are e

specified in the background cost function, but is possible for variables such as temperature whose backgro

rors are not explicitly specified. To guard against this eventuality, if NBGVECS is zero, then the variances o

ysis error for variables whose background errors are not explicit are estimated by applying a scaling to the e

variables by a call toESTSIGAfrom CVA1. The variances are then converted to standard deviations and wr

out by a call toWRITESD.

7.7 CALCULATION OF FORECAST ERROR VARIANCES

The analysis errors are inflated according to the error growth model ofSavijärvi (1995) to provide estimates of

short term forecast error. This is done by a call toESTSIG. There is also an option to advect the background erro

for vorticity as if they were a passive tracer. The advection is performed byADVSIGA.

The error growth model is

(7.15)

Here, represents growth due to model errors, represents the exponential growth rate of small errors, a

represents the standard deviation of saturated forecast errors.

The saturation standard deviations are calculated as times the standard deviation of each field. The s

deviations have been calculated for each month from the re-analysis dataset.ESTSIGreads these climatological

error fields from file ‘stdev_of_climate’ by callingREADGRIB, and interpolates them in the horizontal and vertic

J″( ) 1– I S I STS+( )
1–
ST–≈

I STS+( )
C

J″( ) 1– I SC 1–( ) SC 1–( )
T

–≈

SC 1–( )

SC 1–( )

Pa B VV T–≈

V L 1– SC 1–= L 1– V

V
VV T

dσ
dt
------ a bσ+( ) 1 σ

σ∞
------– 

 =

a b σ∞

2
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usingSUHIFCEandSUVIFCE. The climatological errors may also be artificially increased in the tropics un

the control of LFACHRO. This is the default, and is recommended in preference to using LFACHR, since it m

that the forecast errors that are archived, and are used to screen observations, are closer to those used to

the background cost function. If climate standard deviations are not available for any field, they are estima

10 times the global mean background error for the field.

The growth due to model error is set to 0.1 times the global mean background error per day. The exponential

rate, , is set to 0.4 per day.

The error growth model is integrated for a period of NFGFCLEN hours. The integration is done analytically

the expression given bySavijärvi (1995). Two precautions are taken in integrating the error growth model. F

negative analysis error variances are set to zero. Second, the growth rate due to model error is limited to a

value with respect to the saturation errors. This was found to be necessary to prevent numerical problem

calculating specific humidity errors for the upper levels of the model.

ESTSIGoverwrites the contents of ANEBUF with the estimated variances of forecast error. The variances ar

verted to standard deviations and written out byWRITESD.

b
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Part II: D ATA ASSIMILATION

CHAPTER 8   Gravity-wave control

Table of contents

8.1 Introduction

8.2 Normal-mode initialization

8.3 Computation of normal modes

8.3.1 Vertical modes

8.3.2 Horizontal modes and help arrays

8.4 Implementation of NMI

8.5 Computation of

8.6 Digital filter initialization

8.7 Implementation of DFI as a weak constraint in 4D-Var

8.1 INTRODUCTION

In 3D-Var, gravity-wave control is achieved via the techniques of normal-mode initialization (NMI), in 4D-V

weak constraint digital filter is used. The construction of a high-resolution analysis by combining a high-reso

background with increments defined at lower resolution makes direct use of an incremental form of nonlinea

as inChapter 1 ‘Incremental formulation of 3D/4D variational assimilation—an overview’for 3D-Var andChapter

3 ‘4D variational assimilation’ Eq. (3.3)for 4D-Var. There is an initialization step in creating the low-resolutio

background field, seeSection 2.2. Computation of the penalty term (seeEq. (1.1)) is based on NMI methods

for 3D-Var, on DFI for 4D-Var.

Section 8.2provides a brief overview of NMI techniques, together with references to scientific papers in w

further details can be found.Section 8.3describes the computation of normal modes and related arrays.Section 8.4

documents the implementation of nonlinear NMI in 3D- and 4D-Var, whileSection 8.5describes the computation

of . Section 8.6gives an overview of digital filter initialization techniques whileSection 8.7describes its imple-

mentation.

8.2 NORMAL -MODE INITIALIZATION

If the model equations are linearized about a state of rest, the solutions can (with a certain amount of arbitra

be classified into ‘slow’ (Rossby) and ‘fast’ (gravity) modes. This classification defines two mutually orthog

subspaces of the finite-dimensional vector space containing the model state . Thus, the model state can b

as

(8.1)

where is the ‘slow’ component and the ‘fast’ component.Linear NMI consists of removing the fast com-

Jc

Jc

x

x xR xG+=

xR xG
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ponent altogether ( ). Since the model is nonlinear, a much better balance is obtained by setting thetenden-

cy of the fast component to zero ( ); it is this balance condition whichnonlinear NMI seeks to impose.

Nonlinear NMI was first demonstrated byMachenhauer(1977), in the context of a spectral shallow-water mode

For a multi-level model, the first stage in the modal decomposition is a vertical transform; each vertical mod

has its own set of horizontal slow and fast modes (for the shallower vertical modes, all the corresponding hor

modes can be considered as ‘slow’). In the case of a multi-level spectral model using the ECMWF hybrid v

coordinate the details may be found in the report byWergen(1987), which also describes techniques for taking in

account forcing by physical (non-adiabatic) processes and the diurnal and semi-diurnal tidal signals. Alt

these options are still coded in the IFS, they are no longer used operationally at ECMWF and will not be des

in this documentation.

Implicit normal mode initialization (Temperton1988) is based on the observation that, except at the largest h

zontal scales, the results of NMI can be reproduced almost exactly without computing the horizontal normal

at all. The calculation reduces to solving sets of elliptic equations. In the case of a spectral model (Temperton

1989), these sets of equations are tridiagonal in spectral space. The IFS code includes the option of ‘parti

plicit NMI’, in which the initialization increments are computed using the full ‘explicit’ NMI procedure for lar

horizontal scales while the remaining increments at smaller horizontal scales are computed using the simp

plicit procedure.

8.3 COMPUTATION OF NORMAL MODES

8.3.1  Vertical modes

The vertical normal modes depend on the number of levels in the model and on their vertical distribution. The

depend on the choice of reference temperature SITR (assumed isothermal) and reference surface pressur

The vertical modes used by the initialization routines are also used in the semi-implicit scheme for the forw

tegration of the model. The computation of and also uses the vertical normal modes, but for these pu

different values of SITR and SIPR may be selected. Thus the vertical modes are computed both inSUDYN and

SUSINMI, the latter being used especially in 4D-Var where it is necessary to alternate between applications

different choices of SITR and SIPR. The vertical modes are computed by first callingSUBMAT to set up a vertical

structure matrix and then calling an eigenvalue/eigenvector routine EIGSOL (at the end of SUDYN, it calls ro

RG in the auxiliary library). After reordering and normalization, the eigenvectors (vertical modes) are stored

matrix SIMO, while the corresponding eigenvalues (equivalent depths) are stored in the array SIVP. The inv

SIMO is computed and stored in SIMI.

8.3.2  Horizontal modes and help arrays

The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral trunca

MAX. For ‘explicit’ NMI, NXMAX is equal to the model’s spectral truncation NSMAX. Normally, ‘partially im-

plicit NMI’ is chosen by setting the switch LRPIMP to .TRUE. In this case the explicit NMI increments are u

only up to spectral truncation NLEX (21 by default) but in order to blend the explicit and implicit increm

smoothly, explicit increments are computed up to a slightly higher resolution. By defa

.

For most applications of the NMI procedure in the operational suite, it is considered that the larger horizontal

are best left uninitialized (they include, for example, atmospheric tidal signals and large-scale tropical circu

driven by diabatic processes). To cater for this option there is another logical switch, LASSI (‘adiabatic small

xG 0=

ẋG 0=

Jb Jc

NXMAX NLEX 5+=
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initialization’), which sets to zero all the initialization increments for total wavenumbers up to NFILTM (= 19

default). Since only the small-scale increments are used, the NMI can be completely implicit: NLEX is set to

there is no need to calculate the ‘explicit’ horizontal normal modes.

All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical modes. By def

NVMOD = 5.

The horizontal modes are computed by callingSUMODE3. In turn,SUMODE3Ecomputes the explicit modes and

their frequencies whileSUMODE3Icomputes the ‘help’ arrays required to invert the tridiagonal systems enco

tered in implicit NMI.

8.4 IMPLEMENTATION OF NMI

Nonlinear NMI is invoked by callingNNMI3. Model tendencies are computed by callingSTEPOto perform one

(forward) timestep. The tendencies are then supplied toMO3DPRJwhich computes the required increments, usin

the ‘explicit’ (Machenhauer) or the ‘implicit’ scheme (or both, after which the results are merged). The increm

are added to the original spectral fields and the process is iterated NITNMI (by default 2) times.

8.5 COMPUTATION OF

In the notation ofEq. (8.1), the penalty term  is defined by

(8.2)

where is an empirically chosen weighting factor, is the current state of the control variable and is the

ground. The norm is based on a weighted sum of squares of spectral coefficients. Only the first NVMO

tical modes are included in the evaluation of(8.2).

is computed by calling the routineCOSJC. Control passes throughJCCOMPto NMIJCTL, where is eval-

uated by callingSTEPOtwice, then projecting the differences in the tendencies on to the gravity modes

MO3DPRJ, and finally computing  inNMICOST.

8.6 DIGITAL FILTER INITIALIZATION

Digital filter initialization consists in removing high frequency oscillations from the temporal signal represe

by the meteorological fields. A general description of digital filter initialization can be found inLynch (1993). It

can be implemented as a strong constraint by filtering the model fields at the beginning of each forecast

weak constraint as described inGauthier and Thepaut (2000).

Time oscillations exceeding a cut-off frequency can be filtered by applying a digital filter to a t

series for , being the timestep. This proceeds by doing a convolution of with a

function  so that

Jc

Jc

Jc ε ẋ ẋb–( )G
2=

ε x xb
2

Jc Jc

Jc

ωc 2π( ) Tc⁄=

f k f tk( )= tk k t∆= t∆ f t( )

h t( )

f h• tN( ) hk f N k–

k ∞–=

∞

∑=
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The step function  is found to be

In practice, the convolution is restricted to a finite time interval of time span . We can write

with . This truncation introduces Gibbs oscillations which can be attenuated by introducing a Lan

window which implies that the weights  are defined as  with

An alternative which is used at ECMWF has been proposed by Lynch to use a Dolph-Chebyshev window in

case

where , , and is the Chebyshev polyno

mial of degree . The time span of the window is chosen so that .

8.7 IMPLEMENTATION OF DFI AS A WEAK CONSTRAINT IN 4D-VAR

In the context of variational data assimilation, the digital filter is used as a weak constraint. A penalty term is

to the cost function and replaces the NMI based penalty term.

During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital filter is appli

the increments. This gives a filtered increment valid at the mid-point of the assimilation window (array RACC

The value of the non-filtered increment valid at the same time is also stored (array RSTOSPA).

The weak constraint term which is added to the cost function is the moist energy norm of the departure b

those two states times a weight factor. All these computations are conducted in spectral space and applie

spectral fields. The norm of the departure is computed in two steps. In EVJCDFI, the difference between R

SPA and RSTOSPA is computed and summed in array RSUMJCDFI for each wavenumber. Then, in EVCO

contributions from each wavenumbers and variables are added to obtain the final value of the penalty term

hk

hk
ωck t∆( )sin

kπ
----------------------------=

Ts Ts 2M t∆=

f h• t0( ) αk f k

k M–=

M

∑=

αk h k––=

αk αk h k– Wk–=

Wk
kπ( ) M 1+( )⁄( )sin

kπ( ) M 1+( )⁄
------------------------------------------------=

Wk
1

2M 1+
------------------ 1 2r T2M x0 θm 2⁄cos( ) mθkcos

m 0=

M

∑+=

1 x0⁄ π t∆( ) τs⁄cos= 1 r⁄ 2M x0acosh( )cosh= θk k2π( ) M⁄= T2M

2M τs M t∆=
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Part II: D ATA ASSIMILATION

CHAPTER 9   Data partitioning (OBSORT)

Table of contents

9.1 Introduction

9.2 Data flow with the analysis components

9.3 Observational data partitioning

9.4 Data partitioning scheme

9.5 The parallel data flow of the OBSORT

9.6 OBSORT calling tree

9.1 INTRODUCTION

The observational data partitioning scheme has been encapsulated into a separate module called OBSO

program OBSORT redistributes the observational data across the available processors. Data supported mu

ther in the CMA and/or BUFR formats. As a result the subsequent steps in the general analysis data flow

well load-balanced with respect to observation handling and the total elapsed time for the analysis is reduc

facilities offered by the OBSORT can be used as a stand-alone executable, or used via calling theLIB_OBSORT

subroutine. The latter form is normally used, and is found in the OBSPROC (MAKECMA and FEEDBACK) and

IFS/Screening. We have five different modes of the OBSORT:

• Mode 0, submoduleBUFRsort. Partitioning and splitting of the BUFR data among the availab

processors (no geographical order, though).

• Mode 1, submodule CMA+BUFRsort.Geographical re-ordering of the CMA data in conjunctio

with the counterpart BUFR data; it is consequently called the CMA-data-driven BUFR sort.

• Mode 2, submodule CMAsort.Geographical re-ordering of the CMA data.; it also copes with t

virtual-processor case where fewer processors than are required by the main analysis can p

more CMA files than the actual number of processors used by the OBSORT.

• Mode 3, submoduleMATCHUP. Matching up and updating the ECMA data present in on

geographical distribution with the CCMA data present in another distribution.

• Mode 4, submoduleVMATCHUP. The same as MATCHUP, but for virtual processors. More th

NPROCECMA files are brought back to theNPROCfiles in the same order as the BUFR

counterparts were left after the MAKECMA.

9.2 DATA FLOW WITH THE ANALYSIS COMPONENTS

This section describes OBSORT as a part of the analysis pre- and postprocessing (OBSPROC) and the m

ysis; it illustrates why we need the OBSORT. The following discussion applies to thesingle-processorimplemen-

tation only. In a later section, where the module OBSORT is introduced, the parallel aspects are covered i

detail.

Data-assimilation cycle (seeFig. 9.1) starts by retrieval of BUFR data. Currently there are four different BUF
73
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files involved: conventional observations, or GTS, and TOVS, SCAT and SSMI satellite observations. Files a

pared for a 6-hour data assimilation period both in the 3D- and 4D-VAR contexts. In the near future BUFR fil

12- and even 24-hour periods will be prepared for the 4D-VAR purposes. Storagewise BUFR files occupy

few megabytes to tens of megabytes, depending on a chosen BUFR compression scheme.

In the first stepMAKECMA picks up prepared BUFR files and decodes them. All, except formally erroneous

servational data, are transformed to the CMA format and written to a so-called Extended CMA-file (ECMA)

thermore, the unpacked BUFR data are also written into another BUFR-format-conforming file, where th

BUFR compression rate is relaxed. The output BUFR file maintains the same order of the observations as it

terpart CMA file, which in turn contains only about 80% of the information that is present in the BUFR file.

reduction in information content is the main reason for creating a new BUFR file. However it should be em

sized  that the BUFR data, as such, are not used in the main analysis.

Figure  9.1   Dataflow in observation processing at the ECMWF on a single processor implementatio

In the next step, the ECMA file is passed to the process for screening the observations; this rejects undesir

servations, using information from the meteorological fields within the IFS. At the start-up time the current

of the atmosphere is known in terms of the observations, and in terms of the besta priori estimate of the atmos-

phere, together with the estimate of its uncertainty (or error). The quality of the observations is checked ag

6-hour forecast valid at the analysis time. The screening scheme picks up the best set of observations by r

erroneous, duplicated, blacklisted etc. observations, so that they are omitted from further processing.

All the observations passing this test are written to a so-called Compressed CMA-file (CCMA); this confor

the CMA format, but occupies much less space—about one tenth of the original ECMA. The ECMA file is

updated, since there is a need for data monitoring, even of the rejected observations.

MAKECMA

SCREENING

MINIMIZATION

FORECAST

FEEDBACK

(ECMA)

(CCMA)

(Fields)

(BUFR) (BUFR)

MATCHUP

(ECMA)

(BUFR)
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The observations for the actual data assimilation (the minimization) are passed through a CCMA file. The

read into the memory in one large chunk to make subsequent operations on the data as fast as possible. Inte

and extrapolation from the forecast-model grid-point space to the observation space can take place in a

manner, without the need to carry out complicated data conversions that were a feature of  the older syste

The minimization provides the initial-condition fields for the subsequent global forecast. It also updates the C

file with the observation departures from the analysis fields. At this point it is possible to start feeding inform

back to the archive, but in practice this step is postponed until the time-critical forecast-model run has be

ished.

The subsequent observation-processing step to the minimization is calledMATCHUP; this is part of the OBSORT

library, that is described inSection 9.3. The purpose of MATCHUP is to read the latest CCMA and ECMA da

and return the extra information found in the CCMA file back to the ECMA file. This enables the data, that ex

only as  a reduced set after the minimization, to be included within an ECMA set.

When the ECMA file is up to date, the last part of the process starts with FEEDBACK, the purpose of which

encode the ECMA file back into a highly compressed BUFR format. It also separates data back into the gro

GTS, TOVS, SCAT and SSMI and retains the original input time periods (typically 6 hours). For this purpos

FEEDBACK needs not only the updated ECMA but also the (semi-)original BUFR file from theMAKECMA out-

put. This is necessary because this BUFR file contains some information not present in the ECMA. After F

BACK has run the resulting BUFR files are ready for archiving.

9.3 OBSERVATIONAL DATA PARTITIONING

Due to the high data volume and the time-critical scheduling in operations, it is necessary to parallelize all

vation-processing components. Most of the modules described in the section about the data flow rely on ava

of large memory, since the CMA data are brought into core for efficient data-management reasons. This elim

the need for slow random-access I/O operations when the contents of a particular observation message are

The fact that there is always a limit for the maximum available memory per processor, forces us to look at p

processing almost immediately. At the time of writing, a typical set of the CMA data for a 6-hour data assimil

period consumes a half gigabyte of disk space (or 100–200 MB if packed CMA format is used; see below).

brought into the memory the total CMA array size is often doubled due to the data the shuffling algorithm (s

section on the reshuffling), for which both incoming and outgoing CMA data are kept in memory. Also, some

neglible in-core space is needed to hold certain global table information.

Disk-space consumption by the CMA files is greatly reduced by the introduction of various packed CMA for

The implementation of the packing is such that when CMA data are written out they are packed as a part o

O process using novel vectorizable packing algorithms. The reverse naturally holds when reading the dat

result, file-size reductions, from 50 to 85%, are not uncommon with neglible cost in the ‘on-the-fly’ packing

packing.

Although the screening module effectively reduces the size of the CMA data by an order of magnitude, it

very module which requires maximum amount of in-core memory as well as disk-space time during the cou

a data-assimilation cycle. Fortunately the screening is a part of the IFS and, thus, parallelization in grid

space has been present there from day one. Some additions apart from the OBSORT are needed, though, t

modate full handling of observational data by the IFS.
75

IFS Documentation Cycle CY23r4 (Edited  19  September  2003)



Part II: ‘Data assimilation’

(and

the dis-

others,

ions to

ions as

extrap-

to have

x3

se). A

s are

bser-

s the

e the

the

D-VAR

slot
9.4 DATA PARTITIONING SCHEME

In the parallel implementation it might, at first sight, look feasible to split up observational data set evenly

geographically randomly) among the available processors. However, there are considerable differencies in

tribution of observations over the globe, and thus certain regions might be more ‘expensive to process’ than

because of the variable amount of floating-point operations per observation type when calculating contribut

the cost function in the minimization.

Furthermore, it would be convenient to have approximately the same geographical distribution of observat

in the grid-point space in order to reduce communication between processors during the interpolation and

olation phases. This has led us to assign an observation-type-dependent weight for each CMA report, and

the same processing grid (of size NPROCA times NPROCB) as the main analysis scheme.

Figure  9.2   A typical split of the globe containing observational data, produced by the OBSORT for 2

processor grid. Each box contains approximately the same amount of observations (in a weighted sen

number denotes the processor identifier to which observations in a particular box belong. Partition boxe

different from those used in the grid-point calculations.

We have found the following geographical partitioning of observational data works well, and is practical for o

vation handling (seeFig. 9.2):

1) Set the origin for observational-data space on the Greenwich meridian, since this obey

convention chosen in the GRIB-field origin definition.

2) Choose NPROCA to be the number of latitudinal bands from north to south, and NPROCB to b

number of longitudinal boxes within each latitude band.

3) Set the number of processors to NPROC = NPROCA× NPROCB.

4) Read the local CMA files and build up a table of the observational data that contains

geographical and processor location, the unique sequence number, the time stamp, the 4

time slot, the relative weight, the pointers to local CMA data etc., for each observation

5) Communicate the local table, and sort locally, the resulting global table with respect to time

(4D-VAR) and time stamp, and unique sequence number.

#1

#2

#3

#4

#5

#6
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6) For each time slot, sort the locally available global-information table with respect to latitude (f

north to south). Subdivide the table into the suitable parts, so that every latitude band contains

the same amount of observations in a weighted sense.

7) Continue in similar fashion for each latitude band to resolve the final longitudinal boxes.

8) Assign one box for each processor and update the destination-processor information (the pro

where each particular observation ends up) into the global table.

9) Shuffle the actual CMA data, based on the information in the global table. This step invo

essentially all-to-all communication, where every processor (very likely) sends a few CMA rep

to every other processor (including itself, but via local copies rather than by message passin

efficient way to communicate data is to use parallel data-transfer channels with a tournament

like approach, where each processor communicates with each other processor in turn form

parallel pattern of communication.

Because of inadequate load balancing in the main analysis process, the requirement for strict geographic

tioning has recently been relaxed. In the enhanced scheme, the already resolved partitions are broken up

signing the location of the observations found in a processor box to a new processor. This remapping is d

round-robin fashion where, for example, the observations 1, 2, 3, 4 in the box#1 are destined to the boxes

4, respectively.

9.5 THE PARALLEL DATA FLOW OF THE OBSORT

In the parallel implementation (Fig. 9.3) we have to revise the dataflow diagram described in a previous sect

which was meant only for the single-threaded execution. Program modulesMAKECMA , SCREENING and

FEEDBACK had to be tied to OBSORT in order to run them in parallel with observations. It turns out, that a

to the OBSORT library entry point is the only notable change in introducing parallelism in the observation pro

ing process.

Figure  9.3   Dataflow in observation processing in the parallel scheme.

Read
CMA#1

Read
CMA#2

Read
CMA#3

Communicate 
global table

Sort
table

Sort
table

Sort
table

   Shuffle
  CMA−data

Write
CMA#1
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Before going on, it is advisable to explain some internal details in re-ordering (or shuffling) of the observa

data. We concentrate on CMAsort, where no BUFR data are present. The extra cost of having BUFR

CMA+BUFRsort, would not alter the generality expressed here, though.

Figure  9.4   The five main stages when redistributing CMA data among processors.

Fig. 9.4shows the five main stages in the geographical data re-ordering. Firstly, every processor reads th

CMA-files independently of each other, and establishes local tables that the contain the necessary informa

the subsequent data shuffle. The second stage makes these tables global through defining the all-to-all co

cation steps; thus every processor obtains a local copy of a potentially large table. As a result, every pro

knows all about the initial distribution of observations among the other processors. The third phase re-ord

global tables (now physically local) independently on each processor. In the fourth step the actual shuffle o

data takes place. This is also an all-to-all operation. In the worst case scenario, every CMA report would en

a new owner processor. Finally, the new distribution is written out, again one CMA file per processor indepe

of the others.

A recent change to OBSORT has been to enable more CMA files to be written than processors were avai

OBSORT. This so-called virtual-processor approach allows us to release more resources from the compute

to the main analysis running, possibly with considerably larger number of processors than  OBSORT.

The I/O, in OBSORT, to the CMA file is done in two chunks. Firstly for the DDR sections, and secondly fo

large bulk-data part. All the I/O uses pre-allocation and buffered I/O in addition to a possible ‘on-the-fly’ C

packing. Wherever possible the memory-resident file system is used extensively. Furthermore, a so-called c

nated CMA file has been introduced that containsall (packed) CMA files together in one file. This option has re

duced the I/O contention.

