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Part II: D ATA ASSIMILATION

CHAPTER 1 Incremental formulation of 3D/4D
variational assimilation—an overview

Table of contents
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1.3 Practical implementation
1.3.1 Data flow
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1.4 Preconditioning and control variable

1.5 Minimization

1.1 INTRODUCTION

This documentation on 3D and 4D—Var is meant to serve as a scientific guide to the 3D/4D-Var codes, a part of the
IFS. The documentation is divided into eleven chapters. This, the first chapter deals with the scientific formulation,
the practical implementation of the incremental method, and it includes some comments on minimization and pre-
conditioning. The code structure and the computational details of the 3D/4D-Var cost-functions and their gradients
are explained itChapter 2 ‘3D variational assimilationThere is a separate chapter on subjects specific to 4D-Var
(Chapter 3 ‘4D variational assimilation. Thereafter follows a description of the background te@hdpter 4
‘Background term) and two chapters respectively on observation operators for conventionaCtiagatér 5 ‘Con-
ventional observational constrain)sand satellite dataQhapter 6 ‘Satellite observational constraiftChapter

7 ‘Background, analysis and forecast errodgals with the computation of background and analysis errors and
Chapter 8 ‘Gravity-wave controlis on initialization. The modules for observation sorting and screening are de-
scribed inChapter 9 ‘Data partitioning (OBSORTandChapter 10 ‘Observation screeninghapter 1Joutlines

the snow analysis€Chapter 12escribes the Soil analysi€hapter 13describes the sea surface temperature and
sea-ice analysis and the final chagitbapter 14rovides details of the reduced Kalman filter.

An extensive scientific description of 3D/4D-Var has been published in QIRMS, in ECMWF workshop proceed-
ings and Technical Memoranda over the years. The incremental formulation was introduCeditbigr et al.

(1994). The ECMWF implementation of 3D-Var was published in a three-part papeolnyier et al. (1998),Ra-

bier et al. (1998) andAnderssoret al. (1998). The observation operators for conventional data can be found in
Vasiljevicet al.(1992). The methods for assimilation of TOVS radiance data and ERS scatterometer data were de-
veloped byAnderssoret al. (1994) andStoffelerand Andersor{1997), respectively. The pre-operational experi-
mentation with 4D-Var has been documented in three papeRabijeret d. (1998),Mahfouf and Rabief1998)
andKlinker et al.(1999).

3D-Var was implemented in ECMWF operations on 30 January 1996. The three-part paper mentioned above chief-
ly presented the scheme as it was at that point in time. There have been very significant developments of the system

(Edited 19 September 2003)



9 Part Il: ‘Data assimilation’
A\~

during its time in operations. The first upgrade took place in connection with the move from a CRAY C90 system
to a distributed memory Fujitsu VPP700 machine. The observation handling and data screening modules were re-
placed with new codes, s&hapter 9 ‘Data partitioning (OBSORT)andChapter 10 ‘Observation screening’
respectively, and the paper Bgirvinenand Undén(1997). Variational quality control of observationsndersson

and Jarvinen1999, andsection 2.5 and a new algorithm for computing estimates of analysis and background er-
rors Fisherand Courtierl995, andChapter 7 ‘Background, analysis and forecast erjasgre introduced.

In May 1997 there was a complete revision of the background ternDedeer andBouttier (1999) andChapter

4 '‘Background term’ The old background term, which was describe@aurtier et al. (1998), is not covered by

this documentation as it is now considered obsolete. Later that year (25 November 1997) 6-hour 4D-Var was intro-
duced operationally, at resolution T213L31, with two iterations of the outer loop: the first with 50 iterations (sim-
plified physics) and the second with 20 iterations (with tangent-linear physics). In April 1998 the resolution was
changed to 1319 and in June 1998 we revised the radiosonde/pilot usage (significant levels, temperature instead
of geopotential) and we started using time-sequnces of dataifenet al. 1999), so-called 4D-screening. Finally,

the data assimilation scheme was extended higher into the atmosphere on 10 March 1999, wh8t3h&0T

model was introduced, which in turn enabled the introduction in May 1999 of ATOVS radiance data (MeNally

al. 1999). In October 1999 the vertical resolution of the boundary layer was enhanced taking the number of model
levels to a total of 60. In summer 2000 the 4D-Var period was extended from 6 to 12 hours, whereas the ERA con-
figuration was built as an FGAT (first guess at the appropriate time) of 3D-Var with a period of 6 hours. At the time
of writing it is planned to increase the horizontal resolution of 4D-Var t6I1L60, with inner loop resolution
enhanced from T63L60 to T59L60 using the linearized semi-Lagrangian scheme.

1.2 INCREMENTAL FORMULATION

3D/4D—Var attempt to minimize an objective functidn  consisting of three terms:

J =J,+3,+J, (1.1)
measuring, respectively, the discrepancy with the background (a short-range forecast started from the previous
analysis),J,, , with the observationd,  and with the slow character of the atmosphere, J.The -term controls

the amplitude of fast waves in the analysis and is describ€tapter 8 ‘Gravity-wave control'lt is omitted from
the subsequent derivations in this section.

In its incremental formulatiorQourtier et al. 1994), we write
_1 _ 1 _
J(0x) = ééxTB 1ox + Q(H Ox —d)TR-1(Hdx —d) (1.2)

ox is the increment and at the minimum the resulting analysis incredent is added to the background in
order to provide the analysi¢

xa = xb+ dxa (1.3)
B is the covariance matrix of background error while is the innovation vector,
d = yo—Hxb (1.4)

wherey© isthe observation vectdét.  is a suitable low-resolution linear approximation of the observation operator
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H in the vicinity of x , andR is the covariance matrix of observation errors. Alternatitédx ~ Eqir(1.2)can

be replaced by the finite differenddx — HxP , approximated at low resolution. The incremental formulation of

3D/4AD-Var consists therefore of solving féx  the inverse problem defined by the (direct) observation operator
H, given the innovation vectat  and the background constraint. The gradieht of  is obtained by differentiating
Eq. (1.2)with respect tdx

0J = (B2 + HTR-1H)dx — HTR-1d (1.5)

At the minimum, the gradient of the objective function vanishes, thus fEqm(1.5)we obtain the classical result
that minimizing the objective function defined By. (1.2)is a way of computing the following equivalent matrix-
vector products:

5x2 = (B-1+HTR-1H)HTR-1d = BHT(HBHT +R)-d (1.6)

whereB andR are positive definite, see &grenc(1986) for this standard resutiBHT  may be interpreted as

the square matrix of the covariances of background errors in observation spac®wifiile is the rectangular ma-
trix of the covariances between the background errors in model space and the background errors in observation
space.

Most (if not all) implementations of Ol rely on a statistical model for describiigiH T BHd Hollihgsworth

and Lonnberg1986;Lonnbergand Hollingsworth 1986 andBartelloand Mitchel| 1992). 3D-Var uses the obser-

vation operatoH explicitly and, as Ol, if a statistical model is required it is only used for describing the statistics
of the background errors in model space. Consequently, in 3D/4D-Var it turns out to be easier, from an algorithmic
point of view, to make use of observations such as TOVS radiances, which have a quite complex dependence on
the basic analysis variables.

1.3 PRACTICAL IMPLEMENTATION

As mentioned earlier isection 1.2the formulation used is increment&durtier et al. 1994). In the ECMWF
implementaion two different resolutions are used—one for the comparison with observations, which is the same as
the deterministic medium-range forecast model, and a lower resolution for the minimization. Several different job
steps are performed:
® Comparison of the observations with the background at high resolution to compute the innovation
vectorskq. (1.4) These are stored in the NCMIFC1-word of the ODB (the observation database)
for later use in the minimization. This job step also perfosoeening(i.e. blacklisting, thinning
and quality control against the background) of observations Geapter 10 ‘Observation
screening’). The screening determines which observations will be passed for use in the main
minimisation. Very large volumes of data are present during the screening run only, for the purpose
of data monitoring,
(i)  First minimization at low resolution to produce preliminary low-resolution analysis increments,
using simplified physics
(i)  Update of the high-resolution trajectory to take non-linear effects partly into account. Observed
departures from this new atmospheric state are stored in the ODB and the analysis problem is re-
linearized around the updated model state,
(iv)  Second main minimization at low resolution with tangent-linear physics,
(v)  Formation of the high-resolution analysis (described below) and a comparison of the analysis with
all observations (also those not used by the analysis, for diagnostic purposes).
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(vi) Computation of analysis and background errors, currently at T42L60, as descrikddjer 7
‘Background, analysis and forecast errors’

Each of the job steps is carried out by a different configuration of IFS. They are commonly called:
® The first trajectory run (which includes screening and is sometimes cattedscreening run —
conf=2, LSCREEN=.T.
(i)  The main minimization, simplified physics, conf=131, LSPHLC=.T.,
(i)  The trajectory update, conf=1, LOBS=.T.,
(iv)  The main minimization with physics conf=131, LSPHLC=.F,,
(v) The final trajectory runs, conf=1, LOBS=.T., NUPTRA=NRESUPD, with verification screening,
(vi)  The background error minimization, conf=131, LAVCGL=.T.

A truncation operator (the IFS full-pos post-processing package) allows one to go from high-resolution fields to
low resolution, using appropriate grid-point interpolations. The stiéipsnd(iv) are referred to as the second it-
eration of theouter loop,and these can optionally be iterated further to incorporate additional nonlinear effects.
The trajectory update is not normally done in 3D-Var. Tineer looptakes place within the main minimization,

job stepdiii) and(v).

1.3.1 Data flow

All files containing model fields are coded in GRIB (the GRIB format is described in GRIB.ps). The high-resolu-
tion backgroundkf, (the input to the first trajectory run) is obtained from a standard MARS retrieve to files reftra-
jshml (model-level spectral fields), reftrajggml (model-level grid-point fields,g.e.  and clouds) and reftrajggsfc
(surface grid-point fields).

The xPr is truncated to the resolution of the minimization to foxfg, (the low-resolution background), which

is the input to the main minimization. The low resolution file names are backgroundshml, backgroundggsfc and
backgroundggml, for upper-air spectral data, surface grid-point data, and upper-air grid-point data (i.e. clouds), re-
spectively. Specific humiditgy and ozone are represented in spectral space as they are spectral variables in the
variational analysis. The three files are linked to the nal@d4RFxxxx0000, ICMSHxxxXINIT andICMG-
GxxXXXIMIN , ICMGGxxxXINIT, ICMGGxxxxINIUA  (wherexxxx is the ‘expver’ identifier of MARS) and read

in by SUSPECSUGRIDFfrom SUECGES

The main minimization job writes out the low-resolution backgroutfg, (the previous high-resolution trajectory
in the second minimization) to filddXVVAOO000+000hhmm (where hhmm is the time of the field) and the low-
resolution analysis@g to fileBIXVA00999+00hhmm. This is done in a call t& TEPOnear the end o8IM4D,
Section 2.3by the routineVRMLPP. Both these files are are saved under names starting respectivelpfigth
andspanlr and later read by IFS in the trajectory runs (usBigINIF, called fromRDFPINQ and transformed to

the higher resolution by filling with zeroes (operafor! ), and is transformed to gridpoint space. The trajectory
runs also read ixfr  (from theeftraj files) usingSUINIF called fromCSTA. The analysis increment is formed

in RDFPIN

Ox@r = T xPr] =T *[NNMI(xPg)] (1.7)

1.3.2 Formation of high-resolution analysis

The analysis field is the sum of the background and of the pseudo-inverse of the truncation operator applied to the
low-resolution analysis and background. This pseudo-inverse comprises filling in the spectral wave-numbers great-
er than the minimization resolution by zerodst , applieBdn (1.7). At this stage temperature is converted to
virtual temperature, as required by the model. (note that normal-mode initialization is no longer applied).

IFS Documentation Cycle CY23r4 (Edited 19 September 2003)
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1.3.3 Humidity and ozone

The humidity control variable used in the minimization is specific humidity in spectral space (LSPQ, NAMDIM).
There is no constraint forcing the minimization to produce positive and non supersaturated values for this quantity.
However, before the computation of TOVS observation departures in the minimization stage, (low-resolution) grid-
point values are replaced ifyq) whedre is a differentiable function such that it results in positive humidity val-
ues (routineQNEGLIM, called fromTOVCLR). Super—saturated humidity gridpoint values can optionally, under
the switch LNEGHYP (=.false., namrinc), be modified to be below 1.2 (hard coded) in terms of relative humidity.
This would be done in the routif@NEGHYP, called fromSCAN2MDM.

The high resolution analysis @f  in gridpoint space, is modifiedSinGPQLIMDM, called byRDFPINQ by
resetting negative humidities to zero and supersaturated values to saturated values.

The ozone control variable used in the minimization is ozone in spectral space (LSPO3). The increment is convert-
ed to gridpoint space when computing the high resolution analysis. For the time being no special security is applied
to the ozone increments.

1.4 PRECONDITIONING AND CONTROL VARIABLE

In practice, it is necessary to precondition the minimization problem in order to obtain a quick convergence. As the
Hessian (the second derivative) of the objective function is not accedsilvknc(1988) suggested the use of the
Hessian of the background terdy, . The Hessiad pf is the mBtrix . Such a preconditioning may be imple-
mented either by a change of metric (i.e. a modified innner product) in the space of the control variable, or by a
change of control variable. As the minimization algorithms have generally to evaluate several inner products, it was
found more efficient to implement a change of variable (uridleAVAR, CHAVARIN etc). Algebraically, this
requires the introduction of a variabte  such that

Jy, = XX (1.8)

Comparingeg. (1.2)andEg. (1.8)shows thaty = B-1/25x satisfies the requirement.  thus becomesotitteol
variableof the preconditioned problem. This is indeed what has been implemented, as will be expl@eeton
4.2 A single-observation analysis with such preconditioning converges in one iteration.

1.5 MINIMIZATION

The minimization problem involved in this 3D/4D-Var can be considered as large-scale, since the number of de-
grees of freedom in the control variable is of the order &t 20 efficient descent algorithm was provided by the
Institut de Recherche en Informatique et Automatique (INRIA, France). It is a variable-storage quasi-Newton al-
gorithm (M1QN3, auxlib) described irGilbert and Lemarécha{1989) and in an on-line postscript document.
M1QN3uses the available in-core memory to update an approximation of the Hessian of the cost function (the ar-
ray ZVATRA, seeCVAL). In practice, ten updates (NMUPD, namiomi) of this Hessian matrix are used. The ap-
proximation is modified during the minimization by deleting information from the oldest gradient and inserting
information from the most recent one. Once per iterakitifQN3 calls thesimulata SIM4D (Section 2.3 Some-

times extra simulations have to be performed in order to obtain a good step length for the descent. The number of
iterations is limited to 70 (NITER, namvar) and the number of simulations to 80 (NSIMU, namvar). Normally, only
very small adjustments of the analysis occur during the second half of the minimization. On the whole, the cost
function is typically divided by a factor of two and the norm of the gradient by a factor of twenty (printed from
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EVCOSTandSIM4D, respectively).