Prior to the actualMAKECMA , we wanted to add functionality that redistributes the few input BUFR files amo

  BUFRsort
 //− MAKECMA
CMA+BUFRsort

//−SCREENING
  CMAsort

MINIMIZATION

FORECAST   Matchup
//−FEEDBACK
 BUFRsort
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the available processors. Despite an extra step, it boosts overall execution performance of the parallel MAKE

since all processors—not only the first few—will enter into the BUFR data decoding phase. Currently each

essor tries to read in one or more BUFR files in a cyclic fashion. If there were fewer files than processors, the

the few first processors would get a single file; others would remain idle for a while. For each BUFR messa

artificial latitude and longitude is assigned. Also, the basic contents of a BUFR message is checked to get a

weight assigned. After this, the BUFR data can be partitioned in a manner of the ‘geographical’ re-orderin

plained earlier. Despite the tricks involved, this method gives good results and offers nearly maximal re-use

existing source code in  OBSORT.

After receiving re-distributed BUFR data,MAKECMA continues to perform its decoding functions, but now in

fully parallel mode. Every MAKECMA process(or) unpacks and writes both a new CMA report and the cou

part BUFR message to a temporary file, one by one. However, the geographical ordering is not optimal

screening purposes. Therefore, the OBSORT needs to be consulted and a CMA-data shuffle followed by a

driven BUFR sort (i.e. CMA+BUFRsort) will be performed as a final substep in  MAKECMA.

The screening proceeds in parallel mode by reading local ECMA files, one per processor, and performing

validation functions. Once the resulting CCMA data set is ready, it may occur that in some of the proce

CCMA data has almost vanished due to different kinds of rejections. Therefore, it is necessary to create ne

graphical distribution of observational data, now applied to the CCMA data. The new reordering is done as

step in the screening.

There is a special function present in the OBSORT for post-adjustment of clustered data. It was found that

different number of processors more data got rejected in one case than in another one. Certain observatio

like AIREPs, tended to cluster around partitions’ boundaries. In the first case, a processor owned all the corre

ing observations, since there were no partition boundaries in the neighbourhood; in the second case an AIRE

ter got effectively split among two adjacent processors. For reproducibility reasons, it was necessary to ch

existence of such clusters and to move the clustered observations completely into the lowest numbered pr

around the processors’ boundary

For a better parallel performance in the minimization it is crucial to obtain a good load balance. Therefore, th

SORT’s unique feature that assigns weights for each observation report plays an important role. There ar

built-in weight functions in OBSORT. Depending on the contents of the observation, a different weight ge

signed. The weight functions are controlled by an external input file, where separate weight coefficients can

signed for each  observation type.

Finally, it was soon clear, thatMATCHUP could be integrated inthe FEEDBACK. As a resultMATCHUP is per-

formed quickly as the first parallel task in FEEDBACK. The updated local ECMA data is then passed bac

form of CMA array to the actual FEEDBACK which encodes information back to a highly compressed BUFR

mat. Furthermore, the FEEDBACK benefits also from OBSORT’s built-in feature to collect BUFR (or CMA)

into a single processor. This way we were able to get from the final, but still distributed, BUFR data back

non-distributed and ready-to-archive BUFR data in a rather elegant manner. And the fact that the original B

message order was not necessary (or even possible ?) to be preserved, has simplified the programming.

To accomodate the virtual-processor approach, a recent change toMATCHUP has been introduced to perform so

called virtual MATCHUP (or VMATCHUP) prior to the genuine MATCHUP. This option enables us to bring

full set of ECMA files used in the main analysis back to fewer ECMA files, and to preserve the same CMA r

order  as in the BUFR message counterparts after MAKECMA.
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9.6 OBSORTCALLING TREE
• LIB_OBSORT

• SWAP_FWD

• INIT_COMMON

• SUNUMC

• SETCOMBU

• SUBUOCTP

• SETBUFR

• BUPRQ

• SETCOMCM

• SUCMOCTP

• SUCMA

• CHECK_NAMELIST

• BUFRSORT

• EXPAND_STRING

• DUMP_NAMELIST

• PRECHECK

• PRECHECK_CMA_ARRAY

• SYNC_TIMESLOT_DATA

• GLOBAL

• INIT_COMMON

• GEN_TIMESLOT_DATA

• UPDCAL2

• REF_TIME

• PRECHECK_CMA

• CMA_ATTACH

• CMA_INFO

• CMA_GET_DDRS

• SYNC_TIMESLOT_DATA

• CMA_DETACH

• PRECHECK_BUFR_ARRAY

• UTIL_NUMPROD_ARRAY

• PRECHECK_BUFR

• OLDBUFR_OPEN

• UTIL_NUMPROD

• OLDBUFR_CLOSE

• GLOBAL

• READ_BUFR

• UTIL_PRODLENGTH

• OLDBUFR_OPEN

• OLDBUFR_READ

• OLDBUFR_CLOSE

• GLOBAL

• MAKESEQNO_OBSORT

• PRECHECK

• FILL_SEQNOLIST

• READ_BUFR
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• CRACK_BUFR_HDR

• BUS012

• BUFRSORT_PREPARE

• CRACK_BUFR_HDR

• OBS_SORT

• COLLECT

• KEYSORT

• REF_TIME

• CHECK_DUPLICATES

• GLOBE_SPLIT

• KEYSORT

• MERGE_CLUSTERS

• BUFR_TRAFFIC_INFO

• IFS_WRITE

• GLOBAL

• .BUFR_SHUFFLE

• SETUP_COMM_DATA

• BUFR_COPY_BUFFER

• WRITE_BUFR

• OLDBUFR_OPEN

• UTIL_ALLOC_IOBUF

• OLDBUFR_WRITE

• OLDBUFR_CLOSE

• BUFR_FORM_EXPLIST

• GEN_TIMESLOT_DATA

• MAPSORT

• EXPAND_STRING

• DUMP_NAMELIST

• PRECHECK

• READ_CMA

• CMA_ATTACH

• CMA_GET_DDRS

• . CMA_BIN_INFO

• CMA_READ

• CMA_CLOSE

• GLOBAL

• REF_TIME

• SORT_PREPARE

• REF_TIME

• GLOBAL

• OBS_SORT

• VMAPSORT

• EXPAND_STRING

• . VCMA_TRAFFIC_INFO

• GLOBAL

• IFS_WRITE

• OPTIMAL_MSGLEN
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• UTIL_IGETENV

• GLOBAL

• VCMA_SHUFFLE

• SETUP_COMM_DATA

• DUMP_INFO

• CMA_COPY_BUFFER

• GLOBAL

• WRITE_OBSMAP

• CMA_STAT

• CMA_OPEN

• DATE_AND_TIME

• CMA_WRITEI

• CMA_CLOSE

• UPDATE_DDR

• GLOBAL

• DATE_AND_TIME

• ADD_SATELLITE

• . REF_TIME

• WRITE_CMA

• CMA_GET_CONCAT_BYNAME

• CMA_OPEN

• CMA_BIN_INFO

• CMA_IS_PACKED

• GLOBAL

• CMA2PCMA

• CMA_INFO

• OPTIMAL_MSGLEN

• COMM_WRITE

• CMA_WRITE

• CMA_CLOSE

• CMA_TRAFFIC_INFO

• GLOBAL

• IFS_WRITE

• OPTIMAL_MSGLEN

• CMA_SHUFFLE

• SETUP_COMM_DATA

• CMA_COPY_BUFFER

• UPDATE_DDR

• WRITE_CMA

• READ_BUFR

• BUFR_PTRLEN_UPDATE

• COLLECT

• KEYSORT

• BUFR_TRAFFIC_INFO

• BUFR_SHUFFLE

• WRITE_BUFR

• CMA_GET_CONCAT_BYNAME
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• EXPAND_STRING

• MATCHUP

• EXPAND_STRING

• DUMP_NAMELIST

• PRECHECK

• READ_CMA

• MATCHUP_PREPARE

• OBS_MATCHUP

• COLLECT

• . KEYSORT

• CHECK_DUPLICATES

• . KEYSEARCH

• CMA_TRAFFIC_INFO

• OPTIMAL_MSGLEN

• CMA_SHUFFLE

• MATCHUP_PERFORM

• KEYSEARCH

• MATCHUP_REPORT

• UPDATE_DDR

• WRITE_CMA

• VMATCHUP

• EXPAND_STRING

• DUMP_NAMELIST

• READ_OBSMAP

• CMA_STAT

• CMA_OPEN

• . CMA_READI

• DISTR

• CMA_DETACH

• CMA_ATTACH

• CMA_CLOSE

• DISTR_OBS

• GLOBAL

• COLLECT

• PRECHECK

• READ_CMA

• VMATCHUP_PREPARE

• COLLECT

• KEYSORT

• VMATCHUP_TRAFFIC_INFO

• GLOBAL

• OPTIMAL_MSGLEN

• XCMA_SHUFFLE

• SETUP_COMM_DATA

• UPDATE_DDR

• WRITE_CMA

• SWAP_BWD
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CHAPTER 10   Observation screening
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10.6.5 Redundancy check

10.6.6 Thinning

10.6.7 A summary of the current use of observations

10.6.8 Compression of the ODB

10.7 A massively-parallel computing environment

10.1 INTRODUCTION

This chapter describes the observation screening in the ECMWF 3D/4D-Var data assimilation. A more gene

scription can be found inJärvinenand Undén(1997). The purpose of the observation screening is to select a c

array of observations to be used in the data assimilation. This selection involves quality checks, removal o

cated observations, thinning of their resolution etc.. The new selection algorithm was implemented operat

in September 1996 and was designed to reproduce (to a large extent) the selection of observations tha

screening of the ECMWF OI analysis code used to make (Lönnberg and Shaw, 1985 and 1987;Lönnberg, 1989).

This chapter was prepared in September 1997 by Heikki Järvinen, Roger Saunders and Didier Lemeur, and

in February 1999 by Roger Saunders for TOVS processing, by Elias Holm and Francois Bouttier for the rem

10.2 THE STRUCTURE OF THE OBSERVATION SCREENING

10.2.1  The incoming observations

Before the first trajectory integration, the observations are extracted from a data base of observations co

from the BUFR archive to a set of CMA files (by programsobsproc andobsort described in the ‘observation’ part

of the documentation). These data have already undergone some rudimentary quality control, e.g. a chec

observation format and position, for the climatological and hydrostatic limits, as well as for the internal and

poral consistency (Norris, 1990). The so-called RDB (Report Data Base) flag is assigned at this stage. Then

of observation files suitable for assimilation is created in a separate observation preprocessing module. Thi

format conversions, changes of some observed variables (like calculation of relative humidity from dry an

bulb temperatures), as well as assignment of observation error statistics. The resulting ‘extended’ CMA file s

ma.# ; # = processor id) contains all the observational information from the six-hour data window available

cut-off time, and is an input for the IFS. The observation screening then selects the best quality and unique

vations, preferably close to the middle of the data window because the background is not interpolated to th

time of the observation. Unlike the OI, the 3D- and 4D-Var data assimilation is global and, therefore, no se

data selection for analysis boxes is needed.

10.2.2  The screening run

The ECMWF 3D/4D-Var data assimilation system makes use of an incremental minimization scheme (Courtieret

al. 1994 and 1997) to reduce the computational cost. The variational data assimilation starts with the firs

resolution) trajectory run (CONF = 2, LSCREEN = .TRUE.). During this run the model counterparts for al

observations are calculated through the nonlinear observation operators (controlled by taskob). As soon

background departures are available for observations, the screening can be performed. For the observatio

ing, the background errors (errgrib - file) are interpolated to the observation locations for the observed va

(sufger).
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Technically, the final result of the observation screening is a pair of observation arrays. The original ‘extende

servation array now contains observations complemented by the background departures, together with qua

trol information for most of the observations. This array is stored for later feedback (ecma.# - set of files)

compressed observation array is a subset of the original array of observations, and is passed for the subsequ

imization job. The compressed array (ccma.# - set of files) contains only the observations to be used in the

tional assimilation. Memory wise, the first trajectory run is a demanding one as all the observations are k

memory. Prior to the screening the model fields are deallocated (dealmod) as most of the information nece

the screening is stored in the observation data base (ODB).

10.2.3  General rationale of the observation screening

The general logic in the 3D/4D-Var observation screening algorithm is to make theindependentdecisions first, i.e.

the ones that do not depend on any other observations or decisions (decis). One example is the backgroun

control for one observed variable. These can be carried out in any order without affecting the result of any

independent decision. The rest of the decisions are considered as mutuallydependenton other observations or de-

cisions, and they are taken next, following a certain logical order. For instance, the horizontal thinning of T

reports is only performed for the subset of reports that passed the background quality control. Finally, the ob

tion array is compressed (compres) for the minimization in such a way that it only contains the data that w

used.

10.2.4  3D- versus 4D-Var screening

In the 3D-Var assimilation system, the observations processed have been gathered over a 6-hour long time

(from 3 hours before to 3 hours after the nominal analysis time) ; all the screening is performed as if they

actually been performed simultaneously at the central analysis time. In the early implementation of the 4D-V

similation system, the same processing called 3D-screening was applied over the 6-hour long 4D-Var time w

which resulted in essentially the same screening decisions as in 3D-Var, except that the model comparison

observation was performed at almost the appropriate time with no more than a 30-minute approximation.

In summer 1997, a new screening procedure called 4D-screening was implemented that took into account

dimension of the observations. The time window was divided in timeslots of typically 1-hour length (30mn fo

first and the last time slot). The 3D-screening algorithm was then applied separately to observations in each

lot. This allowed more data to be used by 4D-Var, for instance, all messages from an hourly reporting stati

now be used, whereas only one (closest to central time) would have been allowed by the redundancy chec

3D-screening. The 4D-screening behaviour is activated by switch LSCRE4D ; it is meant to be used in conju

with time correlation of observation errors where appropriate, as explained inJärvinenet al(1999) and in the chap-

ter on conventional obs error constraints.

10.3 THE INDEPENDENT OBSERVATION SCREENING DECISIONS

10.3.1  Preliminary check of observations

The observation screening begins with a preliminary check of the completeness of the reports (prech). Non

following values should be missing from a report: observed value, background departure, observation error a

tical coordinate of observation. Also a check for a missing station altitude is performed for synop, temp and

reports. The reporting practice for synop and temp mass observations (surface pressure and geopotential h

checked (repra), as explained in the appendix. At this stage also, the observation error for synop geopoten

servations is inflated if the reported level is far from the true station level (addoer). The inflation is defined
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proportion of the difference between the reported level and the true station altitude by adding 2% of the heig

ference to the observation error.

10.3.2  Blacklisting

Next, the observations are scanned through for blacklisting. At the set-up stage the blacklist interface is init

(blinit) to the external blacklist library (libbl95.a). The interface between the IFS and the black-list is in the

routine BLACK. The blacklist itself consists formally of two parts. Firstly, the selection of variables for assim

tion is done using the data selection part of the blacklist file. This controls which observation types, variable

tical ranges etc. will be selected for the assimilation. Some more complicated decisions are also performed

the data selection file; for instance, an orographic rejection limit is applied in the case of the observation be

deep inside the model orography. This part of the blacklist also provides a handy tool for experimentation w

observing system, as well as with the assimilation system itself. Secondly, a normal monthly monitoring bla

is applied for discarding the stations that have recently been reporting in an excessively noisy or biased

compared with the ECMWF background field. A full documentation of the new blacklisting mechanism is f

in Järvinen et al. (1996).

10.3.3  Background quality control

The background quality control (FIRST) is performed for all the variables that are intended to be used in t

similation. The procedure is as follows. The variance of the background departure can be estima

a sum of observation and background error variances , assuming that the observation and the bac

errors are uncorrelated. After normalizing with , the estimate of variance for the normalized departure is

by . In the background quality control, the square of the normalized background departure is cons

as suspect when it exceeds its expected variance more than by a predefined multiple (FGCHK, SUFGLIM).

wind observations, the background quality control is performed simultaneously for both wind components

WND). In practice, there is an associated background quality-control flag with four possible values, namely

a correct, 1 for a probably correct, 2 for a probably incorrect and 3 for an incorrect observation, respe

(SUSCRE0).Table 10.1gives the predefined limits for the background quality control in terms of multiples of

expected variance of the normalized background departure. These values can be changed in namelist NAM

satob winds the background error limits are modified as explained inAppendix A.

There is also a background quality control for the observed wind direction (FGWIND). The predefined error

TABLE 10.1 THE PREDEFINED LIMITS FOR THE BACKGROUND QUALITY CONTROL, GIVEN IN TERMS OF MULTIPLES

OF THE EXPECTED VARIANCE OF THE NORMALIZED BACKGROUND DEPARTURE.

Variable Flag 1 Flag 2 Flag 3

u, v 9.00 16.00 25.00

z, ps 12.25 25.00 36.00

dz x x x

T 9.00 16.00 25.00

rh, q 9.00 16.00 25.00

Flag values are denoted by 1 for a probably correct, 2 for a probably
incorrect and 3 for an incorrect observation. The variables are
denoted by u and v for wind components, z for geopotential height,
ps for surface pressure, dz for thickness, T for temperature, rh
for relative humidity and q for specific humidity, respectively.

y H xb( )–

σo
2 σb

2+

σb

1 σo
2 σb
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of 60o, 90o and 120o apply for flag values 1, 2 and 3, respectively. The background quality control for the w

direction is applied only above 700 hPa for upper-air observations for wind speeds larger than .

wind-direction background quality-control flag has been set to a value that is greater than or equal to 2, the

ground quality-control flag for the wind observations is increased by 1. For scatterometer winds, a test fo

wind speeds and cold SST is applied in the IFS routine FGWIND.

10.4 SCREENING OF SATELLITE RADIANCES

This section describes the use of RTOVS, valid in April 1999. At the time of writing it was planned to switc

using 1-C radiances for which the processing is rather different; it is described in a separate chapter of the

mentation.

10.4.1  General

The radiances from the RTOVS 120 km BUFR data received from NESDIS are preprocessed in a dedicated

which performs several functions to allow the assimilation of TOVS radiances in 4D-Var (the NESDIS retri

are not used in 4D-Var, but are only monitored with the background profiles). This module is called ADVAR

is part of the TOVSCODE library (libtovscode.a). ADVAR is called for each TOVS observation with the mo

background temperature, specific-humidity and ozone profiles, and surface parameters interpolated to the

of the observations. For each analysis cycle there are typically 22,000 TOVS observations in total, for a dua

orbiter system. ADVAR performs the following functions described below, dependent on the setting of a swi

which determines the mode of operation of ADVAR

. In the screening pass ADVAR is called twice by TOVCLR, once with IS set to 1 (when all the operations desc

below are performed) and once with IS set to –1 (when only the high resolution radiance departures for 4D-V

computed). When IS is set to –1 the profile extrapolation and 1D-Var retrieval is not performed. Finally if IS

to 0 then the background radiances are computed from the profiles, but the 1D-Var retrieval is not perform

option only used for offline tests. Several input files are required for ADVAR which are listed in Table 0.2. A

up routine for ADVAR (SUADVAR) is called within the IFS by SURAD to open the necessary files and fill co

mon arrays for ADVAR and the fast radiative transfer model RTTOV-5. The various operations performed by

VAR are described below. The full scientific description of ADVAR is described in the paper byEyreet. al.(1993).

10.4.2  Input

The fast radiative-transfer model RTTOV-5 for TOVS radiances requires an input profile of 40 levels from 10

to 0.1 hPa. RTTOV-5 has been described in detail bySaunders et al.(1999). The original forecast model tempera

ture, specific-humidity and ozone profiles are interpolated onto the fixed pressure levels required by RTTOV

fore they are input to ADVAR. For the 31 level model, the background profiles are only available up to 10 hP

so an extrapolation has to be performed up to 0.1 hPa for temperature using the NESDIS retrievals to 1 hP

simple extrapolation based on model atmospheres above this level. Climatological mean profiles are assu

water vapour and ozone. For the 50- and 60-level versions of the model with levels in the stratosphere this

olation is not necessary. Once the full profile is defined and checked (see below) RTTOV-5 is called to comp

background radiances from the background profiles. Background radiances are computed for all the TOVS

nels listed inTable 10.2, but only a subset of the channels are subsequently used in the 1D-Var retrieval.

15 m s1–
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10.4.3  Bias correction

The next step is to apply the bias correction to the NESDIS radiances. The details of the bias correction for

radiances is given inEyre(1992) andHarris (1997). An update to the bias correction coefficients is performed o

a month on the past two to four weeks of radiance-departure statistics, the exact period depending on how

the biases have changed during the period. The bias-correction coefficients are stored in a file for all of the sa

and this is used in ADVAR. The bias correction code is in the BIASCOR subdirectory of TOVSCODE.

TABLE 10.2 TOVSCHANNEL USAGE AND (O+F) ERRORS ASSUMED IN1D-VAR (THE ERRORS USED IN4D-VAR

ARE INFLATED BY 50%)

Channel Number 1/4D-Var usage
Clear
(K)

Cloudy
(K)

Land/mixed
(K)

Sea-ice
(K)

1 All/global 1.40 1.40 1.40 1.40

2 All/global 0.35 0.35 0.35 0.35

3 All/global 0.30 0.30 0.30 0.30

4 Clear/sea/global 0.20 0.20 0.20

5 Clear/sea/global 0.30 0.30 0.30

6 Clear/sea/global 0.40 0.80 0.80

7 Clear/sea 0.60 1.20

8 Clear/sea 1.00 2.00

9 FG only

10 Clear/sea 0.80 1.60

11 Clear/global 1.10 1.10 1.10

12 Clear/global 1.50 1.50 1.50

13 Clear/sea 0.50 1.00

14 Clear/sea 0.35 0.70

15 Clear/sea 0.30 0.60

16 FG only

17 FG only

18 FG only

19 FG only

21 QC check

22 All/sea* 0.30 0.30 1.00

23 All/global* 0.22 0.22 0.22 0.22

24 All/global 0.25 0.25 0.25 0.25

25 All/global 0.60 0.60 0.60 0.60

26 All/global 1.00 1.00 1.00 1.00

27 All/global 1.80 1.80 1.80 1.80

*Cloudy data not used in tropics
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10.4.4  Quality control

Several quality checks are then applied to the measured and background radiances, and ADVAR return

(IFAIL); this is zero if all the checks are passed, but is set to a specific value if a problem is detected. The

for IFAIL and their meaning are given inTable 10.3. The radiances or retrievals are only used in 4D-Var if IFAI

is zero. The gross checks applied are:

(i) Check that the background profile vector is within realistic limits (e.g. temperature is within

range 150–350 K, specific humidity is positive and not supersaturated, ozone is w

climatological extremes). ADVAR terminates with a severe error flag if this test fails.

(ii) The measured and background brightness temperatures are present for all required channels

within the range 150–350 K.

A series of more critical tests are then applied where ADVAR continues even if the test fails but returns a no

IFAIL value.

(i) Gross background check (i.e. the measured radiance departures from the background are le

20 K).

(ii) The background temperature, specific humidity and ozone profiles are checked to make sur

are close to, or within, the range encompassed by the diverse 32 (or 35 for ozone) profile data

which the RTTOV is valid.

(iii) A fine background check where the square of the radiance departures are flagged if they are

than  (see below for definitions).

(iv) A check for cloud contamination for the HIRS channels is included by checking that the radi

departure for HIRS channel 8 is inside the range –4 to +8 K over the sea and south of 20˚N.

land the thresholds are brighter north of 20˚N. IFAIL is set to 100 if outside this range.

(v) Radiances at the two extreme edge positions of the swath are flagged at present and not used

Var.

TABLE 10.3 DEFINITION OF 1D-VAR FAILURE FLAGS AND TYPICAL RATES IN THEIFS.

IFAIL Typical  % Comment

0 80% Retrieval OK

nn 1.0% Measurement cost too high for channelnn

55 17% At edge of scan, otherwise OK

66 0% Failed stability check (not applied)

99 0.5% Minimization failed to converge

100 1.0% Failed window channel cloud test

5nn 0.1% Channelnn failed fine background check

6nn 0.3% Channelnn failed gross background check

7nn 0% Bad background radiance for channel nn

887 0.3% background profile outsideRTTOV limits

888 0% background profile corrupt

9nn 0% Radiances for channel nn corrupt

999 0% No valid scan or valid satid or bias coeffs

16 KBK T O F+ +[ ]×
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(vi) Checks are also made that the bias-correction coefficients, satellite id, and scan position are a

before proceeding.

10.4.5  Retrieval

The main task for ADVAR is to perform a 1D-Var retrieval of temperature, water vapour and ozone profiles. D

on the theory of 1D-Var retrieval are described byEyreet al. (1993), and so only the technical details describ

here are concerned with the implementation at ECMWF. Each radiance profile is assigned to be clear, partly

or cloudy by NESDIS, and different TOVS channels and observation errors are used for each type as listed iTable

10.2. The files defining the channel selection and observation plus forward model error(O+F) covariances are giv-

en inTable 10.4and no interchannel correlations are assumed (i.e. a diagonal matrix). The(O+F) errors specified

here are subsequently used in 4D-Var, but are inflated by 50%. The background-error covariancesB for all 43 levels

are also specified in a file, and for temperature are close to the global-mean background errors assumed in

For specific humidity the background errors assumed in 1D-Var follow the same formulation as in 4D-Var (Rabier

et al. 1997) and the correlations are the same as in 4D-Var.