The approximation of the Hessian computed during a 3D/4D-Var minimization (readStUbB{ESS is used as a
first estimate for a subsequent analysis, if the switch LWARM=.true. (namiomi). LWARM is only used in the sec-

ond minimization of 4D-Var (segection 3.3

IFS Documentation Cycle CY23r4 (Edited 19 September 2003)
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CHAPTER 2 3D variational assimilation

Table of contents
2.1 Introduction
2.2 Top-level controls
2.2.1 Gradient test
2.2.2 lterative solution
2.2.3 Last simulation
2.3 A simulation
2.3.1 Interface between control variable and model arrays
2.4 Interpolation to observation points
2.4.1 Method
2.4.2 Storage in GOM-arrays
2.5 Computation of the observation cost function
2.5.1 Organization in observation sets
2.5.2 Cost function
2.5.3 tables
2.5.4 Correlation of observation error
2.6 Variational quality control
2.6.1 Description of the method
2.6.2 Implementation

2.6.3 Correlated data

2.1 INTRODUCTION

This part of the documentation covers the top level controls of 3D-Vay(1) and gives a detailed description of

a 3D-Var simulation$IM4D) All of this chapter also applies to 4D-Var with some additions which will be detailed

in Chapter 3 ‘4D variational assimilationThe interpolation of model fields to observation poi@8SHOR and

the organization of the data in memory (yomsp, yommvo) are also descibed. We explain the structure of the com-
putation of the observation cost function (FJO and FJOS in yomcosjol) and its gradient, managed by the routines
OBSV andTASKOB. The background term will be explainedGhapter 4 ‘Background term’

(Edited 19 September 2003)
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2.2 TOP-LEVEL CONTROLS

The routineCVAL controls the variational configuration of IFS—its flow diagram is showfign 2.1 . The first
guess fields (FG) have been read in to the SP7-arraysdiiSP) by SUECGES called fromSUJBSTDwithin

the J,, setup, seBubsection 4.3.3The FG is optionally initialized to be consistent with the lower resolution orog-
raphy. This is done in a call t6NMI from SUECGES controlled by the switch LFGNMI (=false if L50 or L60,

in namjg), see alsGhapter 8 ‘Gravity-wave control’

At the start ofCVA1 additional setups for the variational configurations are d&h&l(y OM). The SP3-arrays, i.e.
the current model state, (MOMSP) are filled by copying from SP7, usifgP7TO3 A call to CNT2 computes
HxPg , which is required for the finite-difference version. (1.4)of the incremental 3D-Var. This call oNT2

is charaterized by LOBSREF=.true. (fOMCTO0). The result, stored in the NCMIFC2-word of the ODB, is the
low-resolution departurdrom the FG,y°—HxPg , and will be used in later iteratiosy. (2.5) If, however, the
tangent linear observation operators are u&ed,(2.6) y>—HxP is not needed. It can optionally be computed
and stored, if LCALCFC2=.true. (in yomrinc).

2.2.1 Gradient test

If LTEST=.true. a gradient test will be performed both before and after minimization. This is done by the routine
GRTEST In the gradient test a test valilg  is computed as the ratio between a perturbation of the co-t-function
and its first order Taylor expansion:

— pim 3XF0X)=I(X)
L= im T 5o (2.1)

with &x = —adJ . Repeatedly increasing by one order of magnitude, printing  at each step should,show
approaching one, by one order of magnitude at a time, prowided is approximately quadratic over the interval
[X.x + 0x] . The near linear increase in the number of 9's in the printtof  over awide range of  (initially as well
as after minimization) proves that the coded adjoint is the proper adjoint for the linearization around the given state

X

The behaviour of the cost function in the vicinity gf  in the direction of the gradiedt is also diagnosed by
several additional quantities for each . The results are printed out on lines in the log-file starting with the string
‘GRTEST:". To test the continuity ad , for example, a test vdlye  is computed:

_ J(X+0x)
e T (2.2)

and printed. For explanation of other printed quantities see the rGRm&STitself.
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cval—»| sulyom setups
getmini warm restart of incremental minimizations

g <lObs3 suobs setup observation arrays (see obs doc)
<nuptra=0% sp7to] load initial point of minimization

R

<e|se>[: cai load initial increment in control var
chavarin space & go to model space

lobsref=.true.

sucos preset cost-function

cnt2 compute & store linearization trajectory (see model doc)
| g SWitch physics off

sim4 compute initial cost-function and gradient

scaas print initial gradient norm

L g <ltestx grtest(sim4d) test of the gradient at initial point

<lavcgl> congrad(sim4d) conjugate-gradient minimization

for cycling (see cycling doc)

i!

<elsem» suhesp fetch Hessian estimate for warm restart

mlgn3(sim4d) quasi-Newton main minimization
compute final cost-function and gradient

print final gradient norm and ratio
—» <ltest> grtest(sim4d) test of the gradient at final point

savmini save final Hessian estimate for next minim

—-[ writeoba| write observation files with feedback info
— <lwrsiga> estsiga,write$d estimate & write sigma-a
L <lwrsigf>|estsig,writesd estimate &write sigma-f

Figure 2.1 Flow diagram for subroutioeal

2.2.2 lterative solution

When the cost function is exactly quadratic, as is the case in the background error estimation, conjugate gradient
minimization CONGRAD) can be used. This is controlled by the switch LAVCGL (hamvar), and requires the use

of tangent linear observation operators (LOBSTL=.true., namuvrtl), tangent linear model (L131TL=.true., namvrtl)
no VarQC (LVARQCG=.false., namjo) and de-aliased SCAT data (LQSCATT=.true., namjo).

In normal 3D/4D-Var, the cost function is allowed to be (weakly) nonlinear. The minimization algorithm used is
M1QN3, seeSection 1.5The minimization software keeps calling the simula®i\(4D) repeatedly until conver-
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gence has been reached, or until the maximum number of iterations or simulations has been reached. The conver-
gence criterion is given as a reduction in the norm of the gradient by a fa6tdfVvGE , In namvar. The output
mode ofM1QN3 s printed in the log-file. The interpretation is:

1
2)
3)
4)
5)
6)
7

Convergence reached, according to the above criterion.
M1QN3 called incorrectly.

Line search failed—step too big,]><1020

Maximum number of iterations (NITER) reached
Maximum number of simulations (NSIMU) reached

Line search failed—step too small, < RDX, (in namvar).
Impossible gradient value, ‘descent’ direction points uphill.

2.2.3 Last simulation

After M1QN3 has returned control t8VA1, one final simulation is performed. This simulation is diagnostic, and
characterized by the simulation counter being set to 999, NSIMAD=NSIM4DL, yomvar. The observation departure
from the low-resolution analysig®—HXxgr , is computed and stored in the NCMIOMN-word of the ODB. Finally
at the end o€VA1, the updated ODB is written to disk, using the routiffel TEOBA.

2.3 A SIMULATION

A simulation consists of the computationdf and . This is the task of the ro8tivié D, seeFig. 2.2 for the
flow diagram. The input is the latest value of the control varigple in the array VAZX, computsd N3, or
CONGRAD. FirstJ,, and its gradient are computed (Seetions 1.4nd4.2):

Jp=XTX (2.3)
OyJy, = 2X

The gradient of],, with respect to the control variable is stored in the array VAZGICVA).
Copy x from VAZX to SP3-arraysy(OMSP) using the routin&g OMCAIN
Computex , the physical model variables, usii¢AVARIN :

X = Ox+xb = Ly+xb. (2.4)

Perform the direct integration of the model (if 4D-Var), using the rou@inel 3, and compare with
observations. Se®ection 2.5

CalculateJ, for whichDBSV is the master routine.

Perform the adjoint model integration (if 4D-Var) usitgNT3AD, and observation operators
adjoint.

Calculate(,J, , and store it in SP3.

J. and its gradient are calculated@DSJCcalled fromCNT3AD, if LIC is switched on (default)
in namvar.

Transform,J, + O0xJ. to control variable space by apply@tgAVARINAD .

Copy 0,J, + 0,J. from SP3 and add t6,J,, , already in the array VAZG, usinlyICAIN

Add the various contributions to the cost function togetheEWCOST, and print to log file using
prtjo.

Increase the simulation counter NSIM4D by one.

10
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The newJ andl,J are passed to the minimization algorithm to calculatg the  of the next iteration, and so on
until convergence (or the maximum number of iterations) has been reached.

setup an/gradients write-outs
- SUCOS]—p»-| suic,sucosjb,sujo preset cost-functions
- pvazg=2*pvazx computd, gradient & cost-function
fibcost=". . . (simple inner product in cont.var space)

[ suallt] prepare model arrays
transfer cont.var pvazx into model arrays spa3/2

convert spa3/2 from cont.var space to model space
- <|131tl% subfg convert fields in to increments for TL model

cnt3t run TL model withJ, computation
<e|se run model witd, computation

run forced adjoint model

convert gradient from model to cont.var space

cainad transfer gradient into pvazg array

gathercost I/0 gather cost-function from all PEs
calculate and prind, 3, J,
<nsim4d=0 or 999 prind, breakdown

L»{ readoba , obatabs , prtdpst

scaas print cost-functions
| <igrats> n with ltwegra : write gradient on disk

g <ianats> with ltwana : write analysis on disk

L NSiM4d++ increase simulator counter

Figure 2.2 Flow diagram for the subroutie4d

2.3.1 Interface between control variable and model arrays

The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model state that should
be included in the variational control variable. This is controlled by on/off switches such as NVA2D and NVA3D
(yomcva) initialized i'SUALCTYV. The scalar product used is the one defined by the array SCALP (in yomcva, set
up in the routineSCALJGScalled fromSUSCAL), which is 1 ifm = 0, and 2 otherwise. This allows the com-
pression of arrays of the type VAZX while using the norm on the sphere with real fields in spectral space.

CAIN is also the interface between the memory distributed spectral arrays and the non-distributed control variable.

11
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The distributed spectral arrays SP3/2 are gathered with the raBtfi¢HERSPAto form the control vector on
each processor.

2.4 INTERPOLATION TO OBSERVATION POINTS

2.4.1 Method

COBSLAG s the master routine for the horizontal interpolation of model data to observation points. It is called
after the inverse spectral transform$CAN2MDM, and after the so-callesemi-Lagrangian buffereave been
prepared byzZOBSandSLCOMM, see the flow diagram iRig. 2.3. The interpolation code is shared with the semi-
Lagrangian advection scheme of the dynamics. The buffers contaitoaf gridpoints big enough to enable in-
terpolation to all observations within the grid-point domain belonging to the proc€¥8&SLAGcallsOBSHOR
which:

. Performs the interpolation, usii-INT

. Message-passes the result to the processors where the corresponding observations belong, using the
routineMPOBSEQ

. Copies the model data at observation points to the so-called GOM-arrays (yommvo, described

below), in the routinédNSOBSEQ

There are three methods of horizontal interpolation:
1) LAIDDI : 12-point bi-cubic interpolation, used for all upper-air fields (if NOBSHOR=203) except
clouds,
2) LAIDLI : Bi-linear interpolation, used for surface fields, and
3) LAIDLIC : Nearest gridpoint, used for cloud parameters.

The interpolation method for the upper-air fields can be switched to bi-linear by specifying NOBSHOR=201 in
namobs. The default is NOBSHOR=203 (bi-cubic). Lists of interpolation points and weights are prepared by the
routineLASCAW. In 4D-Var bi-cubic interpolation is used at high resolution (i.e. in the trajectory runs), and bi-
linear is used at low resolution (i.e. in the main minimization). The interpolation is invoked once per 4D-Var time
slot.

The adjoint OBSHORAD) follows the same general pattern but gets further complicated by the fact that the gra-
dient from several observations may contribute to the gradient at a given gridpoint. The summation of gradients is
to done in the same order, irrespective of the number of processors, as reproducibility is desired.
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— (...

>—»{ scanZme  buffer initializations

load grid-point arrays

extmerh grid
extpolb extrapolation

->| cobslag—e scan observation arrays

—> fetch observation lat/lon
horiz interpolation

to obs point
(see semilag doc)

exchange data

among PEs

load YOMMVO

arrays GOMx

—p» reset ZFJO cost function

[suobare}p setup area index for each obs
(mainly according to satellite ID)

—> define obs sets

—» sort TOVS/SATEM data
—» decide whether to call TL/AD obs operators

preset ZFJO cost function

(TL/AD) surface obs vertical operator
(TL/AD) upper-air obs vertical operator

(TL/AD) SATEM / SSM/I obs vertical operator

tovclr| (TL/AD) TOVS radiance obs vertical operator

L= sumJ, cost-function for each area (diagnostic only)

—®» sum ZFJO into FJO cost-function

L <lprtgom> debugging printout of yommvo common

Figure 2.3 Flow diagram for subroutiresan2mdnandobsv.
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2.4.2 Storage in GOM-arrays

The GOM arraysYOMMVO) contain the model values at observation points. The list of upper-air model variables
to appear in the GOM-arrays is under user control. There are five categories of GOM-arrays:

. GOMXx for conventional data, containing full model profiles of optionallyv , T ,q ,03 (ozon),
CLW (cloud liquid water)CL1 (clod ice) an@C (cloud cover)

. GOSx for conventional data, containing surface datapgf, (surface pressgg). (skin
temperature)w, (soil water conteng,, (snow covexry, (roughness lengthwgand (skin

reservoir water content).

. GSMx for TOVS data, containing full model profiles similar to GOMx

. GSSx for TOVS data, containing surface datapf T, w,, S,, Zo, W, u;, @and ,where
andv, are lowest model level wind components.

. GSCx for SCAT data, containing lowest model level dataipfv, ,T,, ,and , and surface data
of p;andT, .z, (roughness length) is to be added shortly.

The reason for this split is purely to save space in memory. Model profiles of wind for example are not needed as
inputs to the TOVS and SATEM operators, so those fields are not interpolated to the TOVS locations, and are not
stored, unless requested. Upper-air profiles of model data at SCAT locations are also not computed. The selection
of model variables to interpolate to GOMx and GSMX arrays, respectively, is flexible and is controlled through
namelist switches LGOMx and LGSMx (in namdim). The default is that only LGOM-U/V/T/Q and LGSM-T/Q/

03 are ON, with the addition of LGSMCLW/CLI/CC in screening run to enable computation of cloudy radiances.
The adressing of the GOM-arrays is done by referring to the MAPOMENIOBA) and MABNOB (YOMOB-

SET) tables, e.g. ZPS(jobs) = GOSP(MAPOMM(iabnob)), where iabnob = MABNOB(jobs,kset) is an observation
counter local to each processor.

The trajectory GOM5 arrays (identical to GOM) are allocated in the case that tangent linear observation operators
are used. They are to hold the trajectory interpolated to the observation locations, and the GOM-arrays, in that case,
hold the perturbations.

Atthe end of the adjoint observation operators the GOM-arrays are zeroed and overwritten by the graelight (in
INTAD).

The r.m.s. of the GOM arrays is printed (BRTGOM) if the switch LPRTGOM=.true., (Y OMOBS). The de-

fault is that the print is switched on. It can be located in the log file by searching for ‘RMS OF GOM'. The printing
is done fromOBSYV, 1) when the GOM arrays contain the background interpolated to the observation points, 2)
when it containd]J, of the first simulation, 3) when it contains first TL perturpations after the initial call to the
minimizer and 4) when it contairidJ,  at the final simulation.