The minimization of the cost function is performed using the method of Newtonian iteration, and up to 5 itera

are allowed before the minimization fails. Convergence is obtained when the profile departures are less t

times at every level. If the cost function of the observed radiance in any of the channels exceeds a pre

threshold then a flag is set indicating an inconsistent set of radiances. The output of 1D-Var includes back

and retrieved temperature, water-vapour and ozone profiles, together with several retrieved surface parame

included in the 1D-Var control vector. The retrieved profiles are output both on the 43 levels and as virtual

mean temperatures on 15 levels and layer-mean column water vapour on 3 levels to match the NESDIS re

A final check on the stability of the retrieved profile is provided in the code, but is not implemented as the pr

are not used in 4D-Var.

10.4.6  SSM/I radiances

SSM/I radiances are also screened in a similar module DVSSMI, which performs a similar set of functions t

VAR B by retrieving the total column water vapour, surface wind speed and cloud liquid-water path. The total

water vapour retrievals have been activated operationally in Spring 1998, with an horizontal thinning to 25

A specialized library,ssmicodeis used for the retrievals. Some documentation can be found inGerardand Saun-

ders (1999). At the time of writing it is envisaged to start using surface wind speed retrievals over sea in su

1999.

TABLE 10.4 FILES REQUIRED BYADVAR

Filename Contents

chanspec.dat Specifies channel usage

rmtberr.dat Specifies radiance observation errors (O+F)

fcbkerr.dat Specifies 1D-Var background error covari-
ances (B)

bcor.dat Bias correction coefficients

rt_coef_ieee.dat or
rt_coef_fmt.dat

RTTOV coefficients in binary or ascii format.

σb
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10.5 SCATTEROMETER PROCESSING

10.5.1  Introduction

This section describes the flow of ERS, NSCAT, and QuikSCAT scatterometer data through the assimilatio

tem. Some tasks like thinning of ERS data and retrieval of 50 km QuikSCAT winds are performed in module

fore the screening but it is most natural to describe the whole processing step here. This section provides a

knowledge of the software, and guidance on possible modifications and updates. It is not intended to exp

scientific background of microwave remote sensing or scatterometry and assumes some knowledge of thes

(seeStoffelen (1999), Freilich and Dunbar (1999)).

This section is broken into five subsections. The first is the introduction, which you are reading now. The s

is background information about scatterometer processing at ECMWF. The background includes a brief his

the software, lists persons who contributed the changes and outlines the structure and function of the whole

Subsections 3-5 describe processing for scatterometers used or currently in use at ECMWF, i.e. ERS-1 an

2, NSCAT and QuikSCAT.

10.5.2  Background

ESA’s ERS-1 scatterometer was launched in July 1991 and stopped operating in June 2000. The successo

was launched in 1995 and is still functioning well. Data from ERS-2 were introduced into operations at EC

in January 1996. Scatterometer data from ERS-2 have been used in operations since that time. Ad Stoffelen

Anderson and Ross Hoffman were the first to work on the problem at ECMWF. Stoffelen and Anderson work

QC and wind retrieval issues in the OI system of the day. Hoffman looked at assimilation of sigma0’s direc

3D-Var. Once in operations, several others (Herve Roquet, Catherine Gaffard, Didier LeMeur and Lars Is

took turns monitoring and improving the use of the data. Lately Mark Leidner worked on the use of data

NASA scatterometers (NSCAT and QuikSCAT).

Source code for scatterometer processing resides in ClearCase under the project name scat. The library

the following directories:

etimesort/source code for pre-processing ERS data

module/ shared modules

qbukey/ source code for adding RDB info to QuikSCAT 50km BUFR

qfilter/  source code for pre-processing QuikSCAT 25km BUFR

qretrieve/ source code for SeaWinds wind retrieval

test/empty directory for future test code

e* and q* directories contain processing software specific to ERS and QuikSCAT, respectively. NSCAT-sp

codes have not been put in ClearCase, because the satellite stopped operating in June 1997, i.e. its data w

be used in operations.

10.5.3  ERS Wind scatterometer processing

Fig. 10.1 shows a simple flow chart for ERS processing at ECMWF. Below the processing chain in describ

general and the functionality of each executable in the scat library in particular.

The MARS archive definitions for the different wind scatterometer observations are:
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Figure  10.1   ERS processing

Data for a given time window are retrieved from MARS. These data are then input to program timesort, which

the observations by time and removes duplicate records. Duplicate records occur in the input data becau

than one ground station may receive the same ERS data. Duplicated data are almost identical and their time

will differ by a small margin (< 4 seconds). Duplicates are rejected on this basis.

ERS winds are retrieved as part of the IFS observation pre-processor, OBSPROC (IFS Documentation Pa

servation Processing). Within OBSPROC, the three sigma0’s are decoded from BUFR, and used to retriev

for 50 km diameter foot prints. The ERS winds are available at 25 km resolution, i.e. over sampled. It is not po

to determine a unique wind vector solution, at least two ambiguous solutions will be found. Only the most

wind and the first one in the opposite direction are kept and written to the observation data base (ODB) file

winds are retrieved instead of using the unique wind distributed by ESA to be able to supply two winds to th

iational data assimilation system at ECMWF, and to be able to apply bias corrections to sigma0 before w

TABLE 10.5

BUFR/MARS
obstype

CMA code type Satellite ID

 ERS-1 122 122 1

ERS-2 122 122 2

NSCAT 136 210 280

QuikSCAT 137* 300 281

QuikSCAT 138 301 281

* For QuikSCAT the BUFR format changed January 2000 which is
reflected in the change of MARS obstype from 137 to 138 and change
in BUFR sequence descriptor.

obsproc

MARS ERS BUFRMARS ERS BUFR

timesort

4D-Var

feedback

MARS ERS BUFR
    with
feedback info
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trieval, and finally to be able to apply quality controls to the retrieved winds via the retrieval residual.

A horizontal thinning is performed on the 19x19 data layout of the ERS scatterometer reports. In that case th

ess is defined with respect to the particular measurement geometry of the instrument. Indeed the backsca

are acquired within individual cells related to a 450 km wide grid with a mesh of 25 km in the across and

track directions. 19 measurement nodes are thus defined across the scatterometer´s swath, numbered fro

as the incidence angle increases, while 19 rows are also considered in the along track direction to gather

in squares of 19 by 19 points. The thinning factor is controlled by LSCATTHI and NTHINSCA in namelist NA

MKCMA. The inner two nodes are skipped (smallest incidence angles) because the scatterometer operate

larger incidence angles. Then, every NTHINSCA node is used (default NTHINSCA = 4 results in use of node 3,

7, 11, 15, and 19) in every NTHINSCA row. The data are thus by default used at a resolution of 100 km inst

the original 25 km sampling distance. This simple way of thinning is preferable because ERS wind measure

typically always are of the same high quality as they are not affected by rain or clouds. It should be noted th

thinning process is actually set up in the observation pre-processing (OBSPROC), but that only a flag is as

at that stage, which is then applied in the screening. In that way all the data are completely pre-processed

assimilation, and the subsequent information kept in the feedback files allows to perform their monitoring

full resolution.

In the IFS, the two retrieved winds are used in an obs cost function with 2 minima (see pp_obs/hjo.F90). The

tion is not quadratic, but depends on the 4th power and root of the product of the departures of u and v (Stoffelen

and Anderson (1997)). It is very similar to the sum of two quadratic cost functions.

Quality control decisions made by the IFS screening run are:

High wind speed check: Data rejected if observed or first guess wind speeds are above 25

(RSCAWLI). Performed byobs_preproc/fgwnd.F90

Sea ice check: Data rejected if sea ice fraction is greater than 0.1 (RSCATLI). Performed

obs_preproc/fgwnd.F90

Global Quality Control: If the average distance-to-the-cone residual for the backsca

measurements during a (1 hour) time slot for any of the active nodes is above the QC thresh

ERS data for that time slot is blacklisted. This is done by the routineobs_preproc/scaqc.F90.

There is no back ground wind check performed on scatterometer data, but data may be de-weighted or eff

removed from the analysis during the minimisation in 4D-Var by variational quality control (Anderssonand Järvin-

en (1999)).

Quality control decisions and departures from background and analyses are appended to each subset in

back BUFR message.

ERS feedback messages have a PRESCAT section sandwiched between the original ERS and the feedb

The PRESCAT section contains outputs about the quality of the winds from the retrieval.

Here are some of the key words and bits to examine in the ERS feedback message (these are in the order

they are encountered in the processing):

Winds retrieved at ESA: BUFR descriptor 11012 for speed and 11011 for direction winds available in observa

part of BUFR file.

Winds retrieved at ECMWF : BUFR descriptor 11192 for u and 11193 for v winds retrieved in program O

SPROC.

Report rejected by thinning if BUFR descriptor 33229 (Report Event Word 2) = 1. QC decision made by p

gram OBSPROC in subroutine scatsin.F90.
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Background departures x 2 ambiguities: BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and

for v (‘V - COMPONENT AT 10 M’). BUFR descriptor 8024 = 33, BUFR descriptor 33210 = 1, BUFR descrip

33211 = 1001.

Report rejected by high wind speed checkif BUFR descriptor 33233 (Report Status Word 1) = 16. QC decisi

made by program IFS in subroutineobs_preproc/fgwnd.F90.

Report rejected if Sea Ice faction > 0.1:BUFR descriptor 33220 (Report Event Word 1) = 12. QC decision ma

by program IFS in subroutineobs_preproc/fgwnd.F90.

Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision made

program IFS in subroutineobs_preproc/ersqc.F90.

Datum 4D-Var quality control status: BUFR descriptor 33233 (Report Status Word 1) = 1/2/4/8 1 - active,

passive, 4 - rejected, 8 - blacklisted Datum. 4D-Var variational quality control rejection BUFR descriptor 332

(Datum event Word 1) bit 27 = 1

Analysis departures x 2 ambiguities:BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and for v

(‘V - COMPONENT AT 10 M’). BUFR descriptor 8024 = 33, BUFR descriptor 33210 = 9, BUFR descriptor 33

= 999.

10.5.4  NASA scatterometer (NSCAT) processing

NSCAT data has been used experimentally for impact experiments in 4D-Var as well as a surrogate for Quik

data (another Ku-band scatterometer). The processing is not automatic in IFS , as is the case for ERS an

SCAT. The NSCAT data quality is more consistent compared to ERS and QuikSCAT, because the archived N

data are a re-processed science product, not an ``as-is’’ real-time product.

Data for the whole 9-month mission are stored on ecfs in HDF format archived in ecfs:/oparch/nscat/50km

Level 1.7 files (sigma0 data) and ecfs:/oparch/nscat/50km/L20 - Level 2.0 files (wind data).

The format and content of HDF NSCAT files are thoroughly documented in QuikSCAT Science Data Produ

er’s Manual (avaialble from ECMWF or JPL). Level 1.7 and 2.0 files are present for each orbit in the mission.

sigma0 file has a corresponding wind file.

Assimilation experiments with NSCAT data are only possible after offline processing of the data. Please c

the research department for further information.

10.5.5  NASA ``QUIK’’ scatterometer (QuikSCAT) processing

The implementation of QuikSCAT data processing borrowed many lessons from the use of NSCAT data.

SCAT, however, was implemented to be used operationally, so the process is more streamlined (seeFig. 10.2).

The processing of QuikSCAT data will now be described.

Data for a given time window are retrieved from MARS. These data are then fed to programqfilter /qscat_filter,

which sorts the observations by time, and removes duplicate/incomplete records

Duplicate and incomplete records are part of the QuikSCAT real-time data stream because of Seawinds’ co

scanning geometry. See Leidner et al. (1999) for a discussion of duplicate and incomplete records introdu

the scanning geometry.

QuikSCAT winds are retrieved with programqretrieve/qscat25to50km. The input is 25-km QuikSCAT BUFR

messages. These are decoded, consecutive rows are paired together, sigma0’s are grouped into 50-km b
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winds are retrieved at this resolution. The output is 50-km BUFR messages, including sigma0’s and winds.

km resolution is more representative of the scales resolved by the increments in 4D-Var.

The winds are used just as in NSCAT. The winds are re-ordered (most likely first and its 180-degree oppo

next), and only the first two are used in 4D-Var.

Here are some of the key words and bits to examine in the QuikSCAT feedback message (these are in the

which they are encountered in the processing):

Background departures x 2 ambiguities: Like for ERS described above.

Report rejected if sea ice fraction is > 0.1:Like for ERS described above.

Report rejected if data not in the sweet spots: when BUFR descriptor 33229 (Report Event Word 2) = 3. Q

decision made by program IFS in subroutineobs_preproc/qscatqc.F90.

Report rejected if number of winds is < 2:when BUFR descriptor 33220 (Report Event Word 1) = 3. QC decisi

made by program IFS in subroutineobs_preproc/qscatqc.F90.

Report rejected if wind directions are too close:when BUFR descriptor 33229 (Report Event Word 2) = 2. Q

decision made by program IFS in subroutineobs_preproc/qscatqc.F90.

Datum rejected if number of ambiguities > 2:when BUFR descriptor 33236 (Datum Event Word 1) = 19. Q

decision made by program IFS in subroutineobs_preproc/qscatqc.F90.

Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision made

program IFS in subroutine obs_preproc/qscatqc.F90.

Datum 4D-Var quality control:  Like for ERS described above.

Analysis departures x 2 ambiguities:Like for ERS described above.

Figure  10.2   QuickSCAT processing

MARS ERS BUFRMARS QuikSCAT BUFR (25 km)

qscat_filter

qscat25to50km

qscat_bufr

obsprocobsproc

4D-Var

feedback

QuikSCAT BUFR
  50 km resolution
  with feedback info

MARS
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10.6 THE DEPENDENT OBSERVATION SCREENING DECISIONS

10.6.1  Update of the observations

Just before performing the dependent screening decisions, the flag information gathered so far is converte

status of the reports, namely active, passive, rejected or blacklisted, and also into a status of the data in the

(FLGTST). The reports with a RDB report flag value 2 (probably incorrect) or higher for latitude, longitude,

and time are rejected. For the observed data there are RDB datum flags for the variable and for the pressure

pressure level of the observation. The rejection limits for these are as follows: all data are rejected for the ma

RDB datum flag value 3 (incorrect), non-standard-level data are rejected for the maximum RDB datum flag

2, and for the pressure RDB datum flag the rejection limit is 1 (probably correct). The background quality c

rejection limits are flag value 3 for all the data, and flag value 2 for the non-standard-level data.

10.6.2  Global time–location arrays

Some of the dependent decisions require a global view to the data which is not available as the memory is

uted. Thereforead hoc global time–location arrays are formed and broadcast in order to provide this v

(GLOBA, DISTR).

10.6.3  Vertical consistency of multilevel reports

The first dependent decisions are the vertical-consistency check of multilevel reports (VERCO), and the re

of duplicated levels from the reports. The vertical-consistency check of multilevel reports is applied in such

that if four consecutive layers are found to be of suspicious quality, even having a flag value one, then these

are rejected, and also all the layers above these four are rejected in the case of geopotential observation

decisions clearly require the quality-control information, and they are therefore ‘dependent’ on the precedi

cisions.

10.6.4  Removal of duplicated reports

The duplicated reports will be removed next. That is performed (MISCE, DUPLI, REDSL) by searching pa

collocated reports of the same observation types, and then checking the content of these reports. It may

stance, happen that an airep report is formally duplicated by having a slightly different station identifier bu

the observed variables inside these reports being exactly the same, or partially duplicated. The pair-wise c

of duplicates results in a rejection of some or all of the content of one of the reports.

10.6.5  Redundancy check

The redundancy check of the reports, together with the level selection of multilevel reports, is performed n

the active reports that are collocated and that originate from the same station (REDUN). In 3D-screenin

check applies to the whole observation time window. In 4D-screening (LSCRE4D=.true.), this check applie

arately in each timeslot.

For land synop and paobreports, the report closest to the analysis time with most active data is retained, wh

the other reports from that station are considered as redundant and are therefore rejected from the assimilat

DRP, REDMO). Forship synop and dribuobservations the redundancy check is done in a slightly modified fa

ion (REDGL). These observations are considered as potentially redundant if the moving platforms are w

circle with a radius of 1˚ latitude. Also in this case only the report closest to the analysis time with most activ

is retained. All the data from the multileveltemp and pilot reports from same station are considered at the sa
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time in the redundancy check (REDOR, SELEC). The principle is to retain the best quality data in the vicin

standard levels and closest to the analysis time. One such datum will, however, only be retained in one of

ports. A wind observation, for instance, from a sounding station may therefore be retained either in a temp

pilot report, depending on which one happens to be of a better quality. Asynop massobservation, if made at the

same time and at the same station as the temp report, is redundant if there are any temp geopotential heig

vations that are no more than 50 hPa above the synop mass observation (REDSM).

10.6.6  Thinning

Finally, a horizontal thinning is performed for the airep, TOVS, SSM/I and SATOB reports. The horizontal thin

of reports means that a predefined minimum horizontal distance between the nearby reports from the same p

is enforced. For airep reports the free distance between reports is currently enforced to about 125 km. The t

of the airep data is performed with respect to one aircraft at a time (MOVPL, THIAIR). Reports from differen

craft may however be very close to each other. In this removal of redundant reports the best quality data is r

as the preceding quality control is taken into account. In vertical, the thinning is performed for layers around

ard pressure levels, thus allowing more reports for ascending and descending flight paths.

Thinning of TOVS, SSM/I and SATOB reports are each done in two stages controlled by THINN. For T

(THINNER), a minimum distance of about 70 km is enforced and, thereafter, a repeated scan is perform

achieve the final separation of roughly 250 km between reports from one platform. The thinning algorithm

same as used for aireps except that for TOVS a different preference order is applied: a sea sounding is p

over a land one, a clear sounding is preferred over a cloudy one and, finally, the closest observation time

analysis time is preferred. A similar thinning technique is applied to SSM/I data and SATOB high-density

(THINNER).

The screening of SATOB data has been extended for atmospheric motion wind observations, including ind

quality estimate. The quality information from the quality control performed by the producer at extraction tim

appended to each wind observation. This Quality Indicator (QI) is introduced as an additional criterion in the

ning step; priority is given to the observation with the highest QI value.

TABLE 10.6 ASUMMARY OF THE CURRENT USE OF OBSERVATIONS IN THE3D/4D-VAR DATA ASSIMILATION AT

THE ECMWF.

Observation type Variables used Remarks

synop u, v, ps (or z), rh u andv used only over sea, in the tropics also over low
terrain (< 150 m). Orographic rejection limit 6 hPa forrh,
100 hPa forz and 800 m forps

airep u, v, T Not used in full resolution. Used only below 50 hPa

satob u, v Selected areas and levels. thinning of high-density

winds.

dribu u, v, ps Orographic rejection limit 800m forps

temp u, v, T, q Used on all reported levels.qonly below 300 hPa. 10 m

u andv used over land only in tropics over low terrain

(< 150 m). Orographic rejection limit 10 hPa foru, v
andT, and -4 hPa forq
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Apart from this thinning, the other observation dependent decisions involved by the screening of the scatter

data come essentially from the application of a sea-ice contamination test from the model sea-surface-tem

analysis, using a minimum threshold of 273 K, and a high-wind rejection test with an upper-wind speed lim

to 25  for the higher of the scatterometer and background winds (FGWIND).

In addition, the quality flag set in OBSPROC is also applied, and an extra quality control is done on the wi

trieval residual, or the so-called ‘normalized distance to the cone’. After being implicitly checked for each r

through the OBSPROC flag (different from 0 if its value is larger than 3), this quantity is tested in global av

over the 6 hours of the analysis cycle for each of the 19 measurement nodes across the swath. All the data

rejected in bulk if an excessive value is found for any node (more than 1.3 times the expected average) wh

number of data taken into account is judged to be significant (i.e. more than 500). While the first check, perf

locally, aims at avoiding geophysical effects not explained by the transfer function CMOD4, such as rain o

state effects in the vicinity of deep lows, this global quality control on the distance to the cone allows the det

of technical anomalies not reported in real time by ESA that are likely to affect the measurements in a cor

way and at larger scales. Such anomalies, which occur typically in the case of orbital manoeuvres, are mi

the preliminary test of the instrumental quality flag in OBSPROC.

10.6.7  A summary of the current use of observations

A summary of the current status of use of observations in the 3D-Var data assimilation is given inTable 10.6.

10.6.8  Compression of the ODB

After the observation screening roughly a fraction of 1/10 of all the observed data are active and so the com

observation array for the minimization run only contains those data (COMPRES ). The large compression

mainly driven by the number of TOVS data, since after the screening there are only 10–20% of the TOVS r

pilot u, v Used on or closest to standard pressure levels. 10 mu
andv used over land only in tropics over low terrain (<

150 m). Orographic rejection limit 10hPa foru andv

tovs Tb For TOVS radiance usage see Table 0.3 and the chapter

on 1C radiance processing.

paob ps Used south of 19oS. Orographic rejection limit 800 m

for ps

scatt

ssm/i

u, v

tcwv

Not used in full resolution. Used if SST is warmer than

273 K or if both observed and background wind less

than 25

Thinned, used over sea.

The variables are as inTable 10.1, with the addition thatTb stands for brightness temperature andtcwv
stands for total cloud water vapour. The observation types are shortened bysynopfor synoptic surface
observations,airep for aircraft reports,satob for satellite cloud track winds,dribu for drifting buoy
reports,tempfor radiosonde soundings,pilot for wind soundings,tovsfor satellite temperature soundings,
paob for pseudo observations of surface pressure andscatt for scatterometer reports

TABLE 10.6 ASUMMARY OF THE CURRENT USE OF OBSERVATIONS IN THE3D/4D-VAR DATA ASSIMILATION AT

THE ECMWF.

Observation type Variables used Remarks

m s 1–

m s 1–
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left, whereas for the conventional observations the figure is around 40%. As a part of the compression, the

vations are re-sorted amongst the processors for the minimization job in order to achieve a more optimal lo

ancing of the parallel computer.

10.7 AMASSIVELY -PARALLEL COMPUTING ENVIRONMENT

The migration of operational codes at the ECMWF to support a massively-parallel computing environment h

a requirement for reproducibility. The observation screening needs to result in exactly the same selection o

vations when different numbers of processors are used for the computations. As mentioned earlier, in the o

tion screening there are the two basic types of decision to be made. Independent decisions, on one hand, a

where no information concerning any other observation or decision is needed. In a parallel-computing enviro

these decisions can be happily made by different processors fully in parallel. For dependent decisions, on th

hand, a global view of the observations is needed which implies that some communication between the pro

is required. The observation array is, however, far too large to be copied for each individual processor. The

the implementation of observation screening at the ECMWF is such that only the minimum necessary inform

concerning the reports is communicated globally.

The global view of the observations is provided in the form of a global ‘time–location’ array for selected obs

tion types. That array contains compact information concerning the reports that are still active at this stag

instance, the observation time, location and station identifier as well as the owner processor of that report

cluded. The time–location array is composed at each processor locally and then collected for merging and r

bution to each processor. After the redistribution, the array is sorted locally within the processors according

unique sequence number. Thus, every processor has exactly the same information to start with, and the de

decisions can be performed in a reproducible manner independently of the computer configuration.

The time–location array is just large enough for all the dependent decisions, except for the redundancy ch

of the multilevel temp and pilot reports. This is a special case, in the sense that the information concernin

and every observed variable from each level is needed. Hence, the whole multilevel report has to be commu

The alternative to this would be to force the observation clusters of the multilevel reports always into one pro

without splitting them. In that case the codes responsible for the creation of the observation arrays for assim

would need to ensure the geographical integrity of the observation arrays distributed amongst the processo

is, however, not possible in all the cases, and the observation screening has to be able to cope with this. C

it is coded in such a way that only a limited number of multilevel temp and pilot reports, based on the time–lo

array, are communicated between the appropriate processors as copies of these common stations.

APPENDIX A

A.1 BAD REPORTING PRACTICE OF SYNOP AND TEMP REPORTS

The way the synoptic surface stations report mass observations (pressure or geopotential height) is consi

bad if the

• station altitude is above 800 m and station reports mean sea level pressure

• station altitude is above 800 m and station reports 1000 hpa level

• station altitude is above 1700 m and station reports 900 hpa level

• station altitude is below 300 m and station reports 900 hpa level

• station altitude is above 2300 m and station reports 850 hpa level
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• station altitude is below 800 m and station reports 850 hpa level

• station altitude is above 3700 m and station reports 700 hpa level

• station altitude is below 2300 m and station reports 700 hpa level

• station altitude is below 3700 m and station reports 500 hpa level

The reporting practice is also considered as bad if the station reports 500 gpm, 1000 gpm, 2000 gpm, 3000

4000 gpm level pressure, respectively, and station altitude is more than 800 m different from the reported

For temp geopotentials the reporting practice is considered as bad if the

• station altitude is above 800 m and station reports 1000 hpa level

• station altitude is above 2300 m and station reports 850 hpa level

• station altitude is above 3700 m and station reports 700 hpa level

A.2 REVISED BACKGROUND QUALITY CONTROL FOR SELECTED OBSERVATIONS

The background quality-control rejection limits are applied more strictly for some observation types than sta

Table 10.1. The special cases are the following ones

• airep wind observations with zero wind speed are rejected if the background wind exceeds 5

• for airep and dribu wind observations the rejection limit is multiplied by 0.5, and for pilot wind

0.8

• for satob wind observations the rejection limit is multiplied by 0.1, except below 700 hPa l

where it is multiplied by 0.2

• no background quality control is applied for scatt winds

• for dribu surface pressure observations the rejection limit is multiplied by 0.9, and for paob su

pressure by 0.7

• for airep temperature observations the rejection limit is multiplied by 1.6

A.3 USE OF ATMOSPHERIC MOTION WINDS

This appendix describes those parts of the ECMWF assimilation system which involves some special code

AMW case, i.e. the data selection and the FG quality check. It refers to the operational status as from De

1996. A thinning procedure was introduced for high-density winds in Spring 1998.

A.3.1  Data selection

There are several model independent checks which AMW data have to pass in order to be considered for

similation process:

Check on longitude/latitude

• AMW must be within a circle of 55˚ from the sub-satellite point

Check on levels depending on the computational method

• WW CMW and WVMW must be above 400 hPa

• VIS CMW must be below 700 hPa

• IR CMW can be used at all levels.

Check on land/sea

• All AMW over sea are used

• AMW over land is not used north of 20ºN. .
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• For Meteosat (0º mission) instead of 20ºN this threshold is 35ºN to allow usage of AMW over n

Africa.

• For Meteost (63º mission) the use of AMW has been extended over Asia if above 500 hPa. T

restriced for longitudes east of 30ºE.

• AMW are blacklisted over the Himalayas as a precautionary measure.

• AMW over land south of 20ºN (35ºN for Meteosat) is used if above 500 hPa.

Check on satellite (35ºN for Meteosat) is used if above 500 hPa.

This is a temporary selection on certain channels or satellites. At present channels and satellite used are:

• METEOSAT cloud tracked winds with 90 min temporal sampling

• METEOSAT IR (not at medium level), VIS, WV

• METEOSAT HVIS, also at asynoptic times, only if

(

• GOES IR & WV (NOT at asynoptic times)

• GMS IR & VIS

A.3.2  Background quality check

The background quality check is based on a comparison of the AMW deviation from the background. Obs

wind components are checked together. The AMW is flagged withj = 1 or 2 or 3 if this deviation squared is greate

than a predetermined multiple ERRLIM * ZREJMOD of its estimated variance, as given by the following ex

sion:

if [ D2 > (sfg 2 + sobs 2 ) * ERRLIMj * ZREJMOD] then flag=j where D 2 = 1/2 (Du2 +D v2) with Du, Dv

wind component deviations from background; sfg std of the background wind component error (mean foru and

v); sobs std of the observation wind component error, 2 for levels below 700 hPa included, 3.5 a

hPa, 4.3 at 400 hPa and 5 for all levels above; ERRLIMj is 8 for j=1, 18 for j=2 and 20 for j=3. T

value of ZREJMOD depends on the level of AMW and normally its value is:

• ZREJMOD =  0.2 for low level

• ZREJMOD =  0.1 for all others levels

A special check or asymmetric check is applied when the observed speed is more than 4 slower th

background speed SPDfg. This check has a more restrictive rejection limit:

• ZREJMOD = 0.15 at low level

• ZREJMOD =  0.07 in the tropics

• ZREJMOD  =  0.075 – 0.00125 * SPDfg all others

• ZREJMOD  =  0.0  if  SPDfg > 60  (observation gets always flagj = 3)

When the data is passed to the following variational quality control its probability of being used depend on

flag j. With flag j = 1 the data will be assimilated, with flagj =2 it will be given an intermediate probability and

might be used or not and finally the analysis will reject all data withj = 3

QI2 0≡
Automatic Quality Control PASSED≡

m s 1– m s 1–

m s 1– m s 1–

m s 1–

m s 1–
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Part II: D ATA ASSIMILATION

CHAPTER 11   Analysis of snow
Snow depth is a model prognostic variable that needs to be analysed. Its analysis is performed in a modul

currently separated from the analysis of the atmosphere and of the soil wetness. This module includes also

surface temperature, sea-ice fraction and screen-level temperature and relative humidity.

Table of contents

11.1 Organization

11.2 Snow-depth analysis

11.3 Technical aspects

11.1 ORGANIZATION

The snow analysis is a 3-D sequential analysis performed every 6 hours using a successive correction meth

snow-depth background (units: m) is estimated from the short-range forecast of snow water equivalent

(units: m of water equivalent) and snow density  (units : kg m-3):

Thesnow-depth analysis is performed using snow-depth observations and the snow-depth background

If snow-depth observations are not available, the snow accumulation/melting is simulated from the model

forecast and a weak relaxation towards climatology is added. Thesnow climateis used to ensure the stability of

the scheme and to give a seasonal snow trend in areas without any snow observations.

11.2 SNOW-DEPTH ANALYSIS

The observations are snow depths from SYNOP reports. The background is defined above. The ana

done using a Cressman spatial interpolation:

The weight function is the product of functions of the horizontal distance and vertical displacement (

el minus obs height) between the observation and analysis points:

,
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The snow depth is preserved when the model height is above the observing station, but it is severely reduce

The influence distances are set to  km and  m.

In addition to the preliminary quality control in the observation data base, the following checks are applied fo

grid point :

• if  only snow depth observations below 140 cm are accepted.

• this limit is reduced to 70 cm if .

• snow-depth observations are rejected if they differ by more than 50 cm from the background

• when only one snow-depth observation is available within the influence radius , the s

depth increments are set to zero.

• snow-depth analysis is limited to 140 cm.

• snow-depth increments are set to zero when larger than mm (where

expressed in Celsius)

• snow-depth analysis is set to zero if below 0.04 cm

• if there is no snow in the background and in more than half of the observations within a circ

radius , the snow-depth increment is kept to zero.

The analysis of snow depth is finally weighted with climatological values  to provide the final analysi

The relaxation coefficient is set to 0.02 corresponding to a time scale of 12.5 days. The global snow de

matology is taken fromFosterand Davy (1988). Finally the snow density from the background is used to arc

the analysis in terms of snow water equivalent :

The snow density is unchanged in the analysis process :

Areas with permanent snow and ice (defined using the Global Land Cover Characterization product) are s

arbitrary high value at each analysis cycle ( ).
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11.3 TECHNICAL ASPECTS

The snow analysis software is implemented as a branch of the more comprehensive surface and screen-le

ysis (SSA) package. The other branches currently include two-metre temperature and relative humidity an

and also sea surface temperature and sea-ice fraction analyses. The program organization when perform

analysis is roughly as follows:

• SSA

• CONTROL_SSA

• INISNW

• SCAN_DDR

• COORDINATES

• GETFIELDS

• SCAN_CMA

• SCAN_OBS

• LAND_OBS

• INITIAL_REJECTION

• REDUNDANT_OBS

• SNOW_ANALYSIS

• SUCSNW

• SCAN_OBS

• FG2OBS

• SUCSNW

• SNOW_FG

• FDB_OUTPUT

• PRINT_SUMMARY

• PLOTDATA

• FEEDBACK

The main programSSAcallsCONTROL_SSAwhere most of the setup and namelist handling are done. Rou

INISNW performs initialization of the actual snow analysis by sensing the size of the observation array file (C

file) in SCAN_DDRand generating latitudinal coordinates that stem from the model resolution in concern an

ros of the Bessel function.

After this, all input fields are read into memory inGETFIELDS. They consist of the snow water equivalent an

snow density from the first-guess (6-hour forecast), 2 m temperature first guess, snow-depth climate (varies mon

ly with a linear temporal interpolation), land/sea mask and finally the orography in a form of the geopotent

In SCAN_CMAobservations are read into memory and a quick validity check of the non-applicable observa

for this analysis is performed. Furthermore, the land/sea mask is calculated inLAND_OBS for the retained snow

depth observation points.

Additional screening is done inINITIAL_REJECTION and inREDUNDANT_OBS. The former one sets up an

internal table where all the observations which survived from the quick screening are placed with a minimum

text information. This routine rejects some of the observations entered into the table due to inconsistencie

The routineREDUNDANT_OBSremoves time duplicates and retains the observations of the station in con

with the closest (and the most recent) to the analysis time. Since only synoptic observations are considered

moving platform handling present in theREDUNDANT_OBS is not applicable to the snow analysis.

The actual snow analysis is performed underSNOW_ANALYSIS. The analysis technique is Cressman’s succe

sive correction method (routineSUCSNW). The structure functions are set to be separable in horizontal and v
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cal directions. A special mountain region handling is performed, depending whether the datum or grid poin

the valley or at high altitudes, as explained before.

The snow-depth background (i.e. first guess) field is constructed from the model first-guess snow water equ

and snow density. Once the snow-depth first guess field is present, it is used to calculate the first guess dep

snow-depth observation points. This increment is finally added to the snow depth fields at grid points pro

the final snow depth output field, which is output in routineFDB_OUTPUT.

The accuracy of the analysis is estimated inPRINT_SUMMARYwhere some important statistics are summarize

The internal observation table can be printed if requested fromPLOTDATA and an updated observation file fo

feedback purposes can be created in routineFEEDBACK.

The main logicals of the namelist NAMSSA are :

• L_SNOW_ANALYSIS : When set to TRUE, the snow analysis is performed.

• L_SNOW_DEPTH_ANA : When set to TRUE, the snow analysis is performed in snow depth

opposition to snow water equivalent assuming a constant value of 250 kg m-2 for observed snow

density).

• L_USE_SNOW_CLIMATE : When set to TRUE, a relaxation of the snow analysis toward

monthly climatology is performed with a time scale of 12.5 days (this constant is hard code

SNOW_FG).

• L_USE_FG_FIELD : When set to TRUE the snow analysis is set to the first-guess value (no u

observations) and there is no relaxation to climatology.
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CHAPTER 12   Land surface analysis

12.1 INTRODUCTION

Soil temperature and soil water content are prognostic variables of the forecasting system and, as a conse

they need to be initialised at each analysis cycle. Currently the land surface analysis is performed every 6 ho

is decoupled from the atmospheric analysis. The absence of routine observations on soil moisture and soil

ature requires to use proxy data. The ECMWF soil analysis relies on SYNOP temperature and relative hum

screen-level (2 m) available on the GTS (around 12000 reports over the globe are provided every 6 hours).

a screen-level analysis is performed for temperature and humidity. Secondly, the screen-level analysis incr

are used as inputs to perform the analysis in the soil.

12.2 SCREEN-LEVEL ANALYSIS

12.2.1  Methodology

Two independent analyses are performed for 2 m temperature and 2 m relative humidity. The method used i

dimensional univariate statistical interpolation. In a first step, the background field (6 h or 12 h forecast) is

polated horizontally to the observation locations using a bilinear interpolation scheme and background incre

 are estimated at each observation location .

The analysis increments at each model grid-point are then expressed as a linear combination of th

guess increments (up to  values) :

(12.1)

where  are optimum weights given (in matrix form) by :

(12.2)

The column vector (dimension ) represents the background error covariance between the observatio

the model grid-point . The matrix describes the error covariances of background fields between

of observations. The horizontal correlation coefficients (structure functions) of and are assumed to ha

following form:

(12.3)

where is the horizontal separation between points and and the e-folding distance taken to 300 km

coded in subroutine OIINC).

Therefore :

(12.4)
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with  the standard deviation of background errors.

The covariance matrix of observation errors is set to where is the standard deviation of obser

errors and  the identity matrix.

The standard deviations of background and observation errors are set respectively to 1.5 K and 2 K for temperature

and 5% and 10% for relative humidity. The number of observations closest to a given grid point that are cons

to solve(12.1)is (scanned within a radius of 1000 km). The analysis is performed over land and o

but only land (ocean) observations are used for model land (ocean) grid points.

12.2.2  Quality controls

Gross quality checks are first applied to the observations such as and where

dewpoint temperature. Redundant observations are also removed by keeping only the closest (and more r

the analysis time.

Observation points that differ by more than 300 m from the model orography are rejected.

For each datum a check is applied based on statistical interpolation methodology. An observation is rejec

satisfies :

(12.5)

where  has been set to 3, both for temperature and humidity analyses.

The number of used observations every 6 hours varies between 4000 and 6000 corresponding to around 40

available observations.

The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived product is

point temperature that uses the 2 m temperature analysis  to perform the conversion :

(12.6)

with

(12.7)

12.2.3  Technical aspects

The technical aspects are similar to the snow analysis (see Chapter 11) expect for the computation of the

increments obtained from the subroutineOIUPD instead ofSUCSNW (Cressman interpolation).

SubroutineOISET selects the  closest observations from a given grid-point.

SubroutineOIINC provides the analysis increments from Equations(12.1) and (12.2), by first computing

(in subroutineEQUSOLVE- inversion of a linear system) which does not depend upon

position of the analysis gridpoint and then estimating  (in subroutineDOT_PRODUCT).

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA:

1) C_SSA_TYPE : ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis

2) L_OI : ‘ true’ for statistical interpolation and ‘false’ for Cressman interpolation

σb

O σo
2 I× σo

I

N 50=

RH 2 100,[ ]∈ T Td> Td

Xi∆ γ σo
2 σb

2+>

γ

Ta

Td 17.502 273.16 32.19 Ψ×–×
17.05 Ψ–

---------------------------------------------------------------------=

Ψ RHa( )log 17.502
Ta 273.16–

Ta 32.19–
----------------------------×+=

N
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3) N_OISET : number of observations (parameter )

4) SIGMAB : standard deviation of background error (parameter )

5) SIGMAO : standard deviation of observation error (parameter )

6) TOL_RH : Tolerance criteria for RH observations (parameter  in Equation(12.5))

7) TOL_T : Tolerance criteria for T observations (parameter  in Equation(12.5))

8) SCAN_RAD_2M(1) : Scanning radius for available observations (set to 1000 km)

12.3 SOIL ANALYSIS

The soil analysis scheme is based on an “local” optimum interpolation technique as described inMahfouf(1991)

andDouvilleet al. (2001). The analysis increments from the screen-level analysis are used to produce incre

for the water content in the first three soil layers (correponding to the root zone) :

(12.8)

and for the first soil temperature layer :

(12.9)

The coefficients and are defined as the product of optimum coefficients and minimising the varian

analysis error and of empirical functions , and reducing the size of the optimum coefficients whe

coupling between the soil and the lower boundary layer is weak.

(12.10)

and

(12.11)

with

(12.12)

where  represents the correlation of background errors between parameters  and .

The statistics of background errors have been obtained from a series of Monte-Carlo experiments with a

column version of the atmospheric model where initial conditions for soil moisture have been perturbed rand

They were obtained for a clear-sky situation with strong solar insolation. Empirical functions are aimed to r

soil increments when atmospheric forecast errors contain less information about soil moisture. To obtain neg

N
σb

σo

γ
γ

θ∆ a Ta Tb–( )× b 100
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d( ) es Tb
d( )–
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--------------------------------------×+=
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a b α β
F1 F2 F3

α
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 
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soil-moisture corrections during the night and in winter, is a function of the cosine of the mean solar z

angle , averaged over the 6 h prior to the analysis time :

(12.13)

The optimum coefficients are also reduced when the radiative forcing at the surface is weak (cloudy or rain

tations). For this purpose, the atmospheric transmittance is computed from the mean downward surfac

radiation forecasted during the previous 6 hours  as :

(12.14)

where  is the solar constant.

The empirical function  is expressed as :

(12.15)

with  and .

The empirical function  reduces soil moisture increments over mountainous areas :

(12.16)

where  is the model orography, =500 m and =3000 m.

Furthermore, soil moisture increments are set to zero if one of the following conditions is fufilled:

1) The last 6 h precipitation exceeds 0.6 mm

2) The instantaneous wind speed exceeds 10 m s-1

3) The air temperature is below freezing

4) There is snow on the ground

To reduce soil moisture increments over bare soil surfaces, the standard deviations and the correlations coe

are also weighted by the vegetation fraction , where low and high vegetation cover are defin

Chapter 7 of the Physics Documentation.

The statistics of forecast errors necessary to compute the optimum coefficients are given inTable 12.1.

The correlations have been produced from the Monte-Carlo experiments. The standard deviation of back

error for soil moisture is set to 0.01 m3m-3 on the basis of ECMWF forecasts differences between day 1

day 2 of the net surface water budget (precipitation minus evaporation minus runoff).

The standard deviation of analysis error  is given by the screen-level analysis from :
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(12.17)

From the values chosen for the screen-level analyis  and  %.

Soil moisture increments are such that they keep soil moisture within the wilting point and the fiel

pacity  values, i.e. :

• if  then

• if  then

Finally the coefficients providing the analysis increments are :

(12.18)

and

(12.19)

The coefficient is such that soil temperature is more effective during night and in winter, when the tempe

errors are less likely to be related to soil moisture. This way, 2 m temperature errors are not used to corr

moisture and soil temperature at the same time.

In the 12 h 4D-Var configuration, the soil analysis is performed twice during the assimilation window and the

of the increments is added to the background values at analysis time.

REFERENCES

Douville, H., Viterbo, P., Mahfouf, J.-F. and Beljaars, A. C. M. (2001): “Evaluation of the optimum interpolat

and nudging techniques for soil moisture analysis using FIFE data”Mon. Wea. Rev., 128, 1733-1756

Mahfouf, J.-F. (1991): “Analysis of soil moisture from near surface parameters : a feasibility study”,J. Appl. Me-

teor., 30, 1534-1547

TABLE 12.1 STATISTICS OF BACKGROUND ERRORS FOR SOIL MOISTURE DERIVED FROMMONTE-CARLO

EXPERIMENTS

Coefficient Value

–0.82

–0.92

–0.90

0.83

0.93

0.91

1.25 K

9.5 %
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Part II: D ATA ASSIMILATION

CHAPTER 14   Reduced-rank Kalman filter

Table of contents

14.1 The modified change-of-variable

14.2 The Hessian singular vector calculation

14.1 THE MODIFIED CHANGE -OF-VARIABLE

From the point of view of the analysis, the reduced-rank Kalman filter (sometimes known as the “simplified

lman filter) consists of a modification to the change-of-variable. The control variable for the analysis is defin

(14.1)

where is the static change of variable used in 3D- and 4DVar; is a small, square, upper-triangular matr

is an orthogonal matrix which rotates the control variable so that the leading few elements correspond to

space of interest, such as the space spanned by a set of singular vectors.

The background cost function corresponding to the change of variable defined byEq. (14.1) is

(14.2)

where .

The aim of the reduced-rank Kalman filter is to choose the matrices and to be good approximations

corresponding sub-matrices from the true covariance matrix of background error (in the space defined by t

trices and ). The algorithm is described in detail by Fisher (1998) [ECMWF rd Tech Memo 260]. The m

fied change-of-variable is completely specified by two sets of vectors and for .

vectors define the subspace of interest, while for each , the vector defines the action of the inverse

true covariance matrix of background error on .

The main namelist or the reduced rank Kalman filter is NAMSKF. This contains LSKF, the global switch fo

modified change of variable; NSKFVECS, the number of pairs of vectors and ; and CINSKFY and CIN

FZ, which are the names of the files containing the vectors and respectively. The remaining variables

namelist are used in the Hessian simplified vector calculation, and are described later.

The setup routine for the reduced-rank Kalman filter isSUSKF. After reading the namelist NAMSKF to find how

many vectors to read, and from which files,SUSKFreads the vectors into SKFROT (inyomskf) and into

ZZVECS. Both sets of vectors are read using the routineREADVEC, which expects spectral fields of vorticity,

divergence, specific humidity, temperature and LNSP. The fields must be on model levels, but may be of a d

spectral truncation to that of the analysis increments, in which case they are truncated or padded with ze

appropriate. The vectors are usually produced by the Hessian singular vector calculation described bel

χ XT U 0
F I

XL δx=

L U
X

Jb δxTL TXT E FT

F I
XL δx=

E UTU FTF+=
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must be scaled by the reciprocal of the eigenvalue which is stored in the GRIB header for each field, and is r

in the optional argument ofREADVEC. The vectors are transformed to control vector space and then to a s

with a Euclidean inner product by calls toCHAVAR, CHAVARINAD  andLCZTOIFS.

Next, the orthogonal transformation represented by the matrix inEq. (14.1)is constructed. This transformation

consists of a sequence of Householder matrices (i.e. matrices of the form , where is a norm

vector). The transformation is constructed so that it sets to zero all but the first NSKFVECS elements of e

the vectors in SKFROT. The vectors which define the transformation are stored in SKFROT (inyomskf), overwtrit-

ing the previous content. The non-zero elements of the transformed vectors are retained in the array Z

transpose of the orthogonal transform is applied to the vectors in ZZVEC. Since the Householder matrices a

metric, the transpose of  is equivalent to applying the sequence of Householder matrices in reverse ord

At this stage, SKFROT contains the matrix and ZU contains the matrix in the following equation (equ

11 of Fisher, 1998)

(14.3)

The matrix is upper-triangular, so the elements of and may be determined by back-substitution. Foll

this calculation, may not be exactly symmetric, due to rounding errors and the fact that the change-of-v

is not exactly invertible. It is explicitly symmetrized by replacing each element  by .

The matrix inEq. (14.1)is the Cholesky square root of . The decomposition requires that the la

matrix is positive definite. This is also the condition for positive definiteness of the background error cova

matrix implied by the change of variable. The Cholesky decomposition of the matrix is performe

ing the NAG routineF07FDF. If the decomposition fails due to an indefinite matrix, then the elements of the ma

are reduced by a factor of 2 and the Cholesky decomposition is attempted again. A maximum of 4 attem

made.

The elements of the matrix are stored in the leading NSKFVECS elements of each vector of SKFMAT

remaining elements contain the matrix .

The modified change-of-variable is applied inCVAR2, CVAR2IN, CVAR2AD, andCVAR2INAD. In the case of

CVAR2, the code corresponds exactly to the change of variable defined inEq. (14.1). The inverse, adjoint and in-

verse-adjoint of the change ofCVAR2 are similar. The inverse makes use of the following equation, and uses b

substitution to apply the matrix .

. (14.4)

14.2 THE HESSIAN SINGULAR VECTOR CALCULATION

The reduced-rank Kalman filter requires as input pairs of vectors which satisfy , where is a

dependent approximation to the true covariance matrix of background error. Fisher (1998) [ECMWF rd tech

260] describes how pairs of vectors satisfying this requirement may be calculated during the course of a “H

singular vector” calculation. That is, a singular vector calculation in which the inner product at initial time is

fined by the Hessian matrix of an analysis cost function. The vectors are partially-evolved singular vector

vectors  are produced during the adjoint model integration.

X
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The Hessian singular vector calculation is controlled using the namelist NAMLCZ. The global switch for the

culation is LJACDAV. Initial and final time inner products are selected by NLANTYPE. For NLANTYPE=6 or

the initial time inner product is defined by the analysis Hessian. Otherwise, the spectral inner product is us

NLANTYPE=8 or 9, the final time inner product is defined by the background error covariance matrix. Other

the energy inner product is used. The final time inner product may be restricted to a given geographic are

the variables ALAT1, ALON1, ALAT and ALON3. The optimization time is specified in units of timesteps

NJDSTOP. The maximum number of iterations to be performed byJACDAV (see below) is specifed by NITERL.

The calculation will stop when this number of iterations has been performed, or when NEIGEVO singular ve

have been calculated.

The control-level routine isCUN3, which is called directly fromCNT0. Much of the first part ofCUN3 is con-

cerned with initialization of observations, etc. which are needed by the analysis Hessian calculation. This

the code is essentially the same as the corresponding part ofCVA1, and will not be described here.

The Hessian singular vector calculation is unusual in that it explicitly changes the values of NCONF and N

during the calculation. During the parts of the calculation which resemble an analysis, NCONF is set to 13

NSTOP is set to zero. When the calculation resembles the ordinary singular vector calculation, NCONF is

601 and NSTOP is set to the optimization time for the singular vector calculation defined by NJDSTOP. The

product is also recalculated at various times in the code. In general, however, a spectral inner product is u

most of the calculation. When other inner products are required, they are calculated using an explicit weight

rather than by resetting the SCALP array.