2.5 COMPUTATION OF THE OBSERVATION COST FUNCTION

The cost function computation follows the same pattern for all observational data. This common structure is de-
scribed in the following section. Itis assumed that all observations are independent of each other, which means that
the cost function contribution from each observation station can be computed independently of others. The specific
observation operators for all data types and variables is detail€thapter 5 ‘Conventional observational con-
straints’ andChapter 6 ‘Satellite observational constraints’

2.5.1 Organization in observation sets

The vertical observation operators are vectorized over NMXLEN (yomdimo) data. To achieve this the data first
have to be sorted by type and subdivided into sets of lengths not exceeding that number. NMXLEN is currently set

14
IFS Documentation Cycle CY23r4 (Edited 19 September 2003)



Chapter 2 ‘3D variational assimilation 30=

to 511, inSUDIMO. The observation sets may span several 4D-Var time slots, as the input to the observation op-
erators is the GOM-arrays which have been pre-prepared for all time slots during the tangent linear model integra-
tion. The organization of the sets is doneE@SETand SMTOV and the information about the sets is kept in
yomobset. The only reason to have a separate routine for TOVS Sllsfa@V) is that the TOVS sets must not
contain data from more than one satellite. This is controlled by sorting according to the area-parameter, which for
TOVS data is an indicator of satellite ID, prior to forming the sets. The area-parameter is deterntinedB\-

REA, and is irrelevant for the observation processing for all data other than TOVS.

2.5.2 Cost function

The master routine controlling the calls to the individual observation operators is called HOP. This routine deals
with all different types of observations.

The HOPPTHOPTL/HOPAD routines are called fromfASKOB/TASKOBTL/TASKOBAD (called fromOBSV/
OBSVTL/OBSVAD) in a loop over observation sets. The data type of each set is know from the information in
tables such as MTYPOB(KSET) stored in yomobset.

The following describesl OPFHOPTL. The adjointHOPAD follows the reverse order.

. First prepare for vertical interpolation using the routiRREINT. Data on model levels are
extracted from the GOM-arraysyOMMVO). Pressures of model levels are computed using
GPPRE Help arrays for the vertical interpolation are obtain€PI(NIT) and T * and T, are
computed CTSTAR). T* and T, are later used for extrapolation of temperature below the
model’s orographysSubsection 5.3.2The routine PREINTS deals with model surface fields needed
for the near-surface observation operators and PREINTR deals with those fields that are specific to
the radiance observation operators.

. The observation array is then searched to see what data is there. The ‘body’ of each observation
report is scanned for data, and the vertical coordinate and the variable-number for each datum is
retained in tables (ZVERTP and IVNMRQ). These tables will later constitute the ‘request’ for
model equivalents to be computed by the various observation operators. Tables of pointers to data
(‘body’ start addresses) and counters are stored (arrays IPOS and ICMBDY).

. Then the forward calculations are performed. There is an outer loop over all known ‘variable
numbers’. If there are any matching ocurrences of the loop-variable number with the content of
IVNMRQ, then the relevant observation operator will be called. A variable-number and an
observation operator are linked by a table set up in the routine HYNMTLT. The interface routines
PPOBSA (upperair) andPPOBSAS (surface) are used, which in turn cdiPFLEV and the
individual operator routines. For radiance data the interfad@ABDTR which calls the radiative
transfer code§ubsection 6.4)1

. In HDEPART, calculate the departue as

z = yo—Hx+ (y°—Hxfg) = (y°— HxPg), (2.5)
where the two terms in brackets have been computed previously: the first one in the high resolution
trajectory run $ection 1.3and the second one in the LOBSREF call, describ&tdation 2.2
If LOBSTL thenz is

z = y°—Hdx + (y°—HxPg) -y°, (2.6)

which simplifies to what has been presentefention 1.2
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The TOVS radiance bias correction is also carried out at this point by subtracting the bias estimate
(kept in the NCMTORB-word of ODB) from the calculated departure.

Finally the departure is divided by the observation ergqr (NCMFOE in ODB) to form the
normalized departure

. Departures of correlated data are multiplied Ry? , 824 The division byo, has already
taken place iHDEPART, soR at this point is in fact a correlation (not a covariance) matrix.
. The cost function is computed O, as
J,=2"z (2.7

for all data except SCAT data. The SCAT cost function combines the two ambiguous winds

(subscripts 1 and 2) in the following way (alsd-i#0)
JfJé 1/4

Jscat = [m} (2.8)

These expressions for the cost function are modified by variational quality contr@eséen 2.6
The cost-function values are store in two tables, as detaiz8.i&

. HJO also stores the resultirgffective departurén the NCMIOMO-word of ODB, for reuse as the
input to the adjoint. The effective departure is the normalized departure after the effects of
observation error correlation and quality control have been taken into account,
Zet = Z'R[QC, eignd » Where the QC-weight will be defined beldection 2.6

2.5.2 (&) Adjoint. We have now reached the end of the forward operators. In the adjoint rél@iR&D some
of the tasks listed above have to be repeated before the actual adjoint calculations can begin. The input to the adjoint
(the effective departure) is read from the ODB. The expression for the gradient (with respect to the observed quan-
tity) is then simply

DObSJO = —ZZeff/O'o (29)

which is calculated itHOPAD for all data. The gradientad g, iS much more complicated and is calculated in
a separate section 6fOPAD. The adjoint code closely follows the structure of the direct code, with the adjoint
operators applied in the reverse order.

2.5.3 J, tables

There are two different tables for storing te values. One is purely diagnostic (FJO, yomcosjol), and is used
for producing the printedl, tables in the log-fileRTJOcalled romEVCOST). The other (FJOS) is the actual
J,-table. FJO is indexed by observation type, sub-obstype, variable and area. FJOS is indexed by the absolute ob-
servation number, iabnob=MABNOB(jobs,kset), so that the contributions from each individual observation can be
summed up in a predetermined orderfCOST), to ensure reproducibility.

2.5.4 Correlation of observation error

The observation error is assumed uncorrelated (i.e. the nRatrix  is diagonal) for all data except time-sequences of
SYNOP/DRIBU surface pressure and height data (used by default in 4I3arfainen et al1999). There is also

code for vertical correlation of observation error for radiosonde geopotential data (not used by default) and SATEM
thicknesses (not used by default). IN FACT, all vertcal correlations of observation error have been removed in 21r2,
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but will be reintroduced again in a later cycle!

The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation funetibf ~ %)
where a =RTCPART=0.3 antt =RTCEFT=6.0 hours, under the switch LTC (namjo). The remaining fraction
1-a of the error variance is assumed uncorrelated{s=d TC).

The radiosonde geopotential data are vertically correlated (under the switch LRSVCZ) using a continuous corre-
lation functionae®*1=*2* wherea =RRSZPART=0.8, atuning constant close to xand xand  are trans-
formation values, based on a sixth degree polynomi#i in of the two pressures involved. The remaining fraction
1-a of the variance is assumed uncorrelated (Z8®IATP).

The vertical correlation of SATEM thickness data is as describéckity and Pailleux(1988) and is assigned in
SURAD (and kept inyOMTVRAD). There is no horizontal correlation of SATEM and TOVS observation errors.
The inter-channel correlation of radiance observation error is also assumed to be zero.

When R is non-diagonal, the ‘effective departue}; is calculated by solving the linear system of equations
z.R = z for z., using NAG routines FO7FDF (Choleski decomposition) and FO7FEF (backwards substitu-
tion), as is done in UPPERAIFSATEM, COMTC andJOPDE The NAG routines will shortly be replaced by the
corresponding LAPACK routines SPOTRF and SPOTRS.

2.6 VARIATIONAL QUALITY CONTROL

The variational quality control, VarQC, has been describediigyersson and Jarvingi1999). It is a quality con-

trol mechanism which is incorporated within the variational analysis itself. A modification of the observation cost
function to take into account the non-Gaussian nature of gross errors, has the effect of reducing the analysis weight
given to data with large departures from the current iterand (or preliminary analysis). Data are not irrevocably re-
jected, but can regain influence on the analysis during later iterations if supported by surrounding data. VarQC is a
type of buddy check, in that it rejects those data that have not been fitted by the preliminary analysis, often because
it conflicts with surrounding data.

2.6.1 Description of the method

The method is based on Bayesian formalism. Firsg ariori estimate of the probability of gross errB(G); is
assigned to each datum, based on study of historical data. Then, at each iteration of the variational schheme, an
posterioriestimate of the probability of gross errB(G);  is calculatedlebyand Loreng1993), given the cur-

rent value of the iterand (the preliminary analysis). VarQC modifies the gradient (of the observation cost function
with respect to the observed quantity) by the facter P(G); (the QC-weight),which means that data which are
almost certainly wrongR (G); =1 ) are given near-zero weight in the analysis. Data Wi{i&3; > 0.75 are con-
sidered ‘rejected’ and are flagged accordingly, for the purpose of diagnostics and feedback statistics, etc.

The normal definition of a cost function is
J, = —Inp (2.10)

wherep is the probability density function. Instead of the normal assumption of Gaussian statistics, we assume
that the error distribution can be modelled as a sum of two parts: one Gaussian, representing correct data and one
flat distribution, representing data with gross errors. We write:

Pi = N;[1-P(Gy)] + F;P(G;) (2.11)

17
IFS Documentation Cycle CY23r4 (Edited 19 September 2003)



9 Part Il: ‘Data assimilation’
A\~

where subscript refersto observationnumeN . Bnd are the Gaussian and the flat distributions, respectively:
1 1ryi—Hxf
N; = p[—— J (2.12)
' 2mo, 20 o, D
1 _ 1
Fi=T "o (213)

The flat distribution is defined over an interda] ~ whichEg. (2.13)has been written as a multiple of the obser-
vation error standard deviatiom, . Substitutiags. (2.11)o (2.13)into Eq. (2.10) we obtain after rearranging

the terms, an expression for the QC-modified cost funcl@¥ and its gradidfit , in terms of the normal
cost functionJ

N = %%yi ;OHXHZ: (2.14)
39S = —In g“;x—f[l_‘]y]g (2.15)
03§¢ = DJQ%—mE (2.16)
where
i P(G;)/(2l;) (2.17)

) [1-P(G))]/ /21

2.6.2 Implementation

Thea priori information i.e.P(G); and; are set during the screening, in the rolilBEART, and stored in the
NCMFGC1 and NCMFGC2-words of the ODB. Default values are s&th-RUN, and can be modified by the
namelist namjo. VarQC can be switched on/off for each observation type and variable individually using LVARQC,
or it can be switched off all together by setting the global switch LVARQCG=.false. Since an as good as possible
‘preliminary analysis’ is needed before VarQC starts, it is necessary to perform part of the minimization without
VarQC, and then switch it on. This is controlled by NITERQC in yomcosjo, and is set to 40 by default. Printing of
VarQC results is done by the routiRRTQC

JOCOSTcomputes] Q¢ according t6q. (2.15)and the QC-weight—the factor within bracket&im (2.16)

2.6.3 Correlated data

The quality control of radiosonde height data (if used) is more complex because of the correlation of observation
error (seeJOPDBR. This is one of the reason why we changed to using temperature data instead, from cy18r6. Var-
QC for correlated data is no longer supported.
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Part II: D ATA ASSIMILATION

CHAPTER 3 4D variational assimilation

Table of contents
3.1. Introduction
3.2. Organization of data in time slots
3.2.1 Observation preprocessing.
3.2.2 Inside IFS.
3.2.3 Observation screening in 4D-Var
3.3. Inner and outer loops: practical implementation
3.4. Tangent linear physics
3.4.1 Set-up
3.4.2 Mixed-phase thermodynamics
3.4.3 Vertical diffusion
3.4.4 Sub-grid scale orographic effects
3.4.5 Large-scale precipitation
3.4.6 Long-wave radiation
3.4.7 Deep moist convection

3.4.8 Trajectory management

3.1 INTRODUCTION

4D-Var is a temporal extension of 3D-Var. Observations are organized in one-hour time-slots as des&#ued in

tion 3.2 The cost-function now measures the distance between a model trajectory and the available information
(background, observations) over an assimilation interval or window. For a 12-hour window (as currently used), it
is either (03UTC-15UTC) or (15UTC-03UTQq. (1.2)(seeChapter 1 ‘Incremental formulation of 3D/4D var-
iational assimilation—an overvievis replaced by

J(Bx) = %6XTB—16x+%Z(Hi6x(ti)—di)TRi—l(Hiéx(ti)—di) 3.1)

i=0

with subscripti the time index. Eaclh corresponds to one-hour time slaix is as before the increment at low
resolution at initial time, an®x(t;) the increment evolved according to the tangent linear model from the initial
time to time index. R; andB are the covariance matrices of observation errors at time irgahekof background
errors respectivelyd; is a suitable linear approximation at time indéxhe observation operatét; . The inno-
vation vector is given at each time step ty = yf— Hxq(t) wher@(ti) is the background propagated in
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time using the full nonlinear model and  is the observation vector at time indexSYNOP and DRIBU time
sequences of surface pressure and height data are nowvitegkrial correlation of observation error, the obser-
vation costfunction computation for those data spans all time $tgts(3.1)therefore needs generalising, as has
been done in the paper Bérvinenet al. (1999).

The minimization is performed in the same way as in 3D-Var. However, it works fully in terms of increments, a
configuration which is activated by the switches L131Tland LOBSTL, and involves running the tangent-linear and
adjoint models iteratively as explained$ection 2.2f Chapter 2 ‘3D variational assimilationand using the tan-
gent-linear observation operators.

Away to accountin the final 4D-Var analysis for some non-linearities is to define a series of minimization problems

J(BX7) = (B + X7 -1 xE) TBA(EX + X1 —x?)

n (3.2)
*3 Y (RO () -] ) RiA(H8x(6) -

i=0
with superscriph the minimization index.

x"-1 s the current estimate of the atmospheric flow. It is equal to the background for the first minimization.
d?_l = y? —H;x"~1(t;) is the innovation vector, computed by integrating the model at high resolution from the
current estimate. The way the increment is added to the current estimate is similar to that used in 3DSfzafsee

ter 1 ‘Incremental formulation of 3D/4D variational assimilation—an overview’

XAr = XArL+ NNMI(xAg!+ 0xlg) —NNMI (xAz1) (3.3)

The number of times the trajectory is updated, i.e. the number of outer-loops (which corresponds to the number of
minimizations performed), is typically a number between one and four. In operational 4D-Var the number of outer
loops is two.

This can be controlled in the preplFS set-up, together with the number of inner-loops (iterations of m1gn3) within
each minimization. One outer-loop corresponds to what is normally done in 3D-Var. The number of inner-loops
should then be 70 as in 3D-Var. The most standard 4D-Var uses two outer-loops. The first minimization runs with
the simplified physics on 50 inner-loops. The second minimization runs with the more complete linear physics on
25 inner-loops. Switches for the two sets of physics will be giv&eation 3.4

The variational quality-controlGhapter 2 ‘3D variational assimilation’ Section Ri§ switched on at the default
iteration number (40) in the first minimization. It is activated from the first iteration in the subsequent minimiza-
tions.

The final 4D-Var trajectory is post-processed every 3 hours. Fields called 4v are created with initial date and time
the start of the window (03UTC or 15UTC) and steps every 3 hours. The 4v field valid at 12UTC or OOUTC, is then
renamed as the final analysis (type=an) for the atmospheric fields and the waves. The cycling from one cycle to the
next is performed by taking these analysis fields, together with the surface fields updated by the SST, snow and soll
moisture analyses as input to a 12-hour forecast which produces the background for the next cycle.

The analysis and forecast error calculations are performed as explaiGddyier 7 ‘Background, analysis and
forecast errors; with the inclusion of the time dimension in the minimization. The analysis error variances are
available at the beginning of each window, and the forecast error variances at the end.
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3.2 ORGANIZATION OF DATA IN TIME SLOTS

3.2.1 Observation preprocessing.

Observational input data (BUFR-format) is read in by means of 6-hour time-windows in OBSPROC
preproc_mpp_makecm8efore input, each time-window has been organised into several BUFR-files based on
major observation types. Input BUFR-files are labelled and split so that every processor can read one or more
BUFR-files. The prefix of each file indicates the observation type. The suffix “<tw>.<proc>" defines which proc-
essor <proc> (here within a range [1..16]) will be responsible for inputting data for time-window <tw> (here within

a range [01..02]). The number of files is not necessarily equal to the number of processors, it is really a matter of
I/O-load balancing, and the end result is independent of the reading order.

In the case of 4D-Var there are NO6HTSL input time-windows. For 6 h, 12 h and 24 h 4D-Var analysis periods,
the NOGHTSL will have values 1, 2 and 4, respectively. This can be set via the namelist namaeliglph (see
also yomglp).

Another affecting parameter (see discussion about reshuffle below) is NOSORTSL (set via OBSPROC namelist/
nammkcma.h and declared in yommkcma). It defines how many time-slots will be used. The rule is to divide each
input time-window into 1h out time-slots, but with half an hour lengths for start and end time-slots. Therefore, the
value of NOSORTSL should be setto 7, 13 or 25 for 6 h, 12 h and 24 h 4D-Var analysis periods (i.e. one plus length
of a 4D-Var period in hours), respectively.

Once all BUFR-data has been successfully read in, the unique sequence numbers for reports (before even having
them around!) are generated in OBSORT-routinekeseqno_obsodalled bypreproc_mpp_makecmdhese

numbers are always independent of the number of processors in use. They form a basis for reproducibility of anal-
ysis results regardless of how many processors were used.

The sequence numbers are generated without honouring the input time-windows. Currently for CONV-data, se-
guence numbers start at offset 0, TOVS at offset 1,000,000, SCAT at 2,000,000 and SSMI 3,000,000. Thus, the
increment is set to 1,000,000 meaning that we may not exceed more than one million reports per major observation
type (CONV, TOVS, etc.) without making a small change into the local variable increment in routine
preproc_mpp_makecma

After the sequence-number generation, all BUFR data is read in and re-shuffled for better load balancing in report
creation under the OBSPROC-routine MAKECMAakecma Before that, the number of input time-windows
NOG6HTSL has already been reset to on@iaproc_mpp_makecmand all 4D-Var BUFR input data is regarded

as a one ‘supertime-window’ for initial report creation. However, via NAMELIST parameters NANTIM, NAN-
DAT, NTBMAR and NTFMAR defined in NAMGLP (namelist/namglp.h and yomglp), full control over valid 4D-

Var analysis timerange is maintained. Therefore, observations not in this range will be discarded by the MAKEC-
MA.

An essential step to organise observational data for 4D-Var purposes occurs in the OBSPROC routine
postproc_mpp_makecm@he aim is to reshuffle and time-slot the initially created CMA files of which there are
currently one CMA file per processor. The CMA data needs not only to be organised in time-slots, but they also
need to obtain a better geographical distribution within a given time-slot to have a better load balancing in the sub-
sequent IFS/Screening job.

Before the reshuffle of observations can take place, some crucial information about 4D-Var run characteristics
needs to be passed on. Parameters NANTIM, NANDAT, NOSORTSL, NTBMAR and NTFMAR are transformed
into the suitable constants for use by the OBSORT by use of SETPARAM_OBSORT in routine
postproc_mpp_makecm@he following conversion takes place (OBSORT parameters in concern are declared in

21
IFS Documentation Cycle CY23r4 (Edited 19 September 2003)



9 Part Il: ‘Data assimilation’
A\~

yomstdir);

. NANTIM and NANDAT are used to calculate an absolute start time and date of an analysis period.
The resulting OBSORT parameters are called TIME_INIT_YYYYMMDD and
TIME_INIT_HHMMSS.

. NOSORTSL, NTBMAR and NTFMAR are used to get parameters NUM_TIME_SLOTS and
TIME_DELTA 4DVAR in-line.

. OBSORT parameter vectors TIME_SLOT_YYYYMMDD and TIME_SLOT_HHMMSS to
indicate start date and time of a particular time-slot will be implicitly generated upon start-up of the
reshuffle in OBSORTen_timeslot_datealled bylib_obsort This routine makes sure that the first
and the last time-slot periods will have duration of half an hour (as discussed earlier).

The actual reshuffle is handled via OBSORT routiheobsort(in particularmapsor}. The initial CMA-data is

read back in and an internal global table (seen by every processor) is established. This table contains snapshot in-
formation about each CMA-report. There can be found things like which processor owns/should own the report
before/after the re-shuffle, which 4D-Var time-slot observation belongs to, plus information to perform robustly the
reshuffle itself.

The reshuffle of the CMA data is done per each time-slot. Currently all data is written into one CMA file per proc-
essor. Each time-slot is stacked after each other so that a particular time-slot could in principle be accessed by
knowing its start address and data length. This offset information is available both in file obs_boxes (generated by
OBSORTifs_write) and CMA file’s DDR (Data Description Records). The former one may become obsolete, so
users should rely only to the information found in DDR number one (see alsgoii8mddy DDR#1 words 101—

607).

When time-slot information has been once placed into the DDR#1, it will be propagated automatically into the sub-
sequent CMA files (ECMA and CCMA) in a run cycle, and no regeneration is needed.

Finally, upon the CMA-data reshuffle also the BUFR data is re-shuffled to retain a one-to-one relationship with its
sibling CMA reports. This is important, since the OBSPROC FEEDBAGHK {bach relies on the order of these
‘pseudo-original’ BUFR-files to update observational data for archieving purposes. Actually, by aid of the OB-
SORT, we even manage to get this updated ‘pseudo-original’ BUFR-data back to its original input time-window
frames (split by the major type CONV, TOVS, etc.), albeit that the original observation order cannot (and need not
to) be preserved.

The CMA format is converted to an ODB database suitable for input to the IFS. This conversion is performed by
utility ecma2odblt will be converted back to CMA for BUFR feedback generation, but the ODB with feedback
information is archived as such.

3.2.2 Inside IFS.

The timeslot information is read into IFS®RD_OBS_BOXESalled fromOBADAT. It is possible to run 3D-Var
with an ODB prepared with timeslots, the timeslotting information is taken into account only if NSTOP > 1.The
information that is extracted for each timeslot (only for your own processor) is,

. number of observations (NTSLTOB)

. length of observations (NTSLLEN)

. number of SCAT observations(NTSLSCA)

. number of TOVS observations(NTSLTOV)

. number of non-SCAT and non-TOVS observations(NTSLNTV)

The following global information regarding timeslots is extracted
. number of observations for each processor and time-slot (NTSLTOBP)
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. global number of observations for each time-slot (NTSLTOBG)
. max (over processors) number of observations for each time-slot (NTSLTOBM)

The arrays to contain observation equivalents (the GOM-arrays) are allocated to be able to contain all time-slots.
These arrays are then gradually filled during the forward integration. The reasons for allocating these arrays to con-
tain all time-slots are:
1) that the trajectory is only run once
2) that they are used in screening. The tables needed to message pass the observation equivalents from
the processor that ‘owns’ the part of the globe in grid-point space corresponding to the observation
and the processor that ‘owns’ the observation is doKiGLOBSTAB

3.2.3 Observation screening in 4D-Var

The trajectory integration can be performed in the observation screening mode. The part of the IFS code devoted
to the observation screening is activated via namelist variable LSCREEMIMCTO An array of good quality
observations of desired variables is selected to be used in the minimization. Technically, the extended observation
database (ECMA-ODB) becomes the compressed database (CCMA-ODB) which is the observational input for the
minimization run. In 4D-Var, the observation screening can be applied either on an hourly or a 6-hourly basis. This
selection is done via namelist variable LSCRE4DIitMSCC. Hourly screening has been the default option since
cy18r6.

At the end of the screening, the CCMA-ODBs are reshuffled for load-balancing in the subsequent minimizations,
usingMAPSORT.

Depending on whether the hourly or 6-hourly screening is applied, the division of observations into the sets and
the appropriate pointers are updated accordin§igREEN ECSET). The bulk of decisionsZECIS) is taken
codewise just in the same way in both cases. In the hourly screening much more surface observations are retained
for the assimilation. More details of the observation screening can be fo@ithister 10 ‘Observation screening’

3.3 INNER AND OUTER LOOPS: PRACTICAL IMPLEMENTATION

Similarly to 3D-Var, job steps are carried out with different configurations of the IFS:
0] The first trajectory run (which includes screening) — conf=2, LSCREEN=.T.
(i)  The background error minimization, conf=131, LAVCGL=.T.
(i)  The main minimization, conf=131
(iv)  The update of the trajectory, conf=1, LOBS=.T.

Steps i) and {v) are performedh times wheme is the number of outer loops or, equivalently, of updates of the
trajectory.

The first trajectory runif, the background-error minimizatioii X and the first main minimization use the same
input files as described for 3D-Var Bubsection 1.3.af Chapter 1 ‘Incremental formulation of 3D/4D variational
assimilation—an overview'the only difference being that the background field is a 3-hour forecast from the pre-
vious analysis at synoptic time, compared with a 6-hour forecast in 3D-Var.

The ouput of the minimization steps are the fiMXVAxx000+00000Q MXVAxx999+000000(as in 3D-Var),
trajxx+0000000andVATRH . xx is an integer varying from 0 for the first minimization to (n-1) for the last min-
imization, where n is the number of updates of the trajecdd®TRH contains useful information for a warm re-
start of m1gn3 (including the diagonal of the Hessiam@jxx+0000000contains the control variable at the end of
the minimization. The filérajxx+0000000is written out inSAVMINI called at the end aEVVAL. This file will be
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an input to the next minimization in addition to the background file used as in the first minimization. It is read in
in GETMINI called fromCVAL. The fileVATRH is written out inSAVMIN, and read irSUHESS both called
by CVAL.

The input of the second trajectory is the same as in 3D-Var. The output is an analysis at the initial time of the tra-
jectory (type = 4v, step = 0) written out on the FDB. It contains the current estimate of the flow at initial time. An-
other output are the updated observation files, as in 3D-Var. The 4v fields are used in the following trajectory,
replacing the background in the input filBEMSHXXXXINIT , ICMGGxxxXINIT and ICMGGxxxxINIUA
(wherexxxx is the ‘expver’ identifier of MARS). Additional inputs are low resolution fil&&{VA ...) created dur-

ing the previous minimization interpolated to high resolution as in 3D-Var. This data flow is represented in the di-
agram below.

In summary, the first two trajectories use the background as an input, and the following ones use the 4v fields cre-
ated during the previous trajectory as reference files. All the trajectories except for the very first one add increments
computed from the low-resolution files produced by the previous minimization, interpolated to high resolution. The
first minimization uses only the background field, the following ones also use the control variable from the end of
the previous minimization and some information for a warm restart of the minimization package.

The number of updates of the trajectory starting from 0 at the first minimization is carried inside the ODB files.

3.4 TANGENT LINEAR PHYSICS

The first minimization uses the simplified physics (vertical diffusion and surface drag) activated by the switches
LSPHLC, LVDFDS, LSDRDS, LVDFLC, LSDRLC, LKEXP in namelistAPHLC which is also activated for sin-
gular vector computations. A scientific description of the simplified physics is giBanznal994) .

The following minimizations use a more complete linear physics activated by the switches LETRAJP, LEVDIF2,
LEGWDG2, LECOND2, LERADI2, LERADS2, LECUMF2 in namelisStAMTRAJP, and described in this sec-
tion. The description is focused on technical aspects, since scientific issues can be found elséaltferddt al.,
1997;Rabieret al.1997;Mahfouf1998).

3.4.1 Set-up

In order to activate the improved linear physics, the switch LSPHLC of the simplified linear phyitBih_C
should be set to FALSE. I&VAL when both logicals LSPHLC and LETRAJP are equal to TRUE, LSPHLC is
reset to FALSE and a warning is written in the standard ouput (logical unit NULOUT).

The following switches must be set to TRUE : LEPHYS, LAGPHY (also necessary to activate the ECMWF non-
linear physics) and LETRAJP (to activate storage of the trajectoty-dit ). The linear physics contains a set of
five physical processes : vertical diffusion (LEVDIF2), sub-grid scale orographic effects (LEGWD?2), large scale
condensation (LECONDZ2), longwave radiation (LERADI2, LERADSZ2), and deep moist convection (LECUMF2).

Tunable parameters of the improved physics (which should not in principle be modified) are defitéelHihI.

The logical LPHYLIN is used to activate the simplifications and/or modifications associated with the linear pack-
age in the non-linear physics. This variable is set to FALSE by default , but is forced to TRUE before calling the
linear physics CALLPARTL and CALLPARAD) in CPGLAGTL and CPGLAGAD whenever the logical
LETRAJP is TRUE.

Diagram representing the input and output files during a standard 4D-Var analysis consisting of 3 trajectory steps
and 2 minimisation steps.
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reftrajggml
reftrajshml trajectory (00)
reftrajggsfc

MXVA00000+000000
Packgroundshm MXVA00999+000000
backgrounggsfc minimisation (00) |———® traj00+0000000

VATRH
reftrajggml
reftrajshml
reftrajggsfc —p | trajectory (01) — GDB 4v fields, step 9
MXVA00000+000000
MXVA00999+000000
backgroundshml MXVA01000+000000

o MXVA01999+000000
backgrounggsfc minimisation (01) |— g
trajo0+0000000 traj01+0000000
VATRH

VATRH

trajectory (02)

FDB 4v fields, ste (FDB 4v fields, steps 0, 3, @

MXVAQ01000+000000

MXVA01999+000000,

Figure 3.1 Diagram representing the input and output files during a standard 4D-Var analysis consisting of 3
trajectory steps and 2 minimisation steps.

3.4.2 Mixed-phase thermodynamics

The thermodynamical properties of the water mixed phase are represented by a differentiable weighting function
betweenT, = 0OC and’,,, = -23C :

1
a(T) = 3[1+tanh{pu(T —Ter)}] (3.4)
. TO_Tice
with g = 0.15 (RLPALP1) andT,; = Ticet T (RLPTRC).
The tuning parametgr  controls the intensity of the smoothing, and the tempeFatyre has been chosen to give

a = 0.5 for the same temperature as in the operational quadratic formulation (see fBQCEHDRE).

This weighting function is used by the large-scale condensation and moist-convection routines.
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3.4.3 Vertical diffusion

The linear versions of the vertical diffusion scheme are called from the dii2FSMAINTL andVDFMAINAD .

Vertical diffusion applies on wind components, dry static energy and specific humidity. The exchange coefficients
in the planetary boundary layer and the drag coefficients in the surface layer are expressed as functions of the local
Richardson number_puis et al., 1982). They differ from the operational formulation which uses the Monin—
Obukhov length as a stability parameter in stable conditions akd a  -profile approach for convective boundary
layers (see the documentation of the ECMWF physics).