After the initializations for the Hessian calculation, the trajectory for the singular vector calculation is creat

starting vector for the singular vector calculation is initialized, and the gradient for zero control variable is c

lated and saved in VAZG (inyomcva).

The singular vectors are calculated by a call toNALAN2, which writes them to the file svifs.CUN3reads the vec-

tors and callsCNT3TL to give the singular vectors at final time. These are written to the file svevo. The vector

required for the reduced rank Kalman filter are written during the tangent linear integration at a step specifi

NWRISKF (in NAMSKF). The vectors required by the reduced rank Kalman filter are produced by a ca

CNT3AD. The switch LWRISKF (also in NAMSKF) determines whether the vectors  and  are written.

NALAN2 provides an interface to the main generalized eigenvector solver,JACDAV. The main task ofNALAN2

is to write the singular vectors to the file svifs, and to perform some diagnostics.JACDAV calculates the Hessian

singular vectors as the solutions to the following generalized eigenvector equation

(14.5)

where denotes the tangent linear model, defines the inner product at optimization time, and is th

sian of an analysis cost function. The algorithm requires operators which apply and to arbitrary

tors. These operations are represented in the code by the subroutinesOPKandOPMrespectively. SubroutineOPM

calculates a Hessian-vector product as a finite difference between the gradient for the input vector, and the g

for zero control vector which is in VAZG. The gradient for the input vector is calculated by a call toSIM4D.

JACDAV starts with an initial matrix of KSTART vectors. The columns of are orthonormalized with resp

to the initial time inner product by a call toMORTHODM. That is, they are made to satisfy .MOR-

THODM also appliesOPK andOPM to the vectors.

Next, the following small ordinary eigenvalue problem is solved

sk

zk

sk zk

M TWMx λJ″x=

M W J ″
M TWM J ″

V V
VTJ″V I=
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(14.6)

The eigenvalues of this problem are the Ritz values (i.e. approximations to the eigenvalues) ofEq. (14.5). The re-

sidual, , for the leading unconverged Ritz value is selected. The residual is orthog

to the columns of in the Euclidean sense. A vector which is orthogonal with respect to the Hessian is pro

by first calculating an approximate solution to the linear equation , and then explicitly orthonormal

by a call toMORTHODM. The linear equation is solved by a call toPCGBFGS, which implements a precondi-

tioned conjugate gradient algorithm. The accuracy of the solution is determined by GREDBFGS (the requi

duction in the norm of the error), and NINNER (the maximum number of iterations to be performed). A lim

memory BFGS preconditioner is used, which is applied by the routineBFGS. The memory size (in pairs of vectors

is given by MEMBFGS.

Once the vector has been determined, it is included as a new column of , and the process is repeated.

shown that if the linear equation is solved exactly, then the algorithm is equivalent to a Lanczos

rithm. If it is solved approximately, the algorithm resembles the Jacobi-Davidson method.

VTM
T
WMVy θy=

r M TWMVy θJ″Vy–=

V
J″v r=

v

v V
J″v r=
120

IFS Documentation Cycle CY23r4 (Edited  19  September  2003)



IFS Documentation Cycle CY23r4

.

fard,

, A.,

al

as-

var-

ag

.

,

r, F.

or-

Dept.
Part II: D ATA ASSIMILATION

REFERENCES

Alduchov, O. A. and Eskridge, R.E., 1996: Improved Magnus form approximation of saturation vapor pressureJ.

Appl. Met., 35, 601–609.

Andersson, E., Pailleux, J., Thépaut, J.–N., Eyre, J. R., McNally, A. P., Kelly, G. A. and Courtier, P., 1994: Use

of cloud–cleared radiances in three/four–dimensional variational data assimilation. Q. J. R. Meteorol. Soc., 120,
627–653

Andersson, E., Haseler, J., Undén, P., Courtier, P., Kelly, G., Vasiljevic, D., Brankovic, C., Cardinali, C., Gaf

C., Hollingsworth, A., Jakob, C., Janssen, P., Klinker, E., Lanzinger, A., Miller, M., Rabier, F., Simmons

Strauss, B., Thépaut, J.–N. and Viterbo, P., 1998:The ECMWF implementation of three dimensional variation

assimilation (3D–Var). Part III: Experimental results. To appear inQ. J. R. Meteorol. Soc.

Andersson, E., 1997: Implementation of variational quality control. Proc. ECMWF workshop on “Non–linear

pects of data assimilation”, Reading, 9–11 September 1996.

Andersson, E. and Järvinen, H., 1999: Variational quality control.Q. J. R. Meteorol. Soc., 125, 697–722

Bartello, P. and Mitchell, H. L., 1992: A continuous three–dimensional model of short–range forecast error co

iance.Tellus, 44A, 217–235.

Blondin, C., 1991: ‘Parametrization of land surface processes in numerical weather prediction’. Pp. 31–54 inLand

surface evaporation: measurement and parametrization, T. J. Schmugge and J.–C. André, Eds., Springer–Verl

Bouttier, F., Derber, J. and Fisher, M., 1997: The 1997 revision of the Jb term in 3D/4D–Var. ECMWF Tech

Memo. 238.

Buck, A.L., 1981: New equations for computing vapor pressure and enhancement factor.J. Appl. Met., 20, 1527–

1532.

Buizza, R., 1994: Sensitivity of optimal unstable structures.Q. J. R. Meteorol. Soc., 120, 429–451

Cardinali, C., Andersson, E., Viterbo, P., Thépaut, J.–N. and Vasiljevic, D., 1994: Use of conventional surface ob-

servations in three–dimensional variational data assimilation. ECMWF Tech. Memo. 205.

Courtier, P., Thépaut, J.–N. and Hollingsworth, A., 1994: A strategy for operational implementation of 4D–Var

using an incremental approach.Q. J. R. Meteorol. Soc., 120, 1367–1388

Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabie

and Fisher, M., 1998: The ECMWF implementation of three dimensional variational assimilation (3D–Var). I: F

mulation.Q. J. R. Meteorol. Soc., 124, 1783-1807.

Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation.Q. J. R. Mete-

orol. Soc., 115, 1001–1037.

Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 176.

Eyre, J.R. 1992: A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Research

Tech. Memo. 186.

Eyre, J. R., Kelly, G. A., McNally, A. P., Andersson, E. and Persson, A.,1993: Assimilation of TOVS radiance in-

formation through one–dimensional variational analysis.Q. J. R. Meteorol. Soc., 119, 1427–1463.
121

(Edited  19  September  2003)



Part II: ‘Data assimilation’

onal

a-

, NC

r

D-

ht of

el.

lgo-

o. ?.

ined

Var

-

va-

WF

al

d the

ined

F

Fisher, M. and Courtier, P., 1995: Estimating the covariance matrices of analysis and forecast error in variati

data assimilation, ECMWF Tech. Memo. 220.

Freilich, M. S. and Anderson, D., 1997: Ambiguity removal and assimilation of scatterometer data.Q. J. R. Mete-

orol. Soc., 123, 491–518

Foster , D.J. and R.D. Davy, 1988: Global snow depth climatology. U.S. Air Force Environmental Tech. Applic

tions Center/TN-88/006, 48 pp. [Available from National Climate Data Center, 151 Patton Avenue, Asheville

28801]

Gaffard, C., Roquet, H., Hansen, B., Andersson, E. and Anderson, D., 1997: Impact of the ERS–1 scatteromete

wind data on the ECMWF 3D–Var assimilation system. To appear inQ. J. R. Meteorol. Soc.

Gauthier, P. and Thepaut, J.-N., 2000: Impact of the digital filter as a weak constraint in the pre-operational 4

Var assimilation system of Meteo-France. Submitted to Mon. Weather Rev.

Geleyn, J.–F., 1988: Interpolation of wind, temperature and humidity values from the model levels to the heig

meaurement.Tellus, 40, 347–351

Gerard, E, and R. Saunders, 1999: 4D-Var assimilation of SSM/I total column water vapour in the ECMWF mod

ECMWF RD Tech Memo no.270.

Gilbert, J. C. and Lemaréchal, C., 1989:Some numerical experiments with variable storage quasi-Newton a

rithms.Math. Prog., B25, 407–435

Harris, B. 1997: A revised bias correction scheme for TOVS radiances. ECMWF Technical Memorandum N

Hollingsworth, A. and Lönnberg, P., 1986: The statistical structure of short–range forecast errors as determ

from radiosonde data. Part I: The wind field.Tellus, 38A, 111–136

Ingleby, N. B. and Lorenc, A. C., 1993: Bayesian quality control using multivariate normal distributions.Q. J. R.

Meteorol. Soc.,119, 1195–1225.

Järvinen, H. and Undén, P., 1997: Observation screening and first guess quality control in the ECMWF 3D-

data assimilation system. ECMWF Tech. Memo. 236.

Järvinen, H, S Saarinen and P Undén, 1996:User’s guide for blacklisting. 51pp. Available on request from EC

MWF, Shinfield Park, RG2 9AX, Reading, Berkshire, England.

Järvinen, H., E. Andersson and F. Bouttier, 1999:Variational assimilation of time sequences of surface obser

tions with serially correlated errors. submitted to Tellus, 28pp. also, RD Tech Memo no.266.

Kelly, G. and Pailleux, J., 1988:Use of satellite vertical sounder data in the ECMWF analysis system. ECM

Tech. Memo. 143.

Kelly, G., Andersson, E., Hollingsworth, A., Lönnberg, P., Pailleux, J. and Zhang, Z., 1991: Quality control of op-

erational physical retrievals of satellite sounding data.Mon. Weather Rev., 119, 1866–1880.

Leidner, S. M., Hofman, R. N. and Augenbaum, J., 1999: SeaWinds Satterometer Real-Time BUFR Geophysic

Data Product User’s Guide Version 1.0, available from ECMWF and AER

Lönnberg, P, 1989: Developments in the ECMWF analysis system. ECMWF Seminar on Data assimilation an

use of satellite data. 5-9 September 1988, 75-119.

Lönnberg, P. and Hollingsworth, A., 1986: The statistical structure of short-range forecast errors as determ

from radiosonde data. Part II: The covariance of height and wind errors.Tellus, 38A, 137–161.

Lönnberg, P and D Shaw, 1985:Data selection and quality control in the ECMWF analysis system. ECMW
122

IFS Documentation Cycle CY23r4 (Edited  19  September  2003)



 Chapter  ‘’

.

l 1.

ing.

.

mber,

0

or-

ta

infield

Pp.

anog-

al-

he

dy

.

998

ap-

am-

. , Un-

an
Workshop on The Use And Quality Control of Meteorological Observations, 6-9 November 1984, 225-254

Lönnberg, P and D Shaw (Eds.), 1987: ECMWF Data Assimilation Scientific Documentation. Research Manua

Lorenc, A. C., 1986: Analysis methods for numerical weather prediction.Q. J. R. Meteorol. Soc., 112, 1177–1194.

Lorenc, A. C., 1988: Optimal nonlinear objective analysis.Q. J. R. Meteorol. Soc., 114, 205–240.

Lott ,F. and Miller M.J., 1997: A new subgrid-scale orographic drag parametrization : its formulation and test

Q.J.R. Meteorol. Soc., 123, 101-127.

Louis, J.–F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Boundary-Layer Meteorol., 17.

187–202.

Louis, J.–F., Tiedtke, M. and Geleyn, J.–F., 1982: ‘A short history of the PBL parametrization at ECMWF’. Pp

59–80 in Proc. ECMWF Workshop on Planetary boundary layer parameterization, Reading, 25–27 Nove

1981

Lynch, P., 1993: Digital Filters for Numerical Weather Prediction. HIRLAM Technical Report No 10.

Lynch, P., 1996: The Dolph-Chebyshev Window: A Simple Optimal Filter. Mon. Weather Rev., 125, 655–66

Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model, with application to n

mal mode initialization.Contrib. Atmos. Phys.,50, 253-271.

McNally, A. P. and Vesperini, M., 1996: Variational analysis of humidity information from TOVS radiances. Q. J.

R. Meteorol. Soc., 122, 1521–1544.

Mahfouf, J.-F., Buizza, R., and Errico, R. M., 1997: Strategy for including physical processes in the ECMWF da

assimilation system. In Proceedings of the ECMWF Workshop on non-linear aspects of data assimilation, Sh

Park, Reading, RG2 9AX, 9–11 September 1996

Mahfouf, J.-F., 1998: Influence of physical processes on the tangent-linear approximation

Pailleux, J.,1990: ‘A global variational assimilation scheme and its application for using TOVS radiances’.

325–328 in Proc. WMO International Symposium on Assimilation of observations in meteorology and oce

raphy”, Clermont–Ferrand, France

Parrish, D. F. and Derber, J. C., 1992: The National Meteorological Center’s spectral statistical interpolation an

ysis system.Mon. Weather Rev., 120, 1747–1763.

Phalippou, L., 1996: Variational retrieval of humidity profile, wind speed and cloud liquid–water path with t

SSM/I: Potential for numerical weather prediction.Q. J. R. Meteorol. Soc., 122, 327–355.

Phalippou, L. and Gérard, É., 1996: ‘Use of precise microwave imagery in numerical weather forecasting’. Stu

report to the European Space Agency. Available from ECMWF.

Rabier, F. and McNally, A., 1993: Evaluation of forecast error covariance matrix. ECMWF Tech. Memo. 195

Rabier, F., McNally, A., Andersson, E., Courtier, P., Undén, P., Eyre, J., Hollingsworth, A. and Bouttier, F., 1:

The ECMWF implementation of three dimensional variational assimilation (3D–Var). II: Structure funtions. To

pear inQ. J. R. Meteorol. Soc.

Rabier, F., Mahfouf, J.-F., Fisher, M., Järvinen, H. , Simmons. A., Andersson, E., Bouttier, F., Courtier, P., H

rud, M., Haseler, J., Hollingsworth, A., Isaksen, L., Klinker, E., Saarinen, S., Temperton, C., Thépaut, J.–N

dén, P., and Vasiljevic, D., 1997a: Recent experimentation on 4D-Var and first results from a simplified Kalm

filter. ECMWF Tech. Memo. 240.
123

IFS Documentation Cycle CY23r4 (Edited  19  September  2003)



Part II: ‘Data assimilation’

-

96.

ce

at-

-

on

-

pects.

or-
Rabier, F., Thépaut, J.–N. and Courtier, P., 1997b: Four-dimensional variational assimilation at ECMWF. In Pro

ceedings of the ECMWF Seminar on data assimilation, Shinfield Park, Reading, RG2 9AX, September 19

Saunders, R. W. and Matricardi, M., 1998: ‘A fast forward model for ATOVS (RTATOV)’. Tech. Proc. 9th Inter-

national TOVS Study Conf., Igls, Austria, 20–26 February, 1997. 11 pp.

Savijärvi, H., 1995: Error growth in a large numerical forecast system.Mon. Wea. Rev., 123, 212–221.

Simmons, A. J. and Burridge, D., 1981:An energy and angular momentum conserving vertical finite differen

scheme and hybrid coordinate.Mon. Weather Rev., 109, 758–766.

Simmons, A. J. and Chen, J., 1991: The calculation of geopotential and the pressure gradient in the ECMWF

mospheric model: Influence on the simulation of the polar atmosphere and on temperature analyses.Q. J. R. Me-

teorol. Soc., 117, 29–58.

Stoffelen, A. 1999:Scatterometry. PhD Thesis, available from KNMI

Stoffelen, A. and Anderson, D., 1997: Ambiguity removal and assimilation of scatterometer data.Q. J. R. Meteorol.

Soc., 123, 491–518.

Temperton, C., 1988: Implicit normal mode initialization.Mon. Weather Rev., 116, 1013-1031.

Temperton, C., 1989: Implicit normal mode initialization for spectral models.Mon. Weather Rev., 117, 436-451.

Thépaut, J.–N., Courtier, P., Belaud, G., and Lemaitre, G., 1996: Dynamical structure functions in a four-dimen

sional variational assimilation: a case study. Q. J. R. Meteorol. Soc., 122, 535–561.

Tiedtke, M., 1989: A comprehensive massflux scheme for cumulus parametrization in large-scale models.Mon.

Weather Rev., 117, 1779–1800.

Tomassini, M., LeMeur, D. and Saunders, R., 1997: Satellite wind observations of hurricanes and their impact

NWP model analyses and forecasts. To appear inMon. Weather Rev.

Vasiljevic, D., Cardinali, C. and Undén, P., 1992: ‘ECMWF 3D–Variational assimilation of conventional obser

vations’. In Proc. ECMWF workshop on Variational assimilation with emphasis on three–dimensional as

Reading, 9–12 November 1992.

Wergen, W., 1987: Diabatic nonlinear normal mode initialisation for a spectral model with a hybrid vertical co

dinate. ECMWF Tech. Report 59.
124

IFS Documentation Cycle CY23r4 (Edited  19  September  2003)


	IFS DOCUMENTATION
	Part II: Data Assimilation (CY23R4)
	Edited by Peter W. White
	(Text written and updated by members of the ECMWF Research Department)
	Table of contents
	Chapter 1 ‘Incremental formulation of 3D/4D variational assimilation—an overview’
	Chapter 2 ‘3D variational assimilation’
	Chapter 3 ‘4D variational assimilation’
	Chapter 4 ‘Background term’
	Chapter 5 ‘Conventional observational constraints’
	Chapter 6 ‘Satellite observational constraints’
	Chapter 7 ‘Background, analysis and forecast errors’
	Chapter 8 ‘Gravity-wave control’
	Chapter 9 ‘Data partitioning (OBSORT)’
	Chapter 10 ‘Observation screening’
	Chapter 11 ‘Analysis of snow’
	Chapter 12 ‘Land surface analysis’
	Chapter 13 ‘Sea surface temperature and sea-ice analysis’
	Chapter 14 ‘Reduced-rank Kalman filter’
	REFERENCES


	Part II: Data assimilation
	CHAPTER 1 Incremental formulation of 3D/4D variational assimilation—an overview
	Table of contents
	1.1 Introduction
	1.2 Incremental Formulation
	1.3 Practical implementation
	1.3.1 Data flow
	1.3.2 Formation of high-resolution analysis
	1.3.3 Humidity and ozone
	1.4 Preconditioning and control variable
	1.5 Minimization


	1.1 Introduction
	This documentation on 3D and 4D–Var is meant to serve as a scientific guide to the 3D/4D–Var code...
	An extensive scientific description of 3D/4D-Var has been published in QJRMS, in ECMWF workshop p...
	3D-Var was implemented in ECMWF operations on 30 January 1996. The three-part paper mentioned abo...
	In May 1997 there was a complete revision of the background term, see Derber and Bouttier (1999) ...

	1.2 Incremental Formulation
	3D/4D–Var attempt to minimize an objective function consisting of three terms:
	(1.1)
	measuring, respectively, the discrepancy with the background (a short-range forecast started from...
	In its incremental formulation (Courtier et al. 1994), we write
	(1.2)
	is the increment and at the minimum the resulting analysis increment is added to the background i...
	(1.3)
	is the covariance matrix of background error while is the innovation vector,
	(1.4)
	where is the observation vector. is a suitable low-resolution linear approximation of the observa...
	(1.5)
	At the minimum, the gradient of the objective function vanishes, thus from Eq. (1.5) we obtain th...
	(1.6)
	where and are positive definite, see e.g. Lorenc (1986) for this standard result. may be interpre...
	Most (if not all) implementations of OI rely on a statistical model for describing and (Hollingsw...

	1.3 Practical implementation
	As mentioned earlier in Section 1.2, the formulation used is incremental (Courtier et al. 1994). ...
	(i) Comparison of the observations with the background at high resolution to compute the innovati...
	(ii) First minimization at low resolution to produce preliminary low-resolution analysis incremen...
	(iii) Update of the high-resolution trajectory to take non-linear effects partly into account. Ob...
	(iv) Second main minimization at low resolution with tangent-linear physics,
	(v) Formation of the high-resolution analysis (described below) and a comparison of the analysis ...
	(vi) Computation of analysis and background errors, currently at T42L60, as described in Chapter ...
	Each of the job steps is carried out by a different configuration of IFS. They are commonly called:
	(i) The first trajectory run (which includes screening and is sometimes called the screening run)...
	(ii) The main minimization, simplified physics, conf=131, LSPHLC=.T.,
	(iii) The trajectory update, conf=1, LOBS=.T.,
	(iv) The main minimization with physics, conf=131, LSPHLC=.F.,
	(v) The final trajectory runs, conf=1, LOBS=.T., NUPTRA=NRESUPD, with verification screening,
	(vi) The background error minimization, conf=131, LAVCGL=.T.
	A truncation operator (the IFS full-pos post-processing package) allows one to go from high-resol...
	1.3.1 Data flow
	All files containing model fields are coded in GRIB (the GRIB format is described in GRIB.ps). Th...
	The is truncated to the resolution of the minimization to form (the low-resolution background), w...
	The main minimization job writes out the low-resolution background (the previous high-resolution ...
	(1.7)

	1.3.2 Formation of high-resolution analysis
	The analysis field is the sum of the background and of the pseudo-inverse of the truncation opera...

	1.3.3 Humidity and ozone
	The humidity control variable used in the minimization is specific humidity in spectral space (LS...
	The high resolution analysis of in gridpoint space, is modified (in SUGPQLIMDM, called by RDFPINC...
	The ozone control variable used in the minimization is ozone in spectral space (LSPO3). The incre...


	1.4 Preconditioning and control variable
	In practice, it is necessary to precondition the minimization problem in order to obtain a quick ...
	(1.8)
	Comparing Eq. (1.2) and Eq. (1.8) shows that satisfies the requirement. thus becomes the control ...

	1.5 Minimization
	The minimization problem involved in this 3D/4D-Var can be considered as large-scale, since the n...
	The approximation of the Hessian computed during a 3D/4D-Var minimization (read in by SUHESS) is ...
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	CHAPTER 2 3D variational assimilation
	Table of contents
	2.1 Introduction
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	2.4.2 Storage in GOM-arrays
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	2.5.3 tables
	2.5.4 Correlation of observation error
	2.6 Variational quality control

	2.6.1 Description of the method
	2.6.2 Implementation
	2.6.3 Correlated data

	2.1 Introduction
	This part of the documentation covers the top level controls of 3D-Var (CVA1) and gives a detaile...

	2.2 Top-level controls
	The routine CVA1 controls the variational configuration of IFS—its flow diagram is shown in Fig. ...
	At the start of CVA1 additional setups for the variational configurations are done (SU1YOM). The ...
	2.2.1 Gradient test
	If LTEST=.true. a gradient test will be performed both before and after minimization. This is don...
	(2.1)
	with . Repeatedly increasing by one order of magnitude, printing at each step should show approac...
	The behaviour of the cost function in the vicinity of in the direction of the gradient is also di...
	(2.2)
	and printed. For explanation of other printed quantities see the routine GRTEST itself.
	Figure 2.1 Flow diagram for subroutine cva1.

	2.2.2 Iterative solution
	When the cost function is exactly quadratic, as is the case in the background error estimation, c...
	In normal 3D/4D-Var, the cost function is allowed to be (weakly) nonlinear. The minimization algo...
	1) Convergence reached, according to the above criterion.
	2) M1QN3 called incorrectly.
	3) Line search failed—step too big, > .
	4) Maximum number of iterations (NITER) reached
	5) Maximum number of simulations (NSIMU) reached
	6) Line search failed—step too small, < RDX, (in namvar).
	7) Impossible gradient value, ‘descent’ direction points uphill.


	2.2.3 Last simulation
	After M1QN3 has returned control to CVA1, one final simulation is performed. This simulation is d...


	2.3 A simulation
	A simulation consists of the computation of and . This is the task of the routine SIM4D, see Fig....
	(2.3)
	The gradient of with respect to the control variable is stored in the array VAZG (YOMCVA).

	• Copy from VAZX to SP3-arrays (YOMSP) using the routine YOMCAIN
	• Compute , the physical model variables, using CHAVARIN:
	. (2.4)
	• Perform the direct integration of the model (if 4D-Var), using the routine CNT3, and compare wi...
	Calculate for which OBSV is the master routine.

	• Perform the adjoint model integration (if 4D-Var) using CNT3AD, and observation operators’ adjo...
	Calculate , and store it in SP3.

	• and its gradient are calculated in COSJC called from CNT3AD, if LJC is switched on (default) in...
	• Transform to control variable space by applying CHAVARINAD.
	• Copy from SP3 and add to , already in the array VAZG, using YOMCAIN
	• Add the various contributions to the cost function together, in EVCOST, and print to log file u...
	• Increase the simulation counter NSIM4D by one.
	The new and are passed to the minimization algorithm to calculate the of the next iteration, and ...
	sim4d monvar setup an/gradients write-outs
	su2yom
	sucos suic,sucosjb,sujo preset cost-functions
	pvazg=2*pvazx compute gradient & cost-function
	fjbcost= . . . (simple inner product in cont.var space)
	suallt prepare model arrays
	cain transfer cont.var pvazx into model arrays spa3/2
	chavarin convert spa3/2 from cont.var space to model space
	   <l131tl> subfgs convert fields in to increments for TL model
	                   cnt3tl run TL model with computation
	   <else> cnt3 run model with computation
	cnt3ad run forced adjoint model
	chavarinad convert gradient from model to cont.var space
	cainad transfer gradient into pvazg array
	evcost gathercost I/O gather cost-function from all PEs
	calculate and print
	<nsim4d=0 or 999> prtio print breakdown
	readoba , obatabs , prtdpst
	scaas print cost-functions
	   <igrats> cain, stepo with ltwegra : write gradient on disk
	   <ianats> cain, stepo with ltwana : write analysis on disk
	   nsim4d++ increase simulator counter
	Figure 2.2 Flow diagram for the subroutine sim4d.
	2.3.1 Interface between control variable and model arrays
	The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model...
	CAIN is also the interface between the memory distributed spectral arrays and the non-distributed...


	2.4 Interpolation to observation points
	2.4.1 Method
	COBSLAG is the master routine for the horizontal interpolation of model data to observation point...
	• Performs the interpolation, using SLINT
	• Message-passes the result to the processors where the corresponding observations belong, using ...
	• Copies the model data at observation points to the so-called GOM-arrays (yommvo, described belo...
	There are three methods of horizontal interpolation:
	1) LAIDDI: 12-point bi-cubic interpolation, used for all upper-air fields (if NOBSHOR=203) except...
	2) LAIDLI: Bi-linear interpolation, used for surface fields, and
	3) LAIDLIC: Nearest gridpoint, used for cloud parameters.

	The interpolation method for the upper-air fields can be switched to bi-linear by specifying NOBS...
	The adjoint (OBSHORAD) follows the same general pattern but gets further complicated by the fact ...
	stepo (. . . .) scan2m buffer initializations
	cobs setup field pointers
	sc2rdg read grid-point data
	load grid-point arrays
	extmerb grid
	extpolb extrapolation
	cobslag scan observation arrays
	obshor fetch observation lat/lon
	slint horiz interpolation
	to obs point
	(see semilag doc)
	mpobseq exchange data
	among PEs
	insobsec load YOMMVO
	arrays GOMx
	obsv reset ZFJO cost function
	suobarea setup area index for each obs
	(mainly according to satellite ID)
	ecset define obs sets
	sort TOVS/SATEM data
	taskob decide whether to call TL/AD obs operators
	preset ZFJO cost function
	sufaceo ��(TL/AD ) surface obs vertical operator
	upperair �(TL/AD) upper-air obs vertical operator
	satem �����(TL/AD) SATEM / SSM/I obs vertical operator
	tovclr �����(TL/AD) TOVS radiance obs vertical operator
	sum cost-function for each area (diagnostic only)
	sum ZFJO into FJO cost-function
	<lprtgom> prtgom debugging printout of yommvo common
	Figure 2.3 Flow diagram for subroutines scan2mdm and obsv.

	2.4.2 Storage in GOM-arrays
	The GOM arrays (YOMMVO) contain the model values at observation points. The list of upper-air mod...
	• GOMx for conventional data, containing full model profiles of optionally , , , , (ozon), (cloud...
	• GOSx for conventional data, containing surface data of (surface pressure), (skin temperature). ...
	• GSMx for TOVS data, containing full model profiles similar to GOMx
	• GSSx for TOVS data, containing surface data of , , , , , , and , where and are lowest model lev...
	• GSCx for SCAT data, containing lowest model level data of , , , and , and surface data of and ....
	The reason for this split is purely to save space in memory. Model profiles of wind for example a...
	The trajectory GOM5 arrays (identical to GOM) are allocated in the case that tangent linear obser...
	At the end of the adjoint observation operators the GOM-arrays are zeroed and overwritten by the ...
	The r.m.s. of the GOM arrays is printed (by PRTGOM) if the switch LPRTGOM=.true., (in YOMOBS). Th...


	2.5 Computation of the observation cost function
	The cost function computation follows the same pattern for all observational data. This common st...
	2.5.1 Organization in observation sets
	The vertical observation operators are vectorized over NMXLEN (yomdimo) data. To achieve this the...

	2.5.2 Cost function
	The master routine controlling the calls to the individual observation operators is called HOP. T...
	The HOP/HOPTL/HOPAD routines are called from TASKOB/TASKOBTL/TASKOBAD (called from OBSV/ OBSVTL/O...
	The following describes HOP/HOPTL. The adjoint HOPAD follows the reverse order.
	• First prepare for vertical interpolation using the routine PREINT. Data on model levels are ext...
	• The observation array is then searched to see what data is there. The ‘body’ of each observatio...
	• Then the forward calculations are performed. There is an outer loop over all known ‘variable nu...
	• In HDEPART, calculate the departure as
	, (2.5)
	where the two terms in brackets have been computed previously: the first one in the high resoluti...
	If LOBSTL then is

	, (2.6)
	which simplifies to what has been presented in Section 1.2.
	The TOVS radiance bias correction is also carried out at this point by subtracting the bias estim...
	Finally the departure is divided by the observation error (NCMFOE in ODB) to form the normalized ...

	• Departures of correlated data are multiplied by , see 2.5.4. The division by has already taken ...
	• The cost function is computed in HJO, as
	(2.7)
	for all data except SCAT data. The SCAT cost function combines the two ambiguous winds (subscript...

	(2.8)
	These expressions for the cost function are modified by variational quality control, see Section ...

	• HJO also stores the resulting effective departure in the NCMIOM0-word of ODB, for reuse as the ...
	2.5.2 (a) Adjoint
	We have now reached the end of the forward operators. In the adjoint routine HOPAD some of the ta...
	(2.9)
	which is calculated in HOPAD for all data. The gradient of is much more complicated and is calcul...


	2.5.3 tables
	There are two different tables for storing the values. One is purely diagnostic (FJO, yomcosjo1),...

	2.5.4 Correlation of observation error
	The observation error is assumed uncorrelated (i.e. the matrix is diagonal) for all data except t...
	The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation function ...
	The radiosonde geopotential data are vertically correlated (under the switch LRSVCZ) using a cont...
	The vertical correlation of SATEM thickness data is as described in Kelly and Pailleux (1988) and...
	When is non-diagonal, the ‘effective departure’ is calculated by solving the linear system of equ...


	2.6 Variational quality control
	The variational quality control, VarQC, has been described by Andersson and Järvinen (1999). It i...
	2.6.1 Description of the method
	The method is based on Bayesian formalism. First, an a priori estimate of the probability of gros...
	The normal definition of a cost function is
	(2.10)
	where is the probability density function. Instead of the normal assumption of Gaussian statistic...
	(2.11)
	where subscript refers to observation numer . and are the Gaussian and the flat distributions, re...
	(2.12)
	(2.13)
	The flat distribution is defined over an interval which in Eq. (2.13) has been written as a multi...
	: (2.14)
	(2.15)
	(2.16)
	where
	(2.17)

	2.6.2 Implementation
	The a priori information i.e. and are set during the screening, in the routine DEPART, and stored...
	JOCOST computes according to Eq. (2.15) and the QC-weight—the factor within brackets in Eq. (2.16).

	2.6.3 Correlated data
	The quality control of radiosonde height data (if used) is more complex because of the correlatio...
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	CHAPTER 3 4D variational assimilation
	Table of contents
	3.1. Introduction
	3.2. Organization of data in time slots
	3.2.1 Observation preprocessing.
	3.2.2 Inside IFS.
	3.2.3 Observation screening in 4D-Var
	3.3. Inner and outer loops: practical implementation
	3.4. Tangent linear physics

	3.4.1 Set-up
	3.4.2 Mixed-phase thermodynamics
	3.4.3 Vertical diffusion
	3.4.4 Sub-grid scale orographic effects
	3.4.5 Large-scale precipitation
	3.4.6 Long-wave radiation
	3.4.7 Deep moist convection
	3.4.8 Trajectory management

	3.1 Introduction
	4D-Var is a temporal extension of 3D-Var. Observations are organized in one-hour time-slots as de...
	(3.1)
	with subscript i the time index. Each i corresponds to one-hour time slot. is as before the incre...
	The minimization is performed in the same way as in 3D-Var. However, it works fully in terms of i...
	A way to account in the final 4D-Var analysis for some non-linearities is to define a series of m...
	(3.2)
	with superscript n the minimization index.
	is the current estimate of the atmospheric flow. It is equal to the background for the first mini...
	(3.3)
	The number of times the trajectory is updated, i.e. the number of outer-loops (which corresponds ...
	This can be controlled in the prepIFS set-up, together with the number of inner-loops (iterations...
	The variational quality-control (Chapter 2 ‘3D variational assimilation’ Section 2.6) is switched...
	The final 4D-Var trajectory is post-processed every 3 hours. Fields called 4v are created with in...
	The analysis and forecast error calculations are performed as explained in Chapter 7 ‘Background,...

	3.2 Organization of data in time slots
	3.2.1 Observation preprocessing.
	Observational input data (BUFR-format) is read in by means of 6-hour time-windows in OBSPROC prep...
	In the case of 4D-Var there are NO6HTSL input time-windows. For 6 h, 12 h and 24 h 4D-Var analysi...
	Another affecting parameter (see discussion about reshuffle below) is NOSORTSL (set via OBSPROC n...
	Once all BUFR-data has been successfully read in, the unique sequence numbers for reports (before...
	The sequence numbers are generated without honouring the input time-windows. Currently for CONV-d...
	After the sequence-number generation, all BUFR data is read in and re-shuffled for better load ba...
	An essential step to organise observational data for 4D-Var purposes occurs in the OBSPROC routin...
	Before the reshuffle of observations can take place, some crucial information about 4D-Var run ch...
	• NANTIM and NANDAT are used to calculate an absolute start time and date of an analysis period. ...
	• NOSORTSL, NTBMAR and NTFMAR are used to get parameters NUM_TIME_SLOTS and TIME_DELTA_4DVAR in-l...
	• OBSORT parameter vectors TIME_SLOT_YYYYMMDD and TIME_SLOT_HHMMSS to indicate start date and tim...
	The actual reshuffle is handled via OBSORT routine lib_obsort (in particular mapsort). The initia...
	The reshuffle of the CMA data is done per each time-slot. Currently all data is written into one ...
	When time-slot information has been once placed into the DDR#1, it will be propagated automatical...
	Finally, upon the CMA-data reshuffle also the BUFR data is re-shuffled to retain a one-to-one rel...
	The CMA format is converted to an ODB database suitable for input to the IFS. This conversion is ...

	3.2.2 Inside IFS.
	The timeslot information is read into IFS in RD_OBS_BOXES called from OBADAT. It is possible to r...
	• number of observations (NTSLTOB)
	• length of observations (NTSLLEN)
	• number of SCAT observations(NTSLSCA)
	• number of TOVS observations(NTSLTOV)
	• number of non-SCAT and non-TOVS observations(NTSLNTV)
	The following global information regarding timeslots is extracted
	• number of observations for each processor and time-slot (NTSLTOBP)
	• global number of observations for each time-slot (NTSLTOBG)
	• max (over processors) number of observations for each time-slot (NTSLTOBM)
	The arrays to contain observation equivalents (the GOM-arrays) are allocated to be able to contai...
	1) that the trajectory is only run once
	2) that they are used in screening. The tables needed to message pass the observation equivalents...

	3.2.3 Observation screening in 4D-Var
	The trajectory integration can be performed in the observation screening mode. The part of the IF...
	At the end of the screening, the CCMA-ODBs are reshuffled for load-balancing in the subsequent mi...
	Depending on whether the hourly or 6-hourly screening is applied, the division of observations in...


	3.3 Inner and outer loops: practical implementation
	Similarly to 3D-Var, job steps are carried out with different configurations of the IFS:
	(i) The first trajectory run (which includes screening) – conf=2, LSCREEN=.T.
	(ii) The background error minimization, conf=131, LAVCGL=.T.
	(iii) The main minimization, conf=131
	(iv) The update of the trajectory , conf=1, LOBS=.T.
	Steps (iii) and (iv) are performed times where is the number of outer loops or, equivalently, of ...
	The first trajectory run (i), the background-error minimization (ii) and the first main minimizat...
	The ouput of the minimization steps are the files MXVAxx000+000000, MXVAxx999+000000 (as in 3D-Va...
	The input of the second trajectory is the same as in 3D-Var. The output is an analysis at the ini...
	In summary, the first two trajectories use the background as an input, and the following ones use...
	The number of updates of the trajectory starting from 0 at the first minimization is carried insi...

	3.4 Tangent linear physics
	The first minimization uses the simplified physics (vertical diffusion and surface drag) activate...
	The following minimizations use a more complete linear physics activated by the switches LETRAJP,...
	3.4.1 Set-up
	In order to activate the improved linear physics, the switch LSPHLC of the simplified linear phys...
	The following switches must be set to TRUE : LEPHYS, LAGPHY (also necessary to activate the ECMWF...
	Tunable parameters of the improved physics (which should not in principle be modified) are define...
	Diagram representing the input and output files during a standard 4D-Var analysis consisting of 3...
	trajectory (00)
	Figure 3.1 Diagram representing the input and output files during a standard 4D-Var analysis cons...

	3.4.2 Mixed-phase thermodynamics
	The thermodynamical properties of the water mixed phase are represented by a differentiable weigh...
	(3.4)
	with (RLPALP1) and (RLPTRC).
	The tuning parameter controls the intensity of the smoothing, and the temperature has been chosen...
	This weighting function is used by the large-scale condensation and moist-convection routines.

	3.4.3 Vertical diffusion
	The linear versions of the vertical diffusion scheme are called from the drivers VDFMAINTL and VD...
	Vertical diffusion applies on wind components, dry static energy and specific humidity. The excha...
	In stable conditions (), the drag coefficients are defined as :
	(3.5)
	and
	(3.6)
	with the following expressions for the neutral coefficients :
	(3.7)
	(3.8)
	In unstable conditions (), the drag coefficients are defined as:
	(3.9)
	(3.10)
	The empirical coefficients (RLPBB), (RLPCC) and (RLPDD) are set to 5 in SUPHLI.
	In the planetary boundary layer, the exchange coefficients can formally be writen :
	(3.11)
	with the following mixing length vertical profile :
	(3.12)
	The asymptotic mixing lengh for momemtum is set to 150 m, whereas . The pseudo-depth of the bound...
	If this vertical-diffusion scheme is activated in the nonlinear model (LPHYLIN = .TRUE.), the pos...
	This modified scheme make use of all the routines from the operational vertical diffusion, except...
	The logical LEKPERT in NAMTRAJP controls the perturbations of the exchange and drag coefficients....

	3.4.4 Sub-grid scale orographic effects
	The subgrid-scale orographic scheme is a complete linearization of the operational ECMWF scheme d...

	3.4.5 Large-scale precipitation
	Linearized versions of large-scale condensation scheme are CONDTL and CONDAD. Local supersaturati...

	3.4.6 Long-wave radiation
	The linear long-wave radiation is based on a constant emissivity approach, where only perturbatio...
	(3.13)
	where the net flux arrays (PEMTED5) computed from the full non-linear radiation scheme are stored...

	3.4.7 Deep moist convection
	The partial linearization of the ECMWF mass-flux scheme is performed, leading to the following te...
	(3.14)
	The mass-fluxes profiles associated with the updrafts and the downdrafts and are recomputed in th...
	(3.15)
	which requires extra local storage of the profiles of entrainment and detrainement rates and comp...
	in CUDDRAFN (variables PDMFEN and PDMFDE). Eq. (3.15) is only applied when deep convection is dia...

	3.4.8 Trajectory management
	The ECMWF physics uses the tendencies from the dynamics, and variables at as input to compute the...
	(3.16)
	where the variable has already been updated by the dynamics and by the previous physical processe...
	Thus :
	(3.17)
	In Eq. (3.16), if the operator is nonlinear, its linearization around the basic state , will requ...
	The storage of the trajectory at is performed in CPGLAG by the routine WRPHTRAJ called before the...
	The following three-dimensional fields are stored :
	• For the atmosphere: the prognostic variables (wind components, temperature, specific humidity) ...
	• For the soil: the prognostic variables for temperature and moisture content (used to compute th...
	A number of two-dimensional fields used at time step need to be stored: surface pressure, surface...
	The preliminary computations (pressure and geopotential at full and half model levels, astronomy ...
	The number of fields to be stored is defined in SUTRAJP for 3-D atmospheric fields on full model ...
	The option to store the trajectory on disk (instead of in memory) also exists through the logical...


	Part II: Data assimilation

	CHAPTER 4 Background term
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	4.1 Introduction
	The background term described in Courtier et al. (1998) was in May 1997 replaced by a new formula...

	4.2 Description of the algorithm
	We use the following notation:
	• is the low–resolution analysis increment, i.e. model field departures from the background,
	• is the assumed background error covariance matrix,
	• , , and are increments of vorticity, divergence, temperature and surface pressure, and specific...
	• and are the balanced parts of the and increments. The concept of balance will be defined below,...
	• and are the unbalanced parts of and , i.e. and , respectively.
	The incremental variational analysis problem, Eq. (1.2) of Chapter 1 ‘Incremental formulation of ...
	The background-error covariance matrix is implied by the design of , which currently has the form
	(4.1)
	where is a balance operator going from the set of variables , , and , to the model variables , , ...
	(4.2)
	So far, the formulation is perfectly general. Now, we restrict to a simple form and choose a part...
	The covariance matrix is assumed to be block-diagonal, with no correlation between the parameters:
	(4.3)
	It implies that the analysis is independent from the other variables. However, assuming that the ...
	Each autocovariance block in the above matrix is itself assumed to be block-diagonal in spectral ...
	The balance relationship is arbitrarily restricted to the following form:
	(4.4)
	So that the complete balance operator is defined by:
	(4.5)
	or equivalently, in matrix form:
	(4.6)
	The matrix blocks , and are, in general, not invertible, but is. As explained above, the inverse ...
	The matrix multiplication of by allows one to write explicitly the implied background error covar...
	(4.7)
	The blocks implied by and its transforms by the balance operator blocks , and are the balanced pa...
	The , and operators used to define the balance have a restricted algebraic structure. and are bot...
	(4.8)
	The operator is a block–diagonal matrix of identical horizontal operators transforming the spectr...
	(4.9)
	The , and operators all have the same structure: block-diagonal, with one full vertical matrix pe...
	The actual calibration of the operator requires the following 4 steps; each one uses a set of 24/...
	1) operator. The horizontal balance coefficients of are computed by a linear regression between t...
	(4.10)
	which relies on the definition of the model vertical geometry and of reference values for . We us...
	2) operator. The vertical blocks of this operator are computed for each wavenumber by a linear re...
	(4.11)
	so that the statistical sampling is better for the small scales than for the large scales because...
	3) and operators. The vertical blocks are computed for each wavenumber exactly like , except that...
	(4.12)
	One notes that the matrix is not square (the output is larger than the input because there is a k...
	4) Error covariances. The vertical autocovariances of the , , and , difference patterns are compu...
	In addition to these 4 steps, some minor preprocessing is performed on the covariances. The verti...

	4.3 Technical implementation
	The statistical calibration is done using dedicated scripts outside the IFS code. First, the 24/4...
	4.3.1 Input files
	The IFS needs these two GSA files to use in e.g. the incremental analysis jobs. The configuration...

	4.3.2 Namelist parameters of
	Some other important namelist options in NAMJG are LCFCE (to enforce uniform background errors), ...
	(This is the setup code tree in IFS cy16r3, option stabal96)
	(namelist namjg has already been read into yomjg in routine sujb below su0yoma)
	sujbcov determine configuration (nonsep93, stabal96 or totenrgy)
	allocate work arrays
	sujbdat read covariance file ‘stabal96.cv’
	commjbdat distribute covariances to all processors
	suprecov prepare vertical interpolation
	truncate / extrapolate spectrally to IFS resolution
	reset q stratospheric correlations
	sujbcor < lcorcosu > prepare Legendre polynomials
	normalize covariance matrices into correlations
	eigenmd factorize inverse vertical correlation matrices
	—> arrays FGEDVNx, FGEGVM
	generate horizontal correlation spectra
	< lcorcosu > sujbcosu generate compactly supported
	horizontal correlation spectra
	inverse square root of horiz correl spectra —> array FGSCNM
	print average vertical correlation matrices
	< kprt>1 > print spectra and gridpoint structures of
	horizontal correlations
	sujbstd calculate total variances at each level
	standard deviation vertical profiles times REDNMC
	—> arrray FCMN / FCEMNP
	suecges horizontal stdev structures (see cycling doc)
	sujbbal read balance file ‘stabal96.bal’
	commjbbal distribute balance to all processors
	convert to IFS truncation —> arrays SDIV, STPS, BFACT/2
	sujbmod (modification of vertical correlations, not supported)
	sujbmap (modification of geometry, not yet implemented)
	sujbdiag (diagnostic of structure functions, not supported)
	sujbstat (online update of statistics, not yet implemented)
	sujbwrit (rewrite of operators, not yet implemented)
	< ljbtest > sujbtest (Technical test of code)
	setup random vector
	cvar2in / cvar2inad adjoint test on them
	cvar2 / cvar2in inverse tests on them
	cvar2ad / cvar2inad inverse tests on them
	Figure 4.1 Calling tree for subroutine sujbcov.

	4.3.3 IFS routines
	Inside the IFS code, is localized in the setups below subroutine sujbcov and in the inverse chang...
	(i) SUJBDAT: Reads covariances from file stabal96.cv,
	Interpolates in the vertical to the model’s vertical levels (if necessary)
	Sets humidity correlations to 0, for pressures less than 100 hPa.
	(ii) SUJBCOR: Sets up spectral correlation operator
	Covariance matrices (one per ) are converted to vertical correlation matrices and horizontal auto...
	(iii) SUJBSTD: Set up background error standard deviations, see Subsection 4.3.4.
	(iv) SUJBBAL: Set up balance constraint. Read the file stabal96.bal and store in yomjg, for later...
	(v) SUJBTEST: Test of the adjoint of the change of variable, if LJBTEST=.true.
	The distributed memory affects the setups below sujbdat and sujbbal when the data files are read ...
	cvar2in < lskf > (see the simplified Kalman filter doc)
	cvaru3i jgcori trmtos mpe_send /mpe_recv for spectral
	to column transposition
	jgvcori matrix multiplications
	by FGEGVNx / FGEDVNx i.e.
	sqrt of vertical correlations
	trstom mpe_send / mpe_recv for column
	to spectral transposition
	jghcori division by FGSCNM i.e.
	inverse sqrt of horizontal correlations
	< lspfce > jgnrsi multiplication by FCEMN i.e.
	average background errors
	< else >����stepo (0AA00XAG0) interface to ��jgnr(x)
	i.e. multiply by
	3D background errors
	balstat apply horizontal balance operator defined by
	BFACT1 / BFACT2 from vorticity to P variable
	balvert trmtos mpe_send / mpe_�recv for spectral
	to column transposition
	apply vertical balance operator defined by
	SDIV / STPS from P to unbalanced variables
	trstom mpe_send / mpe_recv for column
	to spectral transposition
	< lsubfg > addfgs add SP7A3/2 (trajectory) to SPA3/2
	Figure 4.2 Calling tree for subroutine cvar2in.
	In the change of variable, there is a transposition of the fields between the horizontal and vert...

	4.3.4 Background error
	The background standard errors are set up below sujbstd (in SUINFCE, called from SUECGES) and use...

	4.3.4 (a) Humidity
	The humidity background errors are currently not cycled – they are computed (in SUSHFCE under JGN...
	(4.13)
	(4.14)
	The standard deviation in terms of relative humidity is then converted to specific humidity, taki...
	(4.15)
	where is the relative humidity, , is the saturation water-vapour pressure at the temperature in q...
	Humidity increments are forced to be negligibly small above the tropopause to avoid a systematic ...
	More specifically, for each grid column is set to for model levels such that , where the level is...
	(4.16)
	or, if no such level can be found for in the range from 500 to 70hPa, that it is the lowest level...
	.
	Here and are the background temperature and pressure at level of the grid-column.
	In addition, any values of lower than are reset to .
	For pressures less than = 800 hPa, and over the sea, the model of background errors above is modi...
	(4.17)
	where (where LSM = land–sea mask) and =12500.
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	5.1 Introduction
	The observation operators provide the link between the analysis variables and the observations (L...