In stable conditionsRi >0 ), the drag coefficients are defined as :

1

Cu = CMNW (3.5)
J1+dRi
and
Ch = Cun .1 = (3.6)
1+ 3bRiJ1+dRi
with the following expressions for the neutral coefficients :
k2
Cun (3.7)
[logEF + ZOMD}Z
U zpy U
2
Cun = " K 7T Zows (3.8)
log oM og OM}
[ U zom 5 U zpy O
In unstable conditionsRi <0 ), the drag coefficients are defined as:
0 0
2bRi
0 14 30cCyy [ R
Zom
0 0
_ 3bRi 0
Cy = CynEL- - H (3.10)
0 14 30cCy, [—2MRilC
O HN O

o
T

The empirical coefficients (RLPBB§, (RLPCC)add (RLPDD) are set taSBJinHLI.

In the planetary boundary layer, the exchange coefficients can formally be writen :
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K = I°

a_V‘f(Ri) (3.11)
0z

with the following mixing length vertical profile :

k(z +z,) + 1-y

(3.12)
1k ez
A 2
L
The asymptotic mixing lengh,, for momemtum is set to 150 m, whedgas A,,./1.5d . The pseudo-depth

of the boundary layer is defined by = 4  km(RLPMIXL), and the reduction factor applied to the mixing length
in the free atmosphereys= 0.2 (RLPBETA)$ yA  whemL ]

If this vertical-diffusion scheme is activated in the nonlinear model (LPHYLIN = .TRUE.), the post-processing of
atmospheric parameters at observation level can be performed using the formulaielewf(1988) inVDFP-
PCFLS(the tangent-linear and adjoint versions\@FPPCFLSare not yet coded, but are already available else-
where in the IFS for the observation operators).

This modified scheme make use of all the routines from the operational vertical diffusion, &kwepFLX and
VDFHGHT, however the exchange coefficients are computed in a different waipFEXCS andVDFEXCU.
The linearization of the surface energy balance is also performi@8 TSKTL, VDFTSKAD), but perturbations
of the skin temperature are not evolved in time (section 4@RGLAGTL). This simplification should be relaxed
when the skin temperature becomes part of the control variable.

The logical LEKPERT ilNAMTRAJP controls the perturbations of the exchange and drag coefficients. It is set to
FALSE by default, to prevent the growth of spurious instabilities in the tangent-linear model..

3.4.4 Sub-grid scale orographic effects

The subgrid-scale orographic scheme is a complete linearization of the operational ECMWF scheme described in
Lott and Miller (1997). The linearized schemes are called fi@iDRAGTL andGWDRAGAD. By setting the
constant RLPDRAG to zero, the representation of wave breaking is not activated (The operational value GKDRAG
is set to 0.3 irsUGWDand is used to compute the surface stress in the gravity-wave part of the scheme).

3.4.5 Large-scale precipitation

Linearized versions of large-scale condensation schenfe@rDTL andCONDAD. Local supersaturation is re-
moved through a local moist-adjustment sche@eADJTQTL, CUADJTQAD). Supersaturation produces pre-
cipitation instantaneously (without a cloud stage). The effect of rainfall evaporation in sub-saturated layers is
strongly reduced in the linearized versions of the scheme. The constant RLPEVAP is set to 0.05, instead of 0.95 in
the nonlinear parametrization (it indicates that evaporation will take place as long as specific humidity in a given
layer is below RLPEVAP times its saturation value).

3.4.6 Long-wave radiation

The linear long-wave radiation is based on a constant emissivity approach, where only perturbations on tempera-
ture are accounted for. Tendencies produced by the linearized long-wave radia@&HEATTL andRAD-
HEATAD are damped above a pressure lgqyel (RLPPO0O) set to 300 BR&HLL:
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9 0dFL0 (3.13)

where the net flux arrays  (PEMTEDS) computed from the full non-linear radiation scheme are stored as part of
the trajectory during the non-linear integration (see description of the trajectory management).

3.4.7 Deep moist convection

The partial linearization of the ECMWF mass-flux scheme is performed, leading to the following tendencies for
the perturbations of the prognostic variables (wind components, specific humidity, dry static energy):

oy’ _ 1 oy’
3 = 5l Mup* Maou) 55 | (3.14)
The mass-fluxes profiles associated with the updrafts and the downtitgfts M apgd are recomputed in the

tangent-linear and adjoint integrations from the stored basic state. This partial linearization implies that all the non-
linear routines for the convection scheme have their tangent-linear and adjoint counterparts (starting form the driv-
ing routinesSCUCALLNTL andCUCALLNAD). However, most of them are only used to recompute the trajectory.
The only routines which contain linear statementsEéNINTL (mean thermodynamical properties at half model
levels), CUDUDVTL (tendencies for the wind components) adddDTDQNTL (tendencies for dry static energy

and specific humidity)Eq. (3.14)is solved numerically in the following form (s€edtke 1989) :

ow  1r0(Mw')  d(Mgounlt") ,
_a_q_é_ F_)[ aUZD + gozwn + (Dup_ Eup + Ddown_ Edown)llJ } (315)

which requires extra local storage of the profiles of entrainment and detrainemenEratesD and  computed in
CUASCNand

in CUDDRAFN (variables PDMFEN and PDMFDEIE(g. (3.15)is only applied when deep convection is diag-
nosed from the basic state.

3.4.8 Trajectory management

The ECMWEF physics uses the tendencies from the dynamics, and varialbled\at as input to compute the ten-
dencies of a given process (represented by the opé&ator ) for a prognostic wirriable

n+1

n-1
_un

'-IJ _ n-1
S = PW,") (3.16)

where the variablep, has already been updated by the dynamics and by the previous physical processes (which
are called in the following order: radiation; vertical diffusion; subgrid-scale orographic effects; moist convection;
large-scale condensation).

Thus :

g" = g te 20, YD (3.17)
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In Eq. (3.16) if the operatorP is nonlinear, its linearization around the basic suat_el , Will require to store the
model state at time step—1  (trajectory &+ At ) as well as the tendencies produced by the dynamics
(0W/0t)4,,- The physical tendencies from the previous proce¢ges 0t) s , require an additional call to the
nonlinear routines in the adjoint computatioB&\(LPARAD) and a local storage of the partial tendencies.

The storage of the trajectory it At is performe@iRGLAGby the routineVRPHTRAJcalled before the driv-
er of the ECMWF physic€ALLPAR. Fields are stored in grid-point space in an array TRAJPHYS allocated in
SuUSC2

The following three-dimensional fields are stored :

. For the atmosphere: the prognostic variables (wind components, temperature, specific humidity)
and their tendencies produced by adiabatic processes, the vertical velocity, the long-wave fluxes and
the solar transmissivity (these two last fields allow the computation of the radiation tendencies from
the trajectory irCALLPARTL andCALLPARAD)

. For the soil: the prognostic variables for temperature and moisture content (used to compute the
surface fluxes from the trajectory in the linear vertical-diffusion scheme)

A number of two-dimensional fields used at time stepAt need to be stored: surface pressure, surface fluxes,
skin temperature, skin reservoir, snow reservoir, roughness lengths (mainly for the vertical diffusion).

The preliminary computations (pressure and geopotential at full and half model levels, astronomy parameters) are
perfomed iNCPGLAGTL andCPGLAGAD before calling the driver of the tangent-linear phy<iosLLPARTL
or the driver of the adjoint physi€ALLPARAD, and after reading the trajectory fields freAPHTRAJ

The number of fields to be stored is definedSWTRAJPfor 3-D atmospheric fields on full model levels
(NG3D95), 3-D atmospheric fields on half model levels (NG3P95), 3-D soil fields (NG3S95), and surface fields
(NG2D95).

The option to store the trajectory on disk (instead of in memory) also exists through the logical LIOTRPH defined
in SUTRAJPbut is not used anymore on FUJITSU VPP computers. Packing of the trajectory is also possible with
the variable NPCKFT95 (set to 1 by default, which means no packing) and the packing parameter NEXPBT95,
provided packing libraries are compiled with the IFS (routEléBANDX1).
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Part II: D ATA ASSIMILATION

CHAPTER 4 Background term

Table of contents

4.1 Introduction

4.2 Description of the algorithm

4.3 Technical implementation
4.3.1 Input files
4.3.2 Namelist parameters of
4.3.3 IFS routines

4.3.4 Background error

4.1 INTRODUCTION

The background term described@ourtier et al. (1998) was in May 1997 replaced by a new formulatiorBloyit-
tier et al. (1997), available online as newjb.ps. The old code is still part of the IFS but will not be described in this
documentation.

4.2 DESCRIPTION OF THE ALGORITHM

We use the following notation:

. ox is the low-resolution analysis increment, i.e. model field departures from the background,

. B is the assumed background error covariance matrix,

. ¢,n, (T, pgy) @andqg are increments of vorticity, divergence, temperature and surface pressure,
and specific humidity, respectively, on model levels.

. Ny and (T, Psur),, are théalancedparts of then andT, pg,,s) increments. The concept of
balance will be defined below, and

. Ny and (T, Psyrdunpar @r€ theunbalancedparts of n  and (T, pgy,) , i.e.n—np, and

[(T, Psur) = (T, Psurf)pal » respectively.

The incremental variational analysis probldfa, (1.2)of Chapter 1 ‘Incremental formulation of 3D/4D variation-

al assimilation—an overview'is rewritten in the space defined by the change of varidkle= Lx Sectfon 1.4

whereL satisfieEL T = B sothd, takes the simple forre@f(1.8) In operational practice, the initial point

of the minimization is the background, so that initiax = x = 0 . The minimization can be carried out in the
space ofy , wherd, is the euclidean inner prodHdt, (1.8) At the end of the minimization, the analysis incre-
ments are reconstructed in model spacedRy= LX . In order to compare with observations is reconstructed
usingEg. (2.4) in each simulation. Thus the variational analysis can be donelwith , the inverse change of variable
from minimization space to model spacegvarir}, without ever usingCHAVAR.

The background-error covariance matBx is implied by the design of , which currently has the form
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L = KB /2 (4.1)

whereK is a balance operator going from the set of variables, (T, pgy), gand , to the model variables
¢, n, (T, psy) @andqg . TheBl2 operator is the right-hand symmetric square root of the background-error co-
variancesB, of n, (T, Psyy), and ,so that

B, = (BY?)'Bl/2 (4.2)

So far, the formulation is perfectly general. Now, we restBgt  to a simple form and choose a particular balance
operatorkK .

The covariance matriB,, is assumed to be block-diagonal, with no correlation between the parameters:

cCo 0 o0
0c, 0 0

= ‘ (4.3)
O 0 C(Tv psurf)u 0

0 O 0 C

u

q

Itimplies thattheq analysis is independent from the other variables. However, assuming that the unbalanced var-
iables are uncorrelated is not too restrictive because, as we shall see below, the design of the balance implies sig-
nificant multivariate correlations between the meteorological variables.

Each autocovariance block in the above matrix is itself assumed to be block-diagonal in spectral space, with no
correlation between different spectral coefficients, but a full vertical autocovariance matrix for each spectral coef-
ficient. The vertical covariance matrices are assumed to depend only on the total wavenumber . The resulting
autocovariance model is homogeneous, isotropic and non-separable in grid-point space: the correlation structures
do not depend on the geographical location, but they depend on the scale. The shape of the horizontal correlations
is determined by the covariance spectra. The same representation was used in the ggevious  forRuaitagion (

and McNally1993,Courtier et al. 1998). The covariance coefficients are computed statistically using the NMC
method Parrishand Derberl992,Rabieret al. 1998) on 24/48-hour forecast differences to estimate the total co-
variances for each total wavenumber , and assuming an equipartition of errors betw@entttie associated
spectral coefficients.

The balance relationship is arbitrarily restricted to the following form:

Ny = M{ (4.4)
(T' psurf)b = NZ + Pnu

So that the complete balance operdtor s defined by:

(=¢

n=Mc+n, (4.5)
(T, psurf) = NZ + Pnu + (T, psurf)u

a=q

or equivalently, in matrix form:
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I 00

K=|MI10O (4.6)
NPIO

000l
The matrix blocksM N an® are, in general, not invertible,lut  is. As explained above, the invkrse of is
not actually used in the variational analysis, because the initial point of the minimization is the background.

The matrix multiplication o8, byK allows one to write explicitly the implied background error covariance ma-
trix B in terms of the meteorological variablésn , (T,, Pgyrp) and

CZ CZMT CZNT 0
MC, MC,MT+C MC,NT+C_ PT 0
B = KBUKT — C C ; Ny ) ¢ Tﬂu 4.7)
NCZ NCZM + PCnu NCZN + PCnuP +C(T, Paud 0
0 0 0 C

The blocks implied byC, and its transforms by the balance operator bldckd , P and  &addheedparts

of the covariances. For instance, the vorticity covarian€gs and the unbalanced temperature covariances
C, Do), 2T€ both homogeneous and isotropic, whereas\tBgNT™ ‘vorticity-balaiide®,, ) matrix term
depends on latitude—it is predominant in the extratropics, negligible near the equatdtCkhe term is responsi-

ble for the geostrophic mass/wind coupling.

TheM ,N andP operators used to define the balance have a restricted algebraic stictureN and  are both
the product of a so-called horizontal balance opetdtor by vertical balance opkrafdrs

M = MH
N =NH

(4.8)

The H operator is a block—diagonal matrix of identical horizontal operators transforming the spectral coefficients
of vorticity, independently at each level, into an intermediate vari&hle which is a kind of linearized mass vari-
able defined below. The horizontal operatorddin  have exactly the same algebraic structure as the standard ana-
lytical linear balance on the sphere, and this is where the latitudinal variations df,the structures come from: in
spectral space,

Po(n,m) = By(n, m)g(n, m+ 1) + B,(n, m)g(n, m - 1) (4.9)

TheM ,N andP operators all have the same structure: block-diagonal, with one full vertical matrix per spectral
component. The vertical matrices depend only on the total wavenumber

The actual calibration of thd,, operator requires the following 4 steps; each one uses a set of 24/48-hour-range
forecast differences as surrogates to background error patterns in order to calculate the statistics:

1) H operator. The horizontal balance coefficient,;, 3,) &f are computed by a linear regression
between the errors in vorticity and in linearized total ma3g, , assuming the functional
relationship defined by the above equation, and buildig f(ampg,1) using the linearized
hydrostatic relationship at levél
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|
Ptot(l) = Z RTiAln pi + RTrefIn psurf (4-10)

i=L

which relies on the definition of the model vertical geometry and of reference valu€s fqr,, )
We use (270 K, 800 hPa) currently. The sensitivity to the somewhat arbitrary choice of these
parameters has been tested and it is negligible. Unlike in the predigus  formuRgjon, is just an
intermediate variable in the linear regression. Modifying the reference values, e.g. to (300 K,
1000 hPa), does change the scalinddof , but it is compensated by corresponding changkk in the
andN operators, so that the effective covariances are virtually unchanged.

2) M operator. The vertical blockdM (n) of this operator are computed for each wavenumber by
a linear regression between the spectral vertical profileg]™ [arigy , respectively, of
balanced masB,, (definedHs times the vorticity error patterns) and divergence. The relationship
is assumed to be

[N1™ = M(N)[P,];, (4.11)

so that the statistical sampling is better for the small scales than for the large scales because there
are2n + 1 spectral profiles to be used per total wavenumber in each forecast error pattern. At least
as many independent error patterns as number of model levels are needed in order to have a well-
posed regression problem for the very large scales.

3) N and P operators The vertical blocks are computed for each wavenumber exactlyMke
except that now the linear regression goes from the vertical spectral profileg of H{ and
N, = N —MC to the profiles of temperature concatenated with surface pressure:

(T, Psud]™ = N [Pl + Poln,ly (4.12)

One notes that th&l ,,  matrix is not square (the output is larger than the input because there is a
kernel in the hydrostatic relationship) but the resultifif, pg,.) covariances are still positive
definite by construction thanks to tl b,  Lerm in the expressi@n of

4) Error covariances. The vertical autocovariances of tie n, (T, Psy), agd , difference
patterns are computed for each total wavenumber . Again, since thePmaréd wavenumbers
for eachn and each error pattern, at least as many linearly independent error patterns as model
levels (plus one forpg,; Jnustbe used in order to ensure that the autocovariances are positive
definite at the very large scales. It is strongly advised to use several times more in order to reduce
the sampling noise at large scales; this is important for the performance of the resulting
assimilation/forecast system. In the May 1997 implementation of the 3D-Var system, about 180
forecast-difference patterns have been used for 31 levels.

In addition to these 4 steps, some minor preprocessing is performed on the covariances. The vertical correlations
of humidity are set to zero above 100 hPa in order to avoid spurious stratospheric humidity increments because of
the tropospheric observations. Then,, aMd pgyr), vertical profiles of total variance are rescaled by an ar-
bitrary factor of 0.9 in order to account for the mismatch between the amplitudes of the 24/48-hour-forecast differ-
ences and of the 6-hour forecast errors. In the future this factor will be recalculated more precisely using
observation departures from the background in the assimilation, similarly to Hollingsworth and Lénnberg (1986).
It may be different for 3D-Var than for 4D-Var. The variance spectra are slightly modified in order to ensure that
the horizontal error correlations & n,, afd, pg,s), are compactly supported (they are set to zero beyond
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6000 km). This operation removes the residual sampling noise in the error covariances. No other processing is per-
formed except for a spectral truncation if the analysis resolution is lower than the statistics resolution (currently
T106). It would be easy to extrapolate the statistics to higher resolutions, but it would be very hazardous to alter
the vertical geometry of the covariances and balance operators. Instead, it is recommended to run a set of forecasts
using a model with the right vertical resolution, and recompute all the statistics from scratch.

4.3 TECHNICAL IMPLEMENTATION

The statistical calibration is done using dedicated scripts outside the IFS code. First, the 24/48-hour forecast error
differences for a set of dates are constructed in terms of spéctrgl (T, Py, g and . This involves running
a set of MARS requests and building the required GRIB files. Then, the forecast-error differences are read and
processed by a Fortran statistics program that finally writes two files in GSA format: one with the coefficients of
the balance operator, one with the error covariances of, (T, Pgyr), gand . These files take up a couple of
megabytes. They are computed for a given triangular truncation and number of levels (currently T106L31). In the
covariance file there are 4 sets of vertical covariance matrices. The balance files contain one set of coefficients for
the H operator, and three sets of vertical balance matricéd fof , P and

4.3.1 Input files

The IFS needs these two GSAfilestouke  in e.g. the incremental analysis joh, The  configuration described
here corresponds to namelist switch LSTABAL=.true. (NAMJG), and it is identified ind{he code by the string
CDJBTYPE='STABAL96’. LSTABAL=.false. would give the old,, formulation. The input files must be named
stabal96.cvandstabal96.bal They are read in byujbdatandsujbbal respectively.

4.3.2 Namelist parameters of),,

Some other important namelist options in NAMJG are LCFCE (to enforce uniform background errors),
L3DBGERR (to have a 3D distribution vorticity background errors), and LCORCOSU (to enforce compactly sup-
ported horizontal correlations). The switch LGUESS in NAMCTO can be used to swjich off altogether. The
default is LGUESS=.true., i.€l, switched on.
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(This is thed,, setup code tree in IFS cy16r3, option stabal96)
(namelist namjg has already been read into yomjg in routine sujb below suOyoma)

—> determingl, configuration (nonsep93, stabal96 or totenrgy)
allocate work arrays

[ sujbdaf-—#- read covariance file ‘stabal96.cv’

—»{commjbddt distribute covariances to all processors

prepare vertical interpolation

- truncate / extrapolate spectrally to IFS resolution
g reset g stratospheric correlations

—> < Icorcosu > prepare Legendre polynomials

- Normalize covariance matrices into correlations

factorize inverse vertical correlation matrices
—> arrays FGEDVNx, FGEGVM

| g generate horizontal correlation spectra

= < Icorcosu > sujbcosu enerate compactly supported
hognzontal correl%nonyspe%?ra

= inverse square root of horiz correl spectra —> array FGSCNM
g print average vertical correlation matrices

L < kprt>1 >  print spectra and gridpoint structures of
horizontal correlations

calculate total variances at each level

standard deviation vertical profiles times REDNMC
—> arrray FCMN / FCEMNP

. horizontal stdev structures (see cycling doc)

read balance file ‘stabal96.bal’
commijbball distribute balance to all processors
convert to IFS truncation —> arrays SDIV, STPS, BFACT/2

H= sujbmod (modification of vertical correlations, not supported)
= sujbmay (modification o8, geometry, not yet implemented)
H-| sujbdiag (diagnostic ofl,,  structure functions, not supported)
L sujbstat (online update af, statistics, not yet implemented)
H-| SUjbwrit (rewrite ofJ,, operators, not yet implemented)

L g < ljbtest > (Technical test 8f,  code)

setup random vector
cvarzin / cvar2inad adjoint test on them

inverse tests on them
cvar2ad / cvar2ina1d inverse tests on them

Figure 4.1 Calling tree for subroutingjbcov
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4.3.3 IFSJ, routines

Inside the IFS code],, is localized in the setups below subrostijicovand in the inverse change of variable
cvar2in(and its adjoint and their inverseSYAR2INAD, CVAR2 andcvAR2AD). Calling trees are shown ig.

4.1 andFig. 4.2. The computation of the cost function and its adjoint is dongrnmidSection 2.3n Chapter 2

‘3D variational assimilation)---it is planned to move it to a dedicated subroutine. The sequence within the set-up
routine is the following:

(i)

(ii)

(iii)
(iv)

v)

SUJBDAT: Reads covariances from fiéabal96.cv,

Interpolates in the vertical to the model’s vertical levels (if necessary)

Sets humidity correlations to 0, for pressures less than 100 hPa.

SUJBCOR Sets up spectral correlation operator

Covariance matrices (one per ) are converted to vertical correlation matrices and horizontal
autocorrelation spectra. The eigenvectors and the eigenvalues of vertical correlations matrices are
computed usingIGENMD and stored in FGEDVNS and FGEGVNS-arraysrjg), respectively,

for later use in JGVCOR JGVCOR| JGVCORAD and JGVCORIAD. The horizontal
autocorrelation spectra are stored in the FGSCNM-aryayg), for later use inJlGHCORand
JGHCORI

SUJBSTD Set up background error standard deviationsSsésection 4.3.4

SUJBBAL: Set up balance constraint. Read thedilgbal96.baland store iryomijg, for later use in
balstat balstatagl balvert balvertag balverti and balvertiad as part of the change of variable
operator.

SUJBTEST Test of the adjoint of the change of variable, if LIBTEST=.true.

The distributed memory affects the setups betoyibdatandsujbbalwhen the data files are read in (by the master
processor only). First, the resolution of the files is read, then the relevant arrays are allocated and the actual data is
read, truncated if necessary, and broadcast. The code is designed to work at any resolution.
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[cvar2inj—p < Iskf > (see the simplified Kalman filter doc)

- CVaru3i—# jgcori—s- trmto$ mpe_send /mpe_recv for spectral
to column transposition

jgvcori matrix multiplications
by FGEGVNx / FGEDVNX i.e.
sqrt of vertical correlations

mpe_send / mpe_recv for column
to spectral transposition

division by FGSCNM i.e.

inverse sqrt of horizontal correlations

< Ispfce > | jgnrs multiplication by FCEMN i.e.
average background errors
L < else >| stepo (OAAOOXAGP) interface to  jgnr(x)
i.e. multiply by

3D background errors

apply horizontal balance operator defined by

BFACT1 / BFACT2 from vorticity to P variable

- balvert

trmtosI mpe_send / mpe_recv for spectral
to column transposition

apply vertical balance operator defined by
SDIV / STPS from P to unbalanced variables

mpe_send / mpe_recv for column
to spectral transposition

L < |Subfg > | addfgs add SP7A3/2 (trajectory) to SPA3/2

Figure 4.2 Calling tree for subroutinear2in

In the change of variable, there is a transposition of the fields between the horizontal and vertical balance operators,
balstatandbalvert repsectively. Note that the operator  is performed by caltivay2in so in IFS parlancé
corresponds to thaversechange of variable.

4.3.4 Background error o,

The background standard errors are set up belgwstd(in SUINFCE, called fromSUECGES and used iggnr

or jgnrs(and their adjoint and inversggnradandjgnrsi). In addition to the covariance files, they use a gridpoint

GRIB file callederrgrib in order to specify the three—dimensional error patterns. The data from the file is converted

to the appropriate parameters and resolution if needed. The background error fields for some parameters (wind,
height, temperature and surface pressure) are built for the screening job although they are not needed in the analysis
itself. For more information, refer to the chapter on the cycling of background e@begter 7 ‘Background, anal-

ysis and forecast errors’
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4.3.4 (a) Humidity. The humidity background errors are currently not cycled — they are comput&d) G-
FCEunderJGNR ) by a simple empirical formulation as a function of the temperafiite and relative humidity
Ub of the background:

o, = —0.002T°-0.0033TP-273 + 0.28UP-0.35UP-0.4 + 0.70 (4.13)
0, = min[0.1§ max 0.060,,)] (4.14)

The standard deviation in terms of relative humidity is then converted to specific humidity, taking the variation of
g of the equation

u
q = Zsat (4.15)

1
gp_U%_l%sat

whereU is the relative humidit, = R/ Ryqp 654 IS the saturation water-vapour pressure at the temperature
in question (Tetens’ formul&qg. (5.11)in Chapter 5 ‘Conventional observational constraipedp is pressure.

Humidity increments are forced to be negligibly small above the tropopause to avoid a systematic drift of strat-
ospheric humidity over extended periods of data assimilation. This is achieved by setting a very low vl of

for o, everywhere the pressure is lower than 70hPa, and at anyother point where the pressure is lower than 500hPa
and the background temperature and pressure fields are such that the square of the buoyancy frequency exceeds
2x 107%s7 everywhere between that level and the 70hPa level.

More specifically, for each grid columm, is sett@®  for model levels  suchkhak , Where theKevel
is determined by requiring either that it is the highest level wﬁrk 70 hPa for which

b b b b
Pk +1(Tk+2—Tk) + Rary Tk +1

T?(+1(pbK+2_plr)() 92

(2.5% 10" >k (4.16)

or, if no such level can be found fprﬁ in the range from 500 to 70hPa, that it is the lowest level for which

po <500 hPa

HereTbK andp?< are the background temperature and pressure dlevel  of the grid-column.

In addition, any values as,, lower tha®®  are reset@o

For pressures less thaoy = 800 hPa, and over the sea, the model of background errors above is modified by
0 P~ Por 10
Omod = Obgﬂ—aﬂanp{—D b OE}E (4.17)

wherea = 0.5(1- LSM) (where LSM = land—sea mask) and =12500.
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Part II: D ATA ASSIMILATION

CHAPTER 5 Conventional observational constraints

Table of contents
5.1 Introduction
5.2 Data usage
5.2.1 Controls
5.2.2 Overview of observation operators
5.3 The observation operator for geopotential height
5.3.1 Quadratic vertical interpolation near the top of the model
5.3.2 Below the model’'s orography
5.4 The observation operator for wind
5.5 The observation operators for humidity
5.5.1 Saturation vapour pressure
5.5.2 Relative humidity
5.5.3 Precipitable water
5.5.4 Specific humidity
5.6 The observation operator for temperature
5.7 Surface observation operators
5.7.1 Mathematical formulation
5.7.2 Surface values of dry static energy
5.7.3 Transfer coefficients

5.7.4 Two-metre relative humidity

5.1 INTRODUCTION

The observation operators provide the link between the analysis variables and the obse hvations1(986,Pail-

leux 1990). The operatoH ikq. (1.4)signifies the ensemble of operators transforming the control variable

into the equivalent of each observed quantjty, , at observation locations. The 3D/4D—Var implementation allows

H to be (weakly) non-linear, which is seen to be an advantage for the use of TOVS radiance data, for example. In
this chapter we define the content of each of the observation operators and describe the observational data used in
3D/4D-Var. The use of satellite data is describe@hiapter 6 ‘Satellite observational constraints’
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5.2 DATA USAGE

Observation operators for all observation types that were used by Ol have also been implemented in 3D/4D—Var.
In addition 3D/4D—Var uses TOVS cloud-cleared radiances, scatterometer ambiguous winds and SSMI total col-
umn water vapouiTable 10.8ists the observing systems currently used by 4D-Var in ECMWF's operational data
assimilation. The table also indicates important restrictions on data usage and thinning of data. TOVS, SCAT and
SSMI data are further discussed@mapter 6 ‘Satellite observational constraint&dditional data types such as
meteosat radiances and TOVS and ATOVS 1C-radiances are used experimentally. ATOVS 1C radiance usage is
described in a separate chapter. 3D/4D—Var uses the data from a six-hour time window centred at the analysis time.
In 3D-Var there is no interpolation in time of the background, which means that all data are used as if they were
observed at the analysis time. In 4D-Var, on the other hand, the background trajectory is available on a one hourly
interval Chapter 3 ‘4D variational assimilatioll’ If there are multiple reports from the same fixed observing sta-

tion within that time window (6 hours in 3D-Var, 1 hour in 4D-Var), the data nearest the analysis time are selected
for use in the analysis. Some thinning is applied for the moving platforms reporting frequently. These tasks are per-
formed in the screening configuration of IFS, €dapter 10 ‘Observation screening’

5.2.1 Controls

Theblacklist mechanism is very flexible and allows the complete control of which data to use/not use in the vari-
ational assimilation. The blacklist is applied in the screening job, which removes the blacklisted data from the com-
pressed CMA observation file. Data-selection rules should be coded in the blacklist files rather than in the IFS code
itself.

Classes of data can also be switched on and off using the NOTVAR arté O, however it is preferable to

use the blacklist mechanism for this purpose. The second dimension in thisarray is the observation type. The first
dimension is variable number, area and subobs-type, respectively—see the documentation of obsproc for defini-
tions. The elements of the NOTVAR array\ can take either of three values:

. 0, means that the data will beed
. —1, means that the data wilbt beused,and
. —2, means that the data will massive,i.e. departures will be calculated but there will be no

contribution toJ ,

5.2.2 Overview of observation operators

The operatoH is subdivided into a sequence of operators, each one of which performs part of the transformation
from control variable to observed quantity:
M The inverse change of variabl€IAVARIN) converts from control variables to model variables
(seeSection 2.3n Chapter 2 ‘3D variational assimilatiop’
(i)  The inverse spectral transforms put the model variables on the model's reduced Gaussian grid
(controlled bySCAN2MDM).
(i) A 12-point bi-cubic or 4-point bi-linear horizontal interpolation gives vertical profiles of model
variables at observation points (controlled ®BS COBSLAG, Section 2.3. The surface fields
are interpolated bi-linearly to avoid spurious maxima and minima. The three $}dps(i(i) are
common to all data types. Thereafter follows:
(iv)  Vertical integration of, for example, the hydrostatic equation to form geopote8gatipn 2.3, and
of the radiative transfer equation to form radiances (if applic&blesection 6.4)1and
(v)  vertical interpolation to the level of the observations.