	5.2 Data usage
	Observation operators for all observation types that were used by OI have also been implemented i...
	5.2.1 Controls
	The blacklist mechanism is very flexible and allows the complete control of which data to use/not...
	Classes of data can also be switched on and off using the NOTVAR array in NAMJO, however it is pr...
	• 0, means that the data will be used,
	• –1, means that the data will not be used, and
	• –2, means that the data will be passive, i.e. departures will be calculated but there will be n...

	5.2.2 Overview of observation operators
	The operator is subdivided into a sequence of operators, each one of which performs part of the t...
	(i) The inverse change of variable (CHAVARIN) converts from control variables to model variables ...
	(ii) The inverse spectral transforms put the model variables on the model’s reduced Gaussian grid...
	(iii) A 12-point bi-cubic or 4-point bi-linear horizontal interpolation gives vertical profiles o...
	(iv) Vertical integration of, for example, the hydrostatic equation to form geopotential (Section...
	(v) vertical interpolation to the level of the observations.
	The vertical operations depend on the variable. The vertical interpolation is linear in pressure ...
	The vertical interpolation operators for SYNOP 10 m wind (PPUV10M) and 2 m temperature (PPT2M) ma...
	Relative humidity is assumed constant in the lowest model layer to evaluate its 2 m value (PPRH2M...
	The variational analysis procedure requires the gradient of the objective function with respect t...


	5.3 The observation operator for geopotential height
	The geopotential at a given pressure is computed by integrating the hydrostatic equation analytic...
	(5.1)
	where is 288 K, is the geopotential above 1013.25 hPa and is 0.0065 in the ICAO troposphere and 0...
	(5.2)
	where is the model surface pressure and , the model orography. is obtained by vertical interpolat...
	(5.3)
	with
	for and .
	5.3.1 Quadratic vertical interpolation�near the top of the model
	Above the second full level of the model, the linear interpolation (PPINTP)is replaced by a quadr...
	(5.4)
	where , and are constants determined so that the above equation fits the heights at the top level...
	(5.5)
	where 1,2 and 3 refer to levels , respectively.

	5.3.2 Below the model’s orography
	The extrapolation of the geopotential below the model’s orography is carried out as follows: Find...
	(5.6)
	(5.7)
	Find the temperature at mean sea level, (also in CTSTAR)
	(5.8)
	(5.9)
	where is 290.5 K and is 255 K. The geopotential under the model’s orography is (in PPGEOP) calcul...
	(5.10)
	where .


	5.4 The observation operator for wind
	In PPUV a linear interpolation in (PPINTP) is used to interpolate and to the observed pressure le...

	5.5 The observation operators for humidity
	Specific humidity , relative humidity and precipitable water content are linearly interpolated in...
	5.5.1 Saturation vapour pressure
	The saturation vapour pressure is calculated using Tetens’s formula:
	(5.11)
	using FOEEWM (mixed phases, water and ice) in the model and FOEEWMO (water only) for observations...
	(5.12)
	with K.

	5.5.2 Relative humidity
	In GPRH relative humidity is computed:
	(5.13)
	and then in PPRH interpolated to the required observed pressure levels (using PPINTP). Below the ...

	5.5.3 Precipitable water
	In GPPWC precipitable water is calculated as a vertical summation from the top of the model:
	(5.14)
	and then in PPPWC interpolated to the required observed pressure levels (using PPINTP). is assume...

	5.5.4 Specific humidity
	Specific humidity is in PPQ interpolated to the required observed pressure levels (using PPINTP)....


	5.6 The observation operator for temperature
	Temperature is interpolated linearly in pressure (PPINTP), in the routine PPT. Above the highest ...
	(5.15)
	Below the lowest model level the temperature is extrapolated by
	(5.16)
	with , for , but is modified for high orography to , where
	(5.17)
	for , and
	(5.18)
	for . If then is reset to zero. The two temperatures and are computed using Eqs. (5.6) to (5.9).

	5.7 Surface observation operators
	All surface data are processed in the routine SURFACEO. Preparations for the vertical interpolati...
	5.7.1 Mathematical formulation
	An analytical technique (Geleyn, 1988) is used to interpolate values between the lowest model lev...
	(5.19)
	(5.20)
	(5.21)
	where are wind and energy variables, are friction values and is von Kármán’s constant.
	The temperature is linked to the dry static energy by:
	(5.22)
	(5.23)
	Defining the neutral surface exchange coefficient at the height as:
	(5.24)
	The drag and heat coefficients as:
	(5.25)
	(5.26)
	we can set the following quantities:
	, , (5.27)
	and considering the stability function in stable conditions as:
	(5.28)
	we obtain integrating Eqs. (5.19) and (5.20) from 0 to (the lowest model level):
	(5.29)
	(5.30)
	In unstable conditions the stability function can be expressed as:
	(5.31)
	and the vertical profiles for wind and dry static energy are:
	(5.32)
	(5.33)
	The temperature can then be obtained from as:
	(5.34)
	When is set to the observation height, Eqs. (5.29) and (5.30) and Eqs. (5.32)–(5.34) give the pos...

	5.7.2 Surface values of dry static energy
	To determine the dry static energy at the surface we use Eqs. (5.22) and (5.23) where the humidit...
	(5.35)
	is given by (Blondin, 1991):
	(5.36)
	with
	(5.37)
	where is the soil moisture content and is the soil moisture at field capacitiy (2/7 in volumetric...
	where m is a critical value. The wet skin fraction is derived from the skin-reservoir water conte...
	,
	where
	with m being the maximum amount of water that can be held on one layer of leaves, or as a film on...

	5.7.3 Transfer coefficients
	Comparing the Eqs. (5.19) – (5.20) integrated from to with Eqs. (5.24) to (5.26), and can be anal...
	(5.38)
	(5.39)
	Because of the complicated form of the stability functions, the former integrals have been approx...
	(5.40)
	where is given by Eq. (5.24). The bulk Richardson number is defined as:
	(5.41)
	where is the virtual potential temperature. The functions and correspond to the model instability...
	(a) unstable case
	(5.42)
	(5.43)
	C=5
	(b) Stable case
	(5.44)
	(5.45)
	d = 5

	5.7.4 Two-metre relative humidity
	In GPRH relative humidity is computed according to Eq. (5.13). The relative humidity depends on s...
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	6.1 Introduction
	The processing within 3D/4D–Var of satellite data follows the general layout presented in Section...
	The current operational configuration uses TOVS radiances (Andersson et al. 1994), SCAT ambiguous...
	At the introduction of 21r1 (May 1999) we move from the use of RTOVS cloud-cleared radiances to 1...

	6.2 Set-up of the radiative-transfer code
	There are two set–up routines (GETSATID and RTSETUP) for the radiative transfer computations and ...
	6.2.1 Satellite identifiers
	Satellite identifiers are dealt with in just one place in the IFS and that is in the routine GETS...

	6.2.2 Satellite sensors
	The various types of radiance data are classified by sensor. Each satellite sensor is assigned a ...

	6.2.3 Fixed pressure levels and RT validation bounds
	The list of the 43 fixed pressure levels is passed from the RTTOV library (where they have been r...

	6.2.4 Radiance observation errors, bias and emissivity
	Observation errors and bias corrections for 1C radiances are written to the odb in a call to RAD1...


	6.3 Set-up for geopotential thickness and PWC
	NESDIS or 1D-Var thickness and/or PWC data are currently not used in operations (since August 199...
	6.3.1 Layers
	The extended odb (prior to screening) contains the reported layers of SATEM thickness and PWC. Th...

	6.3.2 Observation errors
	The observation errors are given in SURAD and assigned in THICKPWC. Observation errors are otherw...
	The PWC errors are given by
	(6.1)
	where is the saturation PWC for the temperature profile of the background, is the truncation of t...
	(6.2)
	with , the saturation vapour pressure, computed by Eq. (5.11).


	6.4 Observation operators
	The computation of radiances is initiated and controlled by the HOP routine. Thicknesses, PWC and...
	6.4.1 Radiances
	The routine HOP interpolates the model profiles of temperature, humidity and ozone (, and ) to th...
	Some of the radiance channels are highly sensitive to the surface skin temperature, which is also...
	In the case of 1C, or ‘raw’ radiance data, as used since May 1999 (McNally et al. 1999) 1D-Var is...
	In HOP the observation array is searched for radiance data. The compressed ODB (after screening) ...
	The tangent linear HOPTL and the adjoint HOPAD follow the same pattern as HOP. In both the TL and...

	6.4.2 Thicknesses
	The pressures of layer bounds (top T, and bottom B) are found (in HOP) by scanning the observatio...

	6.4.3 Precipitable water from SATEM and SSM/I
	As for thicknesses, the pressures of layer bounds are found by scanning the observation array for...

	6.4.4 Scatterometer winds
	In HOP, the observation array is scanned for SCAT data. Normally two ambiguous pairs of –componen...
	As PPUV10M (Section 5.7) is used also for SCAT data (since cy18r6), the observation operator is e...
	In the adjoint (SURFACAD) there is a separate section of HOP for the calculation of the .


	Part II: Data assimilation

	CHAPTER 7 Background, analysis and forecast errors
	Table of contents
	7.1 Nomenclature
	7.2 Input and ‘massaging’ of background errors
	7.3 Diagnosis of background error variances
	7.4 Calculation of eigenvalues and eigenvectors of the Hessian
	7.5 The Preconditioner
	7.6 Calculation of analysis-error variances
	7.7 Calculation of forecast error variances

	7.1 Nomenclature
	The calculation of standard deviations of background errors is unfortunately an area where the us...
	A second source of confusion is that terms ‘background error’ and ‘forecast error’ are often used...

	7.2 Input and ‘massaging’ of background errors
	Background errors for use in are initialised by a call to SUINFCE. This is part of the set-up des...
	At this stage, all processors have complete fields of background error. Each processor now alloca...
	A large loop over variables follows. For each variable, the GRIB parameter code is examined. Depe...
	The background errors are interpolated onto the model levels by a call to SUVIFCE. A number of va...
	Background errors for specific humidity are read from the background-error file if the namelist v...
	Next, one of two routines is called. SUMDFCE calculates a vertically average ‘pattern’ of backgro...
	Alternatively, SUPRFFCE is called to calculate global mean profiles of the input background error...
	The final step in processing the background errors is to call STEPO(‘00000Y000’). This, in turn, ...

	7.3 Diagnosis of background error variances
	The analysis errors are calculated by subtracting a correction from the variances of background e...
	If NBGVECS is zero, as it is by default, then background errors for variables which are explicitl...
	If NBGVECS is non-zero, then the variances of background error are estimated using randomization....
	The code allows two further configurations of the background error estimation. Neither is operati...
	The background errors diagnosed by BGVECS may be written out for diagnostic purposes by setting L...

	7.4 Calculation of eigenvalues and eigenvectors of the Hessian
	The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvecto...
	CONGRAD starts by transforming the initial control variable and gradient to a space with euclidia...
	Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of t...
	The optimal step is calculated as the point at which the gradient is orthogonal to the search dir...
	The leading eigenvalue of the tridiagonal system is compared against the leading converged eigenv...
	The new Lanczos vector is calculated by normalizing the gradient and the subroutine loops back to...
	After the last iteration, the converged eigenvectors of the Hessian are calculated by calling WRE...
	Finally, CONGRAD transforms the control vector and gradient from the euclidian space used interna...

	7.5 The Preconditioner
	CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the...
	(7.1)
	where the vectors are orthogonal. The pairs are calculated in PREPPCM, and are intended to approx...
	A set of vectors, , is read in using READVEC. These vectors are assumed to satisfy
	(7.2)
	where is the background-error covariance matrix, and is the analysis-error covariance matrix. Vec...
	(7.3)
	(Here, denotes the change-of-variable operator implemented by CHAVAR.)
	Let us denote by the matrix whose columns are the vectors . A sequence of Householder transformat...
	It is clear that has only non-zero eigenvalues. Moreover, the non-zero eigenvalues are the eigenv...
	Now, since is an orthogonal matrix, we have . So, we may write Eq. (7.3) as
	(7.4)
	Let us denote the eigenpairs of by . Then we may write Eq. (7.4) as
	(7.5)
	The orthogonality of and the orthonormality of the eigenvectors , means that the vectors are orth...
	Inverting Eq. (7.5) gives
	(7.6)
	Defining gives the required approximation to the Hessian matrix.
	The preconditioner vectors are sorted in decreasing order of , and all vectors for which are reje...
	The numbers are stored in RCGLPC. The vectors, are stored in VCGLPC.
	Application of the preconditioner is straightforward, and is performed by subroutine PRECOND. Thi...
	(7.7)
	with orthonormal , then the expressions for , and result from replacing in Eq. (7.7) by , and res...

	7.6 Calculation of analysis-error variances
	The eigenvectors and eigenvalues of the Hessian matrix calculated by CONGRAD are passed to XFORME...
	(7.8)
	The approximation is equivalent to setting to one all but the leading eigenvalues of the precondi...
	The first step is to undo the preconditioning. Multiplying to the left and right by , gives
	(7.9)
	Substituting for the preconditioner matrix from Eq. (7.7), gives the following
	(7.10)
	where
	(7.11)
	Operationally, preconditioning is not used. However XFORMEV makes no particular use of this fact....
	The first step in XFORMEV is to calculate the vectors . They are stored in VCGLWK.
	The next step is to invert the approximate Hessian matrix defined by Eq. (7.10). Let be the matri...
	(7.12)
	The matrix is formed and its Cholesky decomposition is calculated using the NAG routine F07FDF. T...
	(7.13)
	The matrix is calculated by back-substitution.
	The final stage in the calculation of the analysis errors is to transform the columns of the matr...
	(7.14)
	where , and where represents the inverse of the change of variable. The columns of may be written...
	The analysis errors are calculated as the difference between the background errors and a correcti...

	7.7 Calculation of forecast error variances
	The analysis errors are inflated according to the error growth model of Savijärvi (1995) to provi...
	The error growth model is
	(7.15)
	Here, represents growth due to model errors, represents the exponential growth rate of small erro...
	The saturation standard deviations are calculated as times the standard deviation of each field. ...
	The growth due to model error is set to 0.1 times the global mean background error per day. The e...
	The error growth model is integrated for a period of NFGFCLEN hours. The integration is done anal...
	ESTSIG overwrites the contents of ANEBUF with the estimated variances of forecast error. The vari...
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	8.1 Introduction
	In 3D-Var, gravity-wave control is achieved via the techniques of normal-mode initialization (NMI...
	Section 8.2 provides a brief overview of NMI techniques, together with references to scientific p...

	8.2 Normal-mode initialization
	If the model equations are linearized about a state of rest, the solutions can (with a certain am...
	(8.1)
	where is the ‘slow’ component and the ‘fast’ component. Linear NMI consists of removing the fast ...
	Nonlinear NMI was first demonstrated by Machenhauer (1977), in the context of a spectral shallow-...
	Implicit normal mode initialization (Temperton 1988) is based on the observation that, except at ...

	8.3 Computation of normal modes
	8.3.1 Vertical modes
	The vertical normal modes depend on the number of levels in the model and on their vertical distr...

	8.3.2 Horizontal modes and help arrays
	The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral t...
	For most applications of the NMI procedure in the operational suite, it is considered that the la...
	All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical mod...
	The horizontal modes are computed by calling SUMODE3. In turn, SUMODE3E computes the explicit mod...


	8.4 Implementation of NMI
	Nonlinear NMI is invoked by calling NNMI3. Model tendencies are computed by calling STEPO to perf...

	8.5 Computation of
	In the notation of Eq. (8.1), the penalty term is defined by
	(8.2)
	where is an empirically chosen weighting factor, is the current state of the control variable and...
	is computed by calling the routine COSJC. Control passes through JCCOMP to NMIJCTL, where is eval...

	8.6 Digital filter initialization
	Digital filter initialization consists in removing high frequency oscillations from the temporal ...
	Time oscillations exceeding a cut-off frequency can be filtered by applying a digital filter to a...
	The step function is found to be
	In practice, the convolution is restricted to a finite time interval of time span . We can write and
	with . This truncation introduces Gibbs oscillations which can be attenuated by introducing a Lan...
	An alternative which is used at ECMWF has been proposed by Lynch to use a Dolph-Chebyshev window ...
	where , , and is the Chebyshev polynomial of degree . The time span of the window is chosen so th...

	8.7 Implementation of DFI as a weak constraint in 4D-Var
	In the context of variational data assimilation, the digital filter is used as a weak constraint....
	During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital ...
	The weak constraint term which is added to the cost function is the moist energy norm of the depa...
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	9.1 Introduction
	The observational data partitioning scheme has been encapsulated into a separate module called OB...
	• Mode 0, submodule BUFRsort. Partitioning and splitting of the BUFR data among the available pro...
	• Mode 1, submodule CMA+BUFRsort. Geographical re-ordering of the CMA data in conjunction with th...
	• Mode 2, submodule CMAsort. Geographical re-ordering of the CMA data.; it also copes with the vi...
	• Mode 3, submodule MATCHUP. Matching up and updating the ECMA data present in one geographical d...
	• Mode 4, submodule VMATCHUP. The same as MATCHUP, but for virtual processors. More than NPROC EC...

	9.2 Data flow with the analysis components
	This section describes OBSORT as a part of the analysis pre- and postprocessing (OBSPROC) and the...
	Data-assimilation cycle (see Fig. 9.1 ) starts by retrieval of BUFR data. Currently there are fou...
	In the first step MAKECMA picks up prepared BUFR files and decodes them. All, except formally err...
	Figure 9.1 Dataflow in observation processing at the ECMWF on a single processor implementation.
	In the next step, the ECMA file is passed to the process for screening the observations; this rej...
	All the observations passing this test are written to a so-called Compressed CMA-file (CCMA); thi...
	The observations for the actual data assimilation (the minimization) are passed through a CCMA fi...
	The minimization provides the initial-condition fields for the subsequent global forecast. It als...
	The subsequent observation-processing step to the minimization is called MATCHUP; this is part of...
	When the ECMA file is up to date, the last part of the process starts with FEEDBACK, the purpose ...

	9.3 Observational data partitioning
	Due to the high data volume and the time-critical scheduling in operations, it is necessary to pa...
	The fact that there is always a limit for the maximum available memory per processor, forces us t...
	Disk-space consumption by the CMA files is greatly reduced by the introduction of various packed ...
	Although the screening module effectively reduces the size of the CMA data by an order of magnitu...

	9.4 Data partitioning scheme
	In the parallel implementation it might, at first sight, look feasible to split up observational ...
	Furthermore, it would be convenient to have approximately the same geographical distribution of o...
	Figure 9.2 A typical split of the globe containing observational data, produced by the OBSORT for...
	We have found the following geographical partitioning of observational data works well, and is pr...
	1) Set the origin for observational-data space on the Greenwich meridian, since this obeys the co...
	2) Choose NPROCA to be the number of latitudinal bands from north to south, and NPROCB to be the ...
	3) Set the number of processors to NPROC = NPROCA ¥ NPROCB.
	4) Read the local CMA files and build up a table of the observational data that contains the geog...
	5) Communicate the local table, and sort locally, the resulting global table with respect to time...
	6) For each time slot, sort the locally available global-information table with respect to latitu...
	7) Continue in similar fashion for each latitude band to resolve the final longitudinal boxes.
	8) Assign one box for each processor and update the destination-processor information (the proces...
	9) Shuffle the actual CMA data, based on the information in the global table. This step involves ...
	Because of inadequate load balancing in the main analysis process, the requirement for strict geo...

	9.5 The parallel data flow of the OBSORT
	In the parallel implementation (Fig. 9.3 ) we have to revise the dataflow diagram described in a ...
	Figure 9.3 Dataflow in observation processing in the parallel scheme.
	Before going on, it is advisable to explain some internal details in re-ordering (or shuffling) o...
	Figure 9.4 The five main stages when redistributing CMA data among processors.
	Fig. 9.4 shows the five main stages in the geographical data re-ordering. Firstly, every processo...
	A recent change to OBSORT has been to enable more CMA files to be written than processors were av...
	The I/O, in OBSORT, to the CMA file is done in two chunks. Firstly for the DDR sections, and seco...
	Prior to the actual MAKECMA, we wanted to add functionality that redistributes the few input BUFR...
	After receiving re-distributed BUFR data, MAKECMA continues to perform its decoding functions, bu...
	The screening proceeds in parallel mode by reading local ECMA files, one per processor, and perfo...
	There is a special function present in the OBSORT for post-adjustment of clustered data. It was f...
	For a better parallel performance in the minimization it is crucial to obtain a good load balance...
	Finally, it was soon clear, that MATCHUP could be integrated inthe FEEDBACK. As a result MATCHUP ...
	To accomodate the virtual-processor approach, a recent change to MATCHUP has been introduced to p...

	9.6 OBSORT calling tree
	• LIB_OBSORT
	• SWAP_FWD
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	• SETCOMBU
	• SUBUOCTP
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	• SUCMOCTP
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	• CHECK_NAMELIST
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	• GLOBAL
	• INIT_COMMON
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	• REF_TIME
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	10.1 Introduction
	This chapter describes the observation screening in the ECMWF 3D/4D-Var data assimilation. A more...
	This chapter was prepared in September 1997 by Heikki Järvinen, Roger Saunders and Didier Lemeur,...

	10.2 The structure of the observation screening
	10.2.1 The incoming observations
	Before the first trajectory integration, the observations are extracted from a data base of obser...

	10.2.2 The screening run
	The ECMWF 3D/4D-Var data assimilation system makes use of an incremental minimization scheme (Cou...
	Technically, the final result of the observation screening is a pair of observation arrays. The o...

	10.2.3 General rationale of the observation screening
	The general logic in the 3D/4D-Var observation screening algorithm is to make the independent dec...

	10.2.4 3D- versus 4D-Var screening
	In the 3D-Var assimilation system, the observations processed have been gathered over a 6-hour lo...
	In summer 1997, a new screening procedure called 4D-screening was implemented that took into acco...


	10.3 The independent observation screening decisions
	10.3.1 Preliminary check of observations
	The observation screening begins with a preliminary check of the completeness of the reports (pre...

	10.3.2 Blacklisting
	Next, the observations are scanned through for blacklisting. At the set-up stage the blacklist in...

	10.3.3 Background quality control
	The background quality control (FIRST) is performed for all the variables that are intended to be...
	Table 10.1 The predefined limits for the background quality control, given in terms of multiples ...
	u, v
	9.00
	16.00
	25.00
	z, ps
	12.25
	25.00
	36.00
	dz
	x
	x
	x
	T
	9.00
	16.00
	25.00
	rh, q
	9.00
	16.00
	25.00
	Flag values are denoted by 1 for a probably correct, 2 for a probably
	incorrect and 3 for an incorrect observation. The variables are
	denoted by u and v for wind components, z for geopotential height,
	ps for surface pressure, dz for thickness, T for temperature, rh
	for relative humidity and q for specific humidity, respectively.
	There is also a background quality control for the observed wind direction (FGWIND). The predefin...



	10.4 Screening of satellite radiances
	This section describes the use of RTOVS, valid in April 1999. At the time of writing it was plann...
	10.4.1 General
	The radiances from the RTOVS 120 km BUFR data received from NESDIS are preprocessed in a dedicate...
	. In the screening pass ADVAR is called twice by TOVCLR, once with IS set to 1 (when all the oper...

	10.4.2 Input
	The fast radiative-transfer model RTTOV-5 for TOVS radiances requires an input profile of 40 leve...
	Table 10.2 TOVS channel usage and (O+F) errors assumed in 1D-Var (the errors used in 4D-Var are i...
	1
	All/global
	1.40
	1.40
	1.40
	1.40
	2
	All/global
	0.35
	0.35
	0.35
	0.35
	3
	All/global
	0.30
	0.30
	0.30
	0.30
	4
	Clear/sea/global
	0.20
	0.20
	0.20
	5
	Clear/sea/global
	0.30
	0.30
	0.30
	6
	Clear/sea/global
	0.40
	0.80
	0.80
	7
	Clear/sea
	0.60
	1.20
	8
	Clear/sea
	1.00
	2.00
	9
	FG only
	10
	Clear/sea
	0.80
	1.60
	11
	Clear/global
	1.10
	1.10
	1.10
	12
	Clear/global
	1.50
	1.50
	1.50
	13
	Clear/sea
	0.50
	1.00
	14
	Clear/sea
	0.35
	0.70
	15
	Clear/sea
	0.30
	0.60
	16
	FG only
	17
	FG only
	18
	FG only
	19
	FG only
	21
	QC check
	22
	All/sea*
	0.30
	0.30
	1.00
	23
	All/global*
	0.22
	0.22
	0.22
	0.22
	24
	All/global
	0.25
	0.25
	0.25
	0.25
	25
	All/global
	0.60
	0.60
	0.60
	0.60
	26
	All/global
	1.00
	1.00
	1.00
	1.00
	27
	All/global
	1.80
	1.80
	1.80
	1.80
	*Cloudy data not used in tropics


	10.4.3 Bias correction
	The next step is to apply the bias correction to the NESDIS radiances. The details of the bias co...