The vertical operations depend on the variable. The vertical interpolation is linear in pressure for temgePajure (
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and specific humidityPQ), and it is linear in the logarithm of pressure for wirkHUV). The vertical interpola-

tion of geopotential PPGEOR is similar to wind (in order to preserve geostrophy) and is performed in terms of
departures from the ICAO standard atmosphere for increased acc8iaeyp¢nand Chen1991, se&ection 5.3

below). The current geopotential vertical interpolation together with the temperature vertical interpolation are not
exactly consistent with hydrostatism. A new consistent and accurate vertical interpolation has been devised by Me-
teo-France, which may be important for intensive use of temperature information. The new routines have been test-
ed by ECMWEF and as the results were not unambiguously positive the new routines have not yet been adopted —
and they are not described in this documentation. In the meantime, the old routines are still used (switch
LOLDPP=.true. innamct(, under the nameBPT_OLDQ PPGEOP_OLDand PPUV_OLD, with tangent linear
PPTTL_OLD PPGEOPTL_OLDand PPUVTL_OLD and adjoint PPTAD_OLD, PPGEOPAD OLDand
PPUVAD_OLD.

The vertical interpolation operators for SYNOP 10 m wiRdP(JV10M) and 2 m temperaturé®PT2M match an

earlier version of the model's surface layer parametrisation. The vertical gradients of the model variables vary
strongly in the lowest part of the boundary layer, where flow changes are induced on very short time and space
scales, due to physical factors such as turbulence and terrain characteristics. The vertical interpolation operator for
those data takes this into account following Monin—Obukhov similarity theory. Results using such operators, which
follow Geleyn(1988) have been presented®grdinali et al (1994). It was found that 2-metre-temperature data
could not be satisfactorily used in the absence of surface skin temperature as part of the control variable, as unre-
alistic analysis increments appeared in the near-surface temperature gradients. The Monin—Obukhov based obser-
vation operator for 10 m wind, on the other hand, is used for all 10 m winds (SYNOP, DRIBU, TEMP, PILOT and
SCAT). SCAT 10 m winds may optionally (setting LSCASUR=.F. in namobs) be used through a simple logarithmic
relationship between lowest model level wind (at approximately 32 m) and wind at 10 rAR§e@SAS Subsec-

tion 6.4.9.

Relative humidity is assumed constant in the lowest model layer to evaluate its 2 mREIREeI2N), seeSubsec-
tion 5.7.4 The model equivalent of SSMI total column water vapour data is obtained by vertical integration of
(in GPPWC and®PPWQ. Observation operators also exist for SATEM precipitable water contentR&IB&V(

and SATEM thicknesses (PPGEOP), but these data are currently not used operationally.

The variational analysis procedure requires the gradient of the objective function with respect to the control varia-
ble. This computation makes use of the adjoint of the individual tangent linear operators, applied in the reverse or-
der. The details regarding observation operators for conventional data can be fodasiljavicet al. (1992,
Courtier et al.(1998), and in the following sections.

5.3 THE OBSERVATION OPERATOR FOR GEOPOTENTIAL HEIGHT

The geopotential at a given pressyre  is computed by integrating the hydrostatic equation analytically using the
ICAO temperature profile and vertically interpolatingg  , the difference between the model level geopotential and
the ICAO geopotentialSimmonsand Chenl1991). The ICAO temperature profile is defined as

N\
Ticao = To—‘d(Pon (5.1

whereT, is288 K@cao IS the geopotential above 1013.25 hPaand s K065 in the ICAQ troposphere
and 0 in the ICAO stratosphere (the routP@STA. The ICAO tropopause is defined by the level where the ICAO
temperature has reached 216.5XJSTA). Using this temperature profile and integrating the hydrostatic equation
providesT cpo and the geopotenti@l.po  as a function of presfiRS{TA. We may then evaluate the geo-
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potentialg(p) at any pressuge  following

O(P) =Pyt = Gicpo(P) —Gcao(Psut) + A0 (5.2)

wherep,; is the model surface pressure ggg; , the model orogrAghy. is obtained by vertical interpolation
from the full model level valuedg, . The interpolation is lineadir( p) up to the second model IWEN{TP

and quadratic irin(p) for levels above RPITPQ see below). The full model level values are obtained integrat-

ing the discretized hydrostatic equation using the rouBifé&sEOof the forecast model, followingimmonsand
Burridge (1981):

k+1

- j+1/2
A(pk - E Rdry(ij _TICAOj)ln%J_Jr E"' Gdery(Tvk_TICAOk) (5-3)
j-1/2
J=L

with

Pk-1/2 | Px+1/20]
NG 0
Pk+1/27 Prk-1/2 “Pr-1/2

qk =1-
for k>1 anda,; = In(2) .

5.3.1 Quadratic vertical interpolation near the top of the model

Above the second full level of the model, the linear interpolati®RINTBRis replaced by a quadratic interpolation
in Inp, performed in the routinePITPQ

z(Inp) = a+b(Inp) +c(Inp)2 (5.4)

where a ,b andc are constants determined so that the above equation fits the heights at the top levels
(k = 1,2 and 3. The interpolation formula is:

(z—-z,)(Inp—Inp,)(Inp—1Inps) (z,-23)(Inp—Inp,)(Inp—-Inp,)
(INnpy=Inpy)(Inp;—Inps) (INpy=Inp3)(Inp;—Inps)

o(lnp) = z,+ (5.5)

where 1,2 and 3 referto levets= 1,2 and 3 , respectively.

5.3.2 Below the model’s orography

The extrapolation of the geopotential below the model’s orography is carried out as follows: Find (surface tem-
perature) by assuming a constant lapse fate , from the model level above the lowest model level ($ubkcript ),
see the routin€TSTAR,

R

TO= T,_1+/\—SWT,_1In SIS““J (5.6)
TO+ T, ,min(T,,T

To=t maxT, min(T, . TO]} 5.7)

2
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Find the temperature at mean sea |leVg|, (al$BTIBTAR)

(psurf

To = TO+A (5.8)

To = min[Ty,maxT, ,TO)] (5.9)

whereT, is290.5Kand, is255K. The geopotential under the model’s orographyH® (#t=OF calculated
as:

Ry TO
@ = QPoyri— d; [Dld—l} (5.10)

Ry
wherey = —=(T, =T, -
surf

5.4 THE OBSERVATION OPERATOR FOR WIND

In PPUVa linear interpolationiinp (PPINTP) is used to interpolate  &nd  to the observed pressure levels up
to the second full model level, above which a quadratic interpolation is &¥&d PQ seeSubsection 5.3.1). Be-

low the lowest model level wind components are assumed to be constant and equal to the values of the lowest model
level.

5.5 THE OBSERVATION OPERATORS FOR HUMIDITY

Specific humidityg , relative humiditJ and precipitable water contei{ C are linearly interpolaged in  , in
PPQ PPRHandPPPWG respectively. Upper air relative humidity data are normally not used, but could be used,
if required. The use of surface relative humidity data is describ®dlisection 5.7.4

5.5.1 Saturation vapour pressure

The saturation vapour pressweg(T) is calculated using Tetens’s formula:
a3uT -Tan
e T) = ajexp ' —%" (5.11)

using FOEEWM (mixed phases, water and ice) in the model and FOEEWMO (water only) for observations. The
use of water-phase only is in accordance with the WMO rules for radiosonde and synop reporting practices. Note
that these statement functions comp(fg,,/ Ryap)€sa{ T) , with the parameters set according to Buck (1981) and
the AERKIi formula ofAlduchovand Eskridgg1996), i.e.a; = 611.21 hPaa; = 17.502 and, = 32.19 K

over water, and for FOEEWM,; = 22.587 and, = -0.7 K over ice, with; = 273.16 K. Furthermore in
FOEEWM the saturation value over water is taken for temperatures di5@ve and the value over ice is taken for
temperatures below23°C . For intermediate temperatures the saturation vapour pressure is computed as a com-
bination of the values over watel,; ey  and &6y  according to the formula

ol = Ti DZ
esat(T) = esat(ice{T) + [esat(watergT) - esat(iceﬂT)] DTS —T.0 (5.12)
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with T,—T, = 23 K.

5.5.2 Relative humidity
In GPRHrelative humidityU is computed:

U = (5.13)

and then irPPRHinterpolated to the required observed pressure levels (FEyTH. Below the lowest model

level and above the top of the modellis  assumed to be constant. Saturation vapour pressure is calculated using
FOEEWMO if GPRH has been called form the observation operator routines, and using FOEEWM if called from
the model post processing.

5.5.3 Precipitable water

In GPPWC precipitable water is calculated as a vertical summation from the top of the model:

K
PWC, = ézqi(pi_pi—l) (5.14)

i=1

and then irPPPWdnterpolated to the required observed pressure levels (g TH. PWC is assumed to be
zero above the top of the model. Below the model’s orograpWyC is extrapolated assuming a aprystgt

5.5.4 Specific humidity

Specific humidityq is inPPQinterpolated to the required observed pressure levels (&&TH. Below the
lowest model level and above the top of the modejis assumed to be constant and equal tag; and |, respec-
tively.

5.6 THE OBSERVATION OPERATOR FOR TEMPERATURE

Temperature is interpolated linearly in pressi#@INTB), in the routinePPT. Above the highest model level the
temperature is kept constant and equal to the value of the highest model level. Between the lowest model level and
the model’s surface the temperature is interpolated linearly, using:

— (psurf_ p)TI + (p - pI)TD

T (5.15)
Psuri— Py
Below the lowest model level the temperature is extrapolated by
_ 1 p 7,1 p_(?
T = quﬂxln P yzyinP U +2hinL ] (5.16)
Psurf 2%1 psurtj:J 6 psun‘[|

with a = ARg,/ g, for s,/ g <2000 m, buta is modified for high orography @ = Ry (To' = TD/ @t
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where
T, = min(T,,2998) (5.17)
for @g,+ 9 >2500 m, and
T, = 0.007( 2506- @,/ 9) T o+ (Qsy” 9 —2000)Min(T, ,298)] (5.18)

for 2000< @,/ g <2500 m. If T, < TUthena isresetto zero. The two temperatués  @gd  are comput-
ed usingegs. (5.6)o (5.9).

5.7 SURFACE OBSERVATION OPERATORS

All surface data are processed in the rouftiéRFACEQ Preparations for the vertical interpolation is done as for
all other data irPREINT (seeSubsection 5.3)2 and for surface data there are a few additional tasks which are
performed in a separate routineREINTS In PREINTS surface roughness over sea, dry static en&gyR(
BOUND), Richardson number, drag coefficients and stability functiegh§JHCO), are computed, as detailed in
the following.

5.7.1 Mathematical formulation

An analytical techniqueGeleyn 1988) is used to interpolate values between the lowest model level and the sur-
face. When Monin—Obukhov theory is applied:

0z  K(z+zgMO L O (5.19)
ds _ S« (% * Zop
0z K(z+zo)(pHD L O (5.20)
Cp T u?
L=—=+—-— (5.21)
g K s.
whereu, s are wind and energy variablas, s. are friction valuexand0.4 is von K&rmén’s constant.
The temperature is linked to the dry static enexgy by:
s=c,T+o (5.22)
¢ =c. |1+ [Pu 1Eq (5.23)
p pdw Gpdry |:| '
Defining the neutral surface exchange coefficient at the height as:
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In':F—+ Zo]
O Z, 0

The drag and heat coefficients as:

2
u*

[u(2)]?

Cu =

c = UsSs
" u@)Is(2) -3

we can set the following quantities:

and considering the stability function in stable conditions as:

v
Quny = 1+ BM/HE

we obtain integratingqs. (5.19)and(5.20)from 0 toz, (the lowest model level):
u(z) = M[In%.{_i(eBN_l)D_E(B _B )]
By z, Oz, N M

s(z) = §+ S(Zé)H_S[mE*TL + Ez‘l(eBN ~1)E- 251(13N - BH)J

In unstable conditions the stability function can be expressed as:

-1
z
Pwm = %l = Bwm [E

and the vertical profiles for wind and dry static energy are:

u(z) = uéZMl)[ln%L + le(eBN —1)%— In%{ + Zil(eBN_BM —1)%]

w0 = £+ Xl £ -0 i 2" ]

The temperature can then be obtained feom  as:

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
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T(2) = s(2) -2 (5.34)
p

Whenz is set to the observation heights. (5.29pnd(5.30)andEgs. (5.32K5.34)give the postprocessed wind

and temperature. To solve the problem, we have to compute the dry static energy at the surface
S = S(Tgus,q = 0) (Subsection 5.7)2with B,,, By andB,, values depending on the drag and heat exchange
coefficientsEq. as detailed irsubsection 5.7.3

5.7.2 Surface values of dry static energy

To determine the dry static energy at the surface webgse (5.22and(5.23)where the humidity at the surface is
defined by:

51 = q(z = 0) = h(CsnOW' Cqu ' Cveg)qsat(Tsurf ' psurf) (5-35)

h is given by Blondin, 1991):

h = Csnow+ (1_Csnow)[cliq + (1_Cliq)ﬁ] (5-36)
with
h = max7J0.5= 1- cosé——so'D min=l, —————=] (5.37)
O EE capD %l qsal(Tsurf' psurf)DD
whered; is the soil moisture content afid,, s the soil moisture at field capacitiy (2/7 in volumetric units).

Eqg. (5.36)assigns a value of 1 to the surface relative humidity over the snow covered and wet fraction of the grid
box. The snow-cover fractio@,,,, depends on the snow amayps,

w
Csnow = Min %1 ’W____snow%
Snow,

whereW g,
contentWy, :

= 0.015 miis a critical value. The wet skin fracti@j, is derived from the skin-reservoir water

_ iy Wi O
Cig = mm%l, W, O

max

where

W”Qmax = Wlayer {(1 - CVeg) + CvegAIeaf}

With Wigye, =2 107 m being the maximum amount of water that can be held on one layer of leaves, or as

a film on bare soilA,= 4 is the leaf-area index, &, is the vegetation fraction.