	10.4.4 Quality control
	Several quality checks are then applied to the measured and background radiances, and ADVAR retur...
	(i) Check that the background profile vector is within realistic limits (e.g. temperature is with...
	(ii) The measured and background brightness temperatures are present for all required channels an...
	Table 10.3 Definition of 1D-Var failure flags and typical rates in the IFS.
	0
	80%
	Retrieval OK
	nn
	1.0%
	Measurement cost too high for channel nn
	55
	17%
	At edge of scan, otherwise OK
	66
	0%
	Failed stability check (not applied)
	99
	0.5%
	Minimization failed to converge
	100
	1.0%
	Failed window channel cloud test
	5nn
	0.1%
	Channel nn failed fine background check
	6nn
	0.3%
	Channel nn failed gross background check
	7nn
	0%
	Bad background radiance for channel nn
	887
	0.3%
	background profile outside rttov limits
	888
	0%
	background profile corrupt
	9nn
	0%
	Radiances for channel nn corrupt
	999
	0%
	No valid scan or valid satid or bias coeffs
	A series of more critical tests are then applied where ADVAR continues even if the test fails but...
	(i) Gross background check (i.e. the measured radiance departures from the background are less th...
	(ii) The background temperature, specific humidity and ozone profiles are checked to make sure th...
	(iii) A fine background check where the square of the radiance departures are flagged if they are...
	(iv) A check for cloud contamination for the HIRS channels is included by checking that the radia...
	(v) Radiances at the two extreme edge positions of the swath are flagged at present and not used ...
	(vi) Checks are also made that the bias-correction coefficients, satellite id, and scan position ...


	10.4.5 Retrieval
	Table 10.4 Files required by ADVAR
	chanspec.dat
	Specifies channel usage
	rmtberr.dat
	Specifies radiance observation errors (O+F)
	fcbkerr.dat
	Specifies 1D-Var background error covariances (B)
	bcor.dat
	Bias correction coefficients
	rt_coef_ieee.dat or
	rt_coef_fmt.dat
	RTTOV coefficients in binary or ascii format.
	The main task for ADVAR is to perform a 1D-Var retrieval of temperature, water vapour and ozone p...
	The minimization of the cost function is performed using the method of Newtonian iteration, and u...
	A final check on the stability of the retrieved profile is provided in the code, but is not imple...


	10.4.6 SSM/I radiances
	SSM/I radiances are also screened in a similar module DVSSMI, which performs a similar set of fun...
	A specialized library, ssmicode is used for the retrievals. Some documentation can be found in Ge...


	10.5 Scatterometer processing
	10.5.1 Introduction
	This section describes the flow of ERS, NSCAT, and QuikSCAT scatterometer data through the assimi...
	This section is broken into five subsections. The first is the introduction, which you are readin...

	10.5.2 Background
	ESA’s ERS-1 scatterometer was launched in July 1991 and stopped operating in June 2000. The succe...
	Source code for scatterometer processing resides in ClearCase under the project name scat. The li...
	etimesort/ source code for pre-processing ERS data
	module/ shared modules
	qbukey/ source code for adding RDB info to QuikSCAT 50km BUFR
	qfilter/ source code for pre-processing QuikSCAT 25km BUFR
	qretrieve/ source code for SeaWinds wind retrieval
	test/ empty directory for future test code
	e* and q* directories contain processing software specific to ERS and QuikSCAT, respectively. NSC...


	10.5.3 ERS Wind scatterometer processing
	Fig. 10.1 shows a simple flow chart for ERS processing at ECMWF. Below the processing chain in de...
	The MARS archive definitions for the different wind scatterometer observations are:
	Figure 10.1 ERS processing
	Table 10.5
	ERS-1
	122
	122
	1
	ERS-2
	122
	122
	2
	NSCAT
	136
	210
	280
	QuikSCAT
	137*
	300
	281
	QuikSCAT
	138
	301
	281
	Data for a given time window are retrieved from MARS. These data are then input to program timeso...
	ERS winds are retrieved as part of the IFS observation pre-processor, OBSPROC (IFS Documentation ...
	A horizontal thinning is performed on the 19x19 data layout of the ERS scatterometer reports. In ...
	In the IFS, the two retrieved winds are used in an obs cost function with 2 minima (see pp_obs/hj...
	Quality control decisions made by the IFS screening run are:
	High wind speed check: Data rejected if observed or first guess wind speeds are above 25 m/s (RSC...
	Sea ice check: Data rejected if sea ice fraction is greater than 0.1 (RSCATLI). Performed by obs_...
	Global Quality Control: If the average distance-to-the-cone residual for the backscatter measurem...
	There is no back ground wind check performed on scatterometer data, but data may be de-weighted o...
	Quality control decisions and departures from background and analyses are appended to each subset...
	ERS feedback messages have a PRESCAT section sandwiched between the original ERS and the feedback...
	Here are some of the key words and bits to examine in the ERS feedback message (these are in the ...
	Winds retrieved at ESA: BUFR descriptor 11012 for speed and 11011 for direction winds available i...
	Winds retrieved at ECMWF: BUFR descriptor 11192 for u and 11193 for v winds retrieved in program ...
	Report rejected by thinning if BUFR descriptor 33229 (Report Event Word 2) = 1. QC decision made ...
	Background departures x 2 ambiguities: BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and...
	Report rejected by high wind speed check if BUFR descriptor 33233 (Report Status Word 1) = 16. QC...
	Report rejected if Sea Ice faction > 0.1: BUFR descriptor 33220 (Report Event Word 1) = 12. QC de...
	Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision...
	Datum 4D-Var quality control status: BUFR descriptor 33233 (Report Status Word 1) = 1/2/4/8 1 - a...
	Analysis departures x 2 ambiguities: BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and f...



	10.5.4 NASA scatterometer (NSCAT) processing
	NSCAT data has been used experimentally for impact experiments in 4D-Var as well as a surrogate f...
	Data for the whole 9-month mission are stored on ecfs in HDF format archived in ecfs:/oparch/nsca...
	The format and content of HDF NSCAT files are thoroughly documented in QuikSCAT Science Data Prod...
	Assimilation experiments with NSCAT data are only possible after offline processing of the data. ...

	10.5.5 NASA ``QUIK’’ scatterometer (QuikSCAT) processing
	The implementation of QuikSCAT data processing borrowed many lessons from the use of NSCAT data. ...
	The processing of QuikSCAT data will now be described.
	Data for a given time window are retrieved from MARS. These data are then fed to program qfilter/...
	Duplicate and incomplete records are part of the QuikSCAT real-time data stream because of Seawin...
	QuikSCAT winds are retrieved with program qretrieve/qscat25to50km. The input is 25-km QuikSCAT BU...
	The winds are used just as in NSCAT. The winds are re-ordered (most likely first and its 180-degr...
	Here are some of the key words and bits to examine in the QuikSCAT feedback message (these are in...
	Background departures x 2 ambiguities: Like for ERS described above.
	Report rejected if sea ice fraction is > 0.1: Like for ERS described above.
	Report rejected if data not in the sweet spots: when BUFR descriptor 33229 (Report Event Word 2) ...
	Report rejected if number of winds is < 2: when BUFR descriptor 33220 (Report Event Word 1) = 3. ...
	Report rejected if wind directions are too close: when BUFR descriptor 33229 (Report Event Word 2...
	Datum rejected if number of ambiguities > 2: when BUFR descriptor 33236 (Datum Event Word 1) = 19...
	Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision...
	Datum 4D-Var quality control: Like for ERS described above.
	Analysis departures x 2 ambiguities: Like for ERS described above.
	Figure 10.2 QuickSCAT processing


	10.6 The dependent observation screening decisions
	10.6.1 Update of the observations
	Just before performing the dependent screening decisions, the flag information gathered so far is...

	10.6.2 Global time–location arrays
	Some of the dependent decisions require a global view to the data which is not available as the m...

	10.6.3 Vertical consistency of multilevel reports
	The first dependent decisions are the vertical-consistency check of multilevel reports (VERCO), a...

	10.6.4 Removal of duplicated reports
	The duplicated reports will be removed next. That is performed (MISCE, DUPLI, REDSL) by searching...

	10.6.5 Redundancy check
	The redundancy check of the reports, together with the level selection of multilevel reports, is ...
	For land synop and paob reports, the report closest to the analysis time with most active data is...

	10.6.6 Thinning
	Finally, a horizontal thinning is performed for the airep, TOVS, SSM/I and SATOB reports. The hor...
	Thinning of TOVS, SSM/I and SATOB reports are each done in two stages controlled by THINN. For TO...
	The screening of SATOB data has been extended for atmospheric motion wind observations, including...
	Table 10.6 A summary of the current use of observations in the 3D/4D-Var data assimilation at the...
	synop
	u, v, ps (or z), rh
	u and v used only over sea, in the tropics also over low
	terrain (< 150 m). Orographic rejection limit 6 hPa for rh,
	100 hPa for z and 800 m for ps
	airep
	u, v, T
	Not used in full resolution. Used only below 50 hPa
	satob
	u, v
	Selected areas and levels. thinning of high-density winds.
	dribu
	u, v, ps
	Orographic rejection limit 800m for ps
	temp
	u, v, T, q

	Used on all reported levels. q only below 300 hPa. 10 m u and v used over land only in tropics ov...
	pilot
	u, v
	Used on or closest to standard pressure levels. 10 m u and v used over land only in tropics over ...
	tovs
	Tb

	For TOVS radiance usage see Table 0.3 and the chapter on 1C radiance processing.
	paob
	ps

	Used south of 19oS. Orographic rejection limit 800 m for ps
	scatt
	ssm/i
	u, v
	tcwv

	Not used in full resolution. Used if SST is warmer than 273 K or if both observed and background ...
	Thinned, used over sea.
	The variables are as in Table 10.1, with the addition that Tb stands for brightness temperature a...

	Apart from this thinning, the other observation dependent decisions involved by the screening of ...
	In addition, the quality flag set in OBSPROC is also applied, and an extra quality control is don...


	10.6.7 A summary of the current use of observations
	A summary of the current status of use of observations in the 3D-Var data assimilation is given i...

	10.6.8 Compression of the ODB
	After the observation screening roughly a fraction of 1/10 of all the observed data are active an...


	10.7 A massively-parallel computing environment
	The migration of operational codes at the ECMWF to support a massively-parallel computing environ...
	The global view of the observations is provided in the form of a global ‘time–location’ array for...
	The time–location array is just large enough for all the dependent decisions, except for the redu...

	APPENDIX A
	A.1 Bad reporting practice of synop and temp reports
	The way the synoptic surface stations report mass observations (pressure or geopotential height) ...
	• station altitude is above 800 m and station reports mean sea level pressure
	• station altitude is above 800 m and station reports 1000 hpa level
	• station altitude is above 1700 m and station reports 900 hpa level
	• station altitude is below 300 m and station reports 900 hpa level
	• station altitude is above 2300 m and station reports 850 hpa level
	• station altitude is below 800 m and station reports 850 hpa level
	• station altitude is above 3700 m and station reports 700 hpa level
	• station altitude is below 2300 m and station reports 700 hpa level
	• station altitude is below 3700 m and station reports 500 hpa level
	The reporting practice is also considered as bad if the station reports 500 gpm, 1000 gpm, 2000 g...
	For temp geopotentials the reporting practice is considered as bad if the
	• station altitude is above 800 m and station reports 1000 hpa level
	• station altitude is above 2300 m and station reports 850 hpa level
	• station altitude is above 3700 m and station reports 700 hpa level

	A.2 Revised background quality control for selected observations
	The background quality-control rejection limits are applied more strictly for some observation ty...
	• airep wind observations with zero wind speed are rejected if the background wind exceeds 5 m/s
	• for airep and dribu wind observations the rejection limit is multiplied by 0.5, and for pilot w...
	• for satob wind observations the rejection limit is multiplied by 0.1, except below 700 hPa leve...
	• no background quality control is applied for scatt winds
	• for dribu surface pressure observations the rejection limit is multiplied by 0.9, and for paob ...
	• for airep temperature observations the rejection limit is multiplied by 1.6

	A.3 Use of atmospheric motion winds
	This appendix describes those parts of the ECMWF assimilation system which involves some special ...
	A.3.1 Data selection
	There are several model independent checks which AMW data have to pass in order to be considered ...
	Check on longitude/latitude
	• AMW must be within a circle of 55˚ from the sub-satellite point
	Check on levels depending on the computational method
	• WW CMW and WVMW must be above 400 hPa
	• VIS CMW must be below 700 hPa
	• IR CMW can be used at all levels.
	Check on land/sea
	• All AMW over sea are used
	• AMW over land is not used north of 20ºN. .
	• For Meteosat (0º mission) instead of 20ºN this threshold is 35ºN to allow usage of AMW over nor...
	• For Meteost (63º mission) the use of AMW has been extended over Asia if above 500 hPa. This is ...
	• AMW are blacklisted over the Himalayas as a precautionary measure.
	• AMW over land south of 20ºN (35ºN for Meteosat) is used if above 500 hPa.
	Check on satellite (35ºN for Meteosat) is used if above 500 hPa.
	This is a temporary selection on certain channels or satellites. At present channels and satellit...
	• METEOSAT cloud tracked winds with 90 min temporal sampling
	• METEOSAT IR (not at medium level), VIS, WV
	• METEOSAT HVIS, also at asynoptic times, only if (
	• GOES IR & WV (NOT at asynoptic times)
	• GMS IR & VIS

	A.3.2 Background quality check
	The background quality check is based on a comparison of the AMW deviation from the background. O...
	if [ D2 > (sfg 2 + sobs 2 ) * ERRLIMj * ZREJMOD] then flag= j where D 2 = 1/2 (Du2 +D v2) with Du...
	• ZREJMOD = 0.2 for low level
	• ZREJMOD = 0.1 for all others levels
	A special check or asymmetric check is applied when the observed speed is more than 4 slower than...
	• ZREJMOD = 0.15 at low level
	• ZREJMOD = 0.07 in the tropics
	• ZREJMOD = 0.075 – 0.00125 * SPDfg all others
	• ZREJMOD = 0.0 if SPDfg > 60 (observation gets always flag j = 3)
	When the data is passed to the following variational quality control its probability of being use...
	flag j. With flag j = 1 the data will be assimilated, with flag j =2 it will be given an intermed...
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	CHAPTER 11 Analysis of snow
	Snow depth is a model prognostic variable that needs to be analysed. Its analysis is performed in...
	Table of contents
	11.1 Organization
	11.2 Snow-depth analysis
	11.3 Technical aspects

	11.1 Organization
	The snow analysis is a 3-D sequential analysis performed every 6 hours using a successive correct...
	The snow-depth analysis is performed using snow-depth observations and the snow-depth background ...

	11.2 Snow-depth analysis
	The observations are snow depths from SYNOP reports. The background is defined above. The analysi...
	The weight function is the product of functions of the horizontal distance and vertical displacem...
	,
	where
	and
	The snow depth is preserved when the model height is above the observing station, but it is sever...
	In addition to the preliminary quality control in the observation data base, the following checks...
	• if only snow depth observations below 140 cm are accepted.
	• this limit is reduced to 70 cm if .
	• snow-depth observations are rejected if they differ by more than 50 cm from the background.
	• when only one snow-depth observation is available within the influence radius , the snow depth ...
	• snow-depth analysis is limited to 140 cm.
	• snow-depth increments are set to zero when larger than mm (where is expressed in Celsius)
	• snow-depth analysis is set to zero if below 0.04 cm
	• if there is no snow in the background and in more than half of the observations within a circle...
	The analysis of snow depth is finally weighted with climatological values to provide the final an...
	The relaxation coefficient is set to 0.02 corresponding to a time scale of 12.5 days. The global ...
	The snow density is unchanged in the analysis process :
	Areas with permanent snow and ice (defined using the Global Land Cover Characterization product) ...

	11.3 Technical aspects
	The snow analysis software is implemented as a branch of the more comprehensive surface and scree...
	• SSA
	• CONTROL_SSA
	• INISNW
	• SCAN_DDR
	• COORDINATES
	• GETFIELDS
	• SCAN_CMA
	• SCAN_OBS
	• LAND_OBS
	• INITIAL_REJECTION
	• REDUNDANT_OBS
	• SNOW_ANALYSIS
	• SUCSNW
	• SCAN_OBS
	• FG2OBS
	• SUCSNW
	• SNOW_FG
	• FDB_OUTPUT
	• PRINT_SUMMARY
	• PLOTDATA
	• FEEDBACK
	The main program SSA calls CONTROL_SSA where most of the setup and namelist handling are done. Ro...
	After this, all input fields are read into memory in GETFIELDS. They consist of the snow water eq...
	In SCAN_CMA observations are read into memory and a quick validity check of the non-applicable ob...
	Additional screening is done in INITIAL_REJECTION and in REDUNDANT_OBS. The former one sets up an...
	The routine REDUNDANT_OBS removes time duplicates and retains the observations of the station in ...
	The actual snow analysis is performed under SNOW_ANALYSIS. The analysis technique is Cressman’s s...
	The snow-depth background (i.e. first guess) field is constructed from the model first-guess snow...
	The accuracy of the analysis is estimated in PRINT_SUMMARY where some important statistics are su...
	The main logicals of the namelist NAMSSA are :
	• L_SNOW_ANALYSIS : When set to TRUE, the snow analysis is performed.
	• L_SNOW_DEPTH_ANA : When set to TRUE, the snow analysis is performed in snow depth (in oppositio...
	• L_USE_SNOW_CLIMATE : When set to TRUE, a relaxation of the snow analysis towards a monthly clim...
	• L_USE_FG_FIELD : When set to TRUE the snow analysis is set to the first-guess value (no use of ...


	CHAPTER 12 Land surface analysis
	12.1 INTRODUCTION
	Soil temperature and soil water content are prognostic variables of the forecasting system and, a...

	12.2 SCREEN-LEVEL ANALYSIS
	12.2.1 Methodology
	Two independent analyses are performed for 2�m temperature and 2�m relative humidity. The method ...
	The analysis increments at each model grid-point are then expressed as a linear combination of th...
	(12.1)
	where are optimum weights given (in matrix form) by :
	(12.2)
	The column vector (dimension ) represents the background error covariance between the observation...
	(12.3)
	where is the horizontal separation between points and and the e-folding distance taken to 300 km ...
	Therefore :
	(12.4)
	with the standard deviation of background errors.
	The covariance matrix of observation errors is set to where is the standard deviation of observat...
	The standard deviations of background and observation errors are set respectively to 1.5 K and 2 ...

	12.2.2 Quality controls
	Gross quality checks are first applied to the observations such as and where is the dewpoint temp...
	Observation points that differ by more than 300�m from the model orography are rejected.
	For each datum a check is applied based on statistical interpolation methodology. An observation ...
	(12.5)
	where has been set to 3, both for temperature and humidity analyses.
	The number of used observations every 6�hours varies between 4000 and 6000 corresponding to aroun...
	The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived prod...
	(12.6)
	with
	(12.7)

	12.2.3 Technical aspects
	The technical aspects are similar to the snow analysis (see Chapter 11) expect for the computatio...
	Subroutine OISET selects the closest observations from a given grid-point.
	Subroutine OIINC provides the analysis increments from Equations (12.1) and (12.2), by first comp...
	Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA:
	1) C_SSA_TYPE : ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis
	2) L_OI : ‘ true’ for statistical interpolation and ‘false’ for Cressman interpolation
	3) N_OISET : number of observations (parameter )
	4) SIGMAB : standard deviation of background error (parameter )
	5) SIGMAO : standard deviation of observation error (parameter )
	6) TOL_RH : Tolerance criteria for RH observations (parameter in Equation (12.5))
	7) TOL_T : Tolerance criteria for T observations (parameter in Equation (12.5))
	8) SCAN_RAD_2M(1) : Scanning radius for available observations (set to 1000 km)


	12.3 SOIL ANALYSIS
	The soil analysis scheme is based on an “local” optimum interpolation technique as described in M...
	(12.8)
	and for the first soil temperature layer :
	(12.9)
	The coefficients and are defined as the product of optimum coefficients and minimising the varian...
	(12.10)
	and
	(12.11)
	with
	(12.12)
	where represents the correlation of background errors between parameters and .
	The statistics of background errors have been obtained from a series of Monte-Carlo experiments w...
	(12.13)
	The optimum coefficients are also reduced when the radiative forcing at the surface is weak (clou...
	(12.14)
	where is the solar constant.
	The empirical function is expressed as :
	(12.15)
	with and .
	The empirical function reduces soil moisture increments over mountainous areas :
	(12.16)
	where is the model orography, =500 m and =3000 m.
	Furthermore, soil moisture increments are set to zero if one of the following conditions is fufil...
	1) The last 6�h precipitation exceeds 0.6 mm
	2) The instantaneous wind speed exceeds 10 m�s-1
	3) The air temperature is below freezing
	4) There is snow on the ground
	To reduce soil moisture increments over bare soil surfaces, the standard deviations and the corre...
	The statistics of forecast errors necessary to compute the optimum coefficients are given in Tabl...
	The correlations have been produced from the Monte-Carlo experiments. The standard deviation of b...
	The standard deviation of analysis error is given by the screen-level analysis from :
	(12.17)
	From the values chosen for the screen-level analyis and %.
	Soil moisture increments are such that they keep soil moisture within the wilting point and the f...
	• if then
	• if then
	Finally the coefficients providing the analysis increments are :
	(12.18)
	and
	(12.19)
	The coefficient is such that soil temperature is more effective during night and in winter, when ...
	Table 12.1 Statistics of background errors for soil moisture derived from Monte-Carlo experiments
	–0.82
	–0.92
	–0.90
	0.83
	0.93
	0.91
	1.25 K
	9.5 %
	–0.99
	In the 12�h 4D-Var configuration, the soil analysis is performed twice during the assimilation wi...
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	CHAPTER 14 Reduced-rank Kalman filter
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	14.1 The modified change-of-variable
	From the point of view of the analysis, the reduced-rank Kalman filter (sometimes known as the “s...
	(14.1)
	where is the static change of variable used in 3D- and 4DVar; is a small, square, upper-triangula...
	The background cost function corresponding to the change of variable defined by Eq. (14.1) is
	(14.2)
	where .
	The aim of the reduced-rank Kalman filter is to choose the matrices and to be good approximations...
	The main namelist or the reduced rank Kalman filter is NAMSKF. This contains LSKF, the global swi...
	The setup routine for the reduced-rank Kalman filter is SUSKF. After reading the namelist NAMSKF ...
	Next, the orthogonal transformation represented by the matrix in Eq. (14.1) is constructed. This ...
	At this stage, SKFROT contains the matrix and ZU contains the matrix in the following equation (e...
	(14.3)
	The matrix is upper-triangular, so the elements of and may be determined by back-substitution. Fo...
	The matrix in Eq. (14.1) is the Cholesky square root of . The decomposition requires that the lat...
	The elements of the matrix are stored in the leading NSKFVECS elements of each vector of SKFMAT. ...
	The modified change-of-variable is applied in CVAR2, CVAR2IN, CVAR2AD, and CVAR2INAD. In the case...
	. (14.4)

	14.2 The Hessian singular vector calculation
	The reduced-rank Kalman filter requires as input pairs of vectors which satisfy , where is a flow...
	The Hessian singular vector calculation is controlled using the namelist NAMLCZ. The global switc...
	The control-level routine is CUN3, which is called directly from CNT0. Much of the first part of ...
	The Hessian singular vector calculation is unusual in that it explicitly changes the values of NC...
	After the initializations for the Hessian calculation, the trajectory for the singular vector cal...
	The singular vectors are calculated by a call to NALAN2, which writes them to the file svifs. CUN...
	NALAN2 provides an interface to the main generalized eigenvector solver, JACDAV. The main task of...
	(14.5)
	where denotes the tangent linear model, defines the inner product at optimization time, and is th...
	JACDAV starts with an initial matrix of KSTART vectors. The columns of are orthonormalized with r...
	Next, the following small ordinary eigenvalue problem is solved
	(14.6)
	The eigenvalues of this problem are the Ritz values (i.e. approximations to the eigenvalues) of E...
	Once the vector has been determined, it is included as a new column of , and the process is repea...
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