5.7.3 Transfer coefficients
Comparing theegs. (5.19)- (5.20)integrated fromz, taz +z, witlEgs. (5.24)0 (5.26) C,, andC, can be
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analytically defined:

(z+2p) 2
1 _1 ou(z'7L)
&= J' —— & (5.38)
Zo
(z+20) (z+20)
z'/L z'/L
1_1 M dz' M dz' (5.39)
Cqy «° z z

Zy Zy

Because of the complicated form of the stability functions, the former integrals have been approximated by analyt-
ical expressions, formally given by:

. Z
cMchfM%m,z—OE

(5.40)
_ 20
Cy = CufufRi, 20
whereC,, is given b¥q. (5.24) The bulk Richardson numb&i is defined as:
AzZAT
Ri = 22 v (5.41)
cpT\/Aul

whereT,, is the virtual potential temperature. The functibps  Bpd  correspond to the model instability func-
tions and have the correct behaviour near neutrality and in the cases of high stabilis/ 1979;Louiset al. 1982)
(&) unstable cas®i <0

f = 1— 2b Ri (5.42)
Z .
1+3bCC, /EJ’L+E£F—R|)

f, = 1- 3b Ri (5.43)

1+3bCCy [H+ Z—Z(E(—Ri)

C=5
(b)  Stable casd®i >0

1
f,, = 5.44
M™ 1+2b Ri(1+d Ri)V2 (5-44)

1
f, = 5.45
H™ 1+3b Ri(1+d Ri)V2 (5-45)
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5.7.4 Two-metre relative humidity

In GPRHrelative humidity is computed accordingHaj. (5.13) The relative humidity depends on specific humid-
ity, temperature and pressuigg (T  gmd , respectively) at the lowest model level. It is constant in the surface mod-
el layer, se€@PRH2M
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CHAPTER 6 Satellite observational constraints

Table of contents
6.1 Introduction
6.2 Set-up of the radiative-transfer code
6.2.1 Satellite identifiers
6.2.3 Fixed pressure levels and RT validation bounds
6.2.4 Radiance observation errors, bias and emissivity
6.3 Set-up for geopotential thickness and PWC
6.3.1 Layers
6.3.2 Observation errors
6.4 Observation operators
6.4.1 Radiances
6.4.2 Thicknesses
6.4.3 Precipitable water from SATEM and SSM/I

6.4.4 Scatterometer winds

6.1 INTRODUCTION

The processing within 3D/4D—Var of satellite data follows the general layout preseredtions 2.4nd2.5 of

Chapter 2 ‘3D variational assimilationThe same vertical interpolation routines asdhapter 5 ‘Conventional
observational constraintgre used whenever possible. The main difference in the organization is that the radiative
transfer code, RTTOV-53aundersand Matricardi1998), currently requires the model profiles to be interpolated

to 43 fixed pressure levels from 1013.25 hPa to 0.1 hPa on which the radiative transfer coefficients are determined.

The current operational configuration uses TOVS radiandasdrssoret al. 1994), SCAT ambiguous surface
winds (Stoffelenand Anderson1997), SSM/I total column water vapour and wind speed (Gerard and Saunders,
1999;Phalippoy 1996;Phalippouand Gérard 1996) and SATOB cloud motion winds of various typ&sihassini

et al. 1997). Operators also exist for SATEM thicknesses and PW&lly and Pailleux 1988;Kelly et al. 1991),

and radiances from geostationary satellites. Cloud motion winds (SATOBS) are used just like any other upper level
wind observationsGhapter 5 ‘Conventional observational constraipend will not be discussed any further.

At the introduction of 21r1 (May 1999) we move from the use of RTOVS cloud-cleared radiances to 1C, or ‘raw’,
radiances, which do not require the 1D-Var retrieval step.

6.2 JFET-UP OF THE RADIATIVE -TRANSFER CODE
There are two set—up routineSETSATID andRTSETUR for the radiative transfer computations and both are

53
(Edited 19 September 2003)



9 Part Il: ‘Data assimilation’
A\~

called fromSURAD. The routineRTSETUPcallsRTTVI (tovscode) which reads in the transmittance coefficients
to memory for the satellites present. The file containing these coefficieritcmef ieee.daffor TOVS and all
satellites from VTPR through to NOAA-15 are supported.

6.2.1 Satellite identifiers

Satellite identifiers are dealt with in just one place in the IFS and that is in the r@esEASATID. The ODB con-

tains the identifiers as given in the original BUFR messages. Lists of identifiers for which data exist in any given
ODB are prepared in the routine MKGLOBSTAB. The routi@8 TSATID matches those BUFR satellite identi-

fiers with the more traditional satellite numbers, used by the RT—code (e.g. 10 for NOAA-10 and 5 for METEO-
SAT). The id—conversion tables can be modified through a series of namelists: NAMTOVS; NAMDMSP;
NAMMETEOSAT; NAMGOES; and NAMGMSThe satellites are furthermore associated with an ‘area’ number
(between 1 and 20) to be used as an array index inJthe table Gili3ection 2.5)3 and with a sequence
number for addressing the transmittance coefficients within the RTTOVS code, for example. Note that this se-
guence number is universally determined across all processors, so if NOAA-12 (BUFR id=202) is satellite-1 on
one processor then it will be satellite-1 on all other processors, too.

6.2.2 Satellite sensors

The various types of radiance data are classified by sensor. Each satellite sensor is assigned a yombegrdh
currently HIRS=0, MSU=1, SSU=2, AMSUA=3, AMSUB=4, SSMI=6, VTPR1=7, VTPR2=8 and METEO-
SAT=20. The sensor number is used as index to various tables containing observation errors, BgQC thresholds,
VarQC parameters, et cetera. See the romiBERUN.

6.2.3 Fixed pressure levels and RT validation bounds

The list of the 43 fixed pressure levels is passed from the RTTOV library (where they have been read from the trans-
mittance coefficients file) tRTSETUPand SURAD and copied toyfomtvrad RTSETUPalso similarly obtains

(from RTTOV) lists of temperature, humidities and ozone limits indicating the vaild range of the RT transmittance
regression. The RT code is not reliable in conditions beyond these limits. Checks are apphbd in

6.2.4 Radiance observation errors, bias and emissivity

Observation errors and bias corrections for 1C radiances are written to the odb in aRADIGCCOBE (from
HRETR). The bias correction is stored in the NCMTORB word and later applied at each iteration of 3D/4D—Var,
in the routineHDEPART, Subsection 2.5.8f Chapter 2 ‘3D variational assimilationMicrowave (EMIS_MW)
and infrared (EMIS_IR) emissivity are computed in RAD1CEMIS and stored in the odb for later use by RTTOV.

6.3 SET-UP FOR GEOPOTENTIAL THICKNESS AND PWC

NESDIS or 1D-Var thickness and/or PWC data are currently not used in operations (since August 1997, cy18r6),
but may be switched on by blacklist changes. 1D-Var thicknesses were assimilated in 3D—Var m@th of N in
layers from 1000 hPa to 100 hPa and NESDIS thicknesses were assimilated above 100 hPa globally from January
1996 to August 1997. Lower resolution 500 km SATEM thicknesses are also available as a backup.

6.3.1 Layers

The extended odb (prior to screening) contains the reported layers of SATEM thickness and PWC. The specifica-
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tion of the layers that will be used by 3D/4D-Var is given3tURAD. The reported layers may need splitting
(THINUP) or summing up$UMURP). This is done in the routinEHICKPWC, called fromSATEM, in the screen-

ing configuration of IFS. The compressed ODB after screening contains only those layers to be used by the analy-
sis. The splitting and summing up of thickness layer is not desired unless the thickness data are actually going to
be used actively. As the data are only used for monitoring, operationally, it is preferable to calculate departures for
the reported layers. This is controlled by the switch LSUMUPTOVS=.F. (default since L50) in NAMSCC.

6.3.2 Observation errors

The observation errors are given®JRAD and assigned imHICKPWC. Observation errors are otherwise nor-

mally assigned in obsproc. Thicknesses and PWC are an exception because the layers to be used by the analysis
are not known by the obsproc program. (TOVS radiances observation errors are another exception — they are as-
signed by 1D-Var, se€hapter 10 ‘Observation screeninfgr more details). The thickness errors (but not PWC)
include a persistence error which is calculated using a routine of obsproc (PEREREYV). There are no realistic thick-
ness observation errors available for the ‘un-summed up’ reported layers (see LSUMUPTOVS=.F. above). For
these data an ad-hoc thickness error corresponding to 1 K layer-mean temperature is inserted in ODB and used in
the (diagnostic!) costfunction computation. Those data cannot be used actively unless realistic observation errors
are set.

The PWC errors are given by

0-PWC = A/(afe|PWCSaT)2 + O-tszrIC (61)

wherePWC,,; is the saturation PWC for the temperature profile of the backgraund, is the truncation of the
original BUFR report € 0.5 kg m? ), andt,, is the relative accuracy of the PWC observation, set to 0.15 (kept
in YOMTVRAD). PWC,,, is calculated usingq. (5.14)in a call toPPOBSAfrom SATEM with g replaced by

the saturation specific humidity,,, from FOQS:

B_dﬁ/esat(-r)
Osat = Rup P
1— IZRdry -1 Rdryesal(T)
Ry Ry P

vap

(6.2)

with eg,,, the saturation vapour pressure, computeBdpy(5.11)

6.4 OBSERVATION OPERATORS

The computation of radiances is initiated and controlled bytB& routine. Thicknesses, PWC and TPW are also
computed inHOP and SCAT data too are processedHO®P. The general structure ¢fOP has been detailed in
Subsection 2.5.2

6.4.1 Radiances

The routineHOP interpolates the model profiles of temperature, humidity and ozéney( , oand )tothe 43 RT
levels (T andq )and calls the interfaB&DTR to the RT codéRTTOV. The standard routingsPT(Section 5.6

of Chapter 5 ‘Conventional observational constraiftahd PPQ(Section 5.5 are used to carry out the vertical
interpolation, and they are called through the PPOBSA interface, as usual. Various radiance preparations have been
gathered in the new routinréRADP. In HRADP The model’s pressure at the surface height of the observation lo-
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cation (given in the report) is calculated, usihBPMER For the purpose of radiance calculatidng,, = T, and

J.m = Ga40- These quantities represent a very shallow layer of air near the surface and contribute little to the cal-
culated radiances—it was not considered necessary t8Rs&@MandPPRH2M(Section 5.7 in this context. In

order to make the radiance cost function continuoug it was necessary to ensufe thaty and approach
T,, andq,,, as the pressure on any of the RT levels approphgs . This is done in a sektivADP. More

details on the radiative transfer co&@ TOV can be found irEyre (1991), updated bpaundersand Matricardi

(1998), (available on-line pfle).

Some of the radiance channels are highly sensitive to the surface skin temperature, which is also not part of the
variational control variable when RTOVS data are used. It was found that the best results were obtained by replac-
ing the model'sT,; with those retrieved by 1D-Var. The 1D-Var retrieval is carried out in a calDi6AR from

HRETR, called fromTASKOB in the screening configuration only.

In the case of 1C, or ‘raw’ radiance data, as used since May 1999 (Mcbladlly 1999) 1D-Var is no longer re-
quired. The radiance processingHi®Pis similar for both 1C and RTOVS radiances, with the exception that sur-
face skin temperature is retrieved by 4D-Var at each 1C-field of view, if the switch LTOVSCYV is on (default is on).

In HOPthe observation array is searched for radiance data. The compressed ODB (after screening) contains only
those data to be used by the analysis. A list of existing channel numbers for each report is constructed. Model ra-
diances for exactly those channels are then requested from the RT—code, via the iRR@ffade. The routine

RADTR checks that the input model profile is within the valid range of the transmittance regression. It packets the
profiles into chunks of work of the appropriate maximum size for the RT—code (currently 65). The RT packet size
has been communicated to IFS in the caRTIGETUR The output is radiances for the channels requested.

The tangent lineadrf OPTL and the adjoinHOPAD follow the same pattern &$OR In both the TL and the adjoint

T and g have to be recomputed before the actual tangent linear and adjoint computations can start. The pointers
to the radiance data in observation array are obtained just as it was done in the direct code. The input gradient to
the adjoint is obtained as explainedSinbsection 2.5.2

6.4.2 Thicknesses

The pressures of layer bounds (top T, and bottom B) are found @R) by scanning the observation array for
thickness data. The geopotential for the top and the bottom of the layer are compute®@RGSEBEGHSection 5.3,
and the thickness is given by the differengge- @y

6.4.3 Precipitable water from SATEM and SSM/I

As for thicknesses, the pressures of layer bounds are found by scanning the observation array for TOVS PWC data.
For SSMI TPW, the top pressure is set to the top of the model and the lower pressure bpund is . The PWC for
the top and the bottom of the layer are computed, uBiR§WC(Section 5.5, and the layer PWC is given by the
differencePWC; —PWC; .

6.4.4 Scatterometer winds

In HOR, the observation array is scanned for SCAT data. Normally two ambiguous pairs of —componentand -
component observations are found at each SCAT location—with directions approximately 180 degrees apart. In
3D/4D-Var both winds are used and the ambiguity removal takes place implicitly through the special SCAT cost-
function, Eq. (2.8) in HJO (Stoffelenand Anderson1997 ; Gaffard et al. 1997). If however LQSCATT=.true.
(namjo, the normal quadratid, will b e used. In this case only the SCAT wind nearest the high resolution back-
ground will be used (which is determined in a sectioA©f).
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As PPUV10M(Section 5.7is used also for SCAT data (since cy18r6), the observation operator is exactly the same
as for SYNOP. SHIP and DRIBU winds. Thgy,  (surface roughness) comes from the coupled wave model. The

simpler logarithmic wind law can be used optionally under the switch LSCASUR=NFAMOBS (true by de-
fault).

In the adjoint SBURFACAD) there is a separate sectiorHibP for the calculation of th&l,, Jscat
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CHAPTER 7 Background, analysis and forecast errors

Table of contents

7.1 Nomenclature

7.2 Input and ‘massaging’ of background errors

7.3 Diagnosis of background error variances

7.4 Calculation of eigenvalues and eigenvectors of the Hessian
7.5 The Preconditioner

7.6 Calculation of analysis-error variances

7.7 Calculation of forecast error variances

7.1 NOMENCLATURE

The calculation of standard deviations of background errors is unfortunately an area where the use of inaccurate
nomenclature is widespread. For example, standard deviations of background error are almost universally referred
to as ‘background errors’. Likewise, standard deviations of analysis and forecast error are referred to as ‘analysis
errors’ and ‘forecast errors’. Although inaccurate, this nomenclature has been adopted in the following for the sake

of brevity.

A second source of confusion is that terms ‘background error’ and ‘forecast error’ are often used interchangeably.
This confusion has even crept into the code, where the buffer which contains the standard deviations of background
error is called FCEBUF. Such confusion is clearly unwise when discussing the calculation of forecast errors. The
following sections will describe the processing of error variances during a single analysis cycle. The term ‘back-
ground error’ will refer exclusively to the standard deviations of background error which are used in the back-
ground cost function. The background errors are an input to the analysis. The term ‘forecast error’ will refer to an
estimate of the standard deviation of error in a short-term forecast made from the current analysis. The forecast
errors are calculated by inflating an estimate of the standard deviation of analysis error, and are an output from the
analysis system.

7.2 INPUT AND ‘MASSAGING’ OF BACKGROUND ERRORS

Background errors for use id,,  are initialised by a calBidINFCE This is part of theJ,, set-up descibed in
Subsection 4.3.First, a call toNQGRIB is made. This returns a description of the data in the background error

file (filenameerrgrib ). COMMFCE1communicates the description of the data to other processors. After checking
some parameters and allocating arrays to hold the background errors, aRIBABGRIB reads the errors into a

local array. The errors are communicated to the other processors by aCalM&/IFCE2 Optionally (under the

control of LFACHR) the errors may be increased in the tropics at this stage. (This is not done by default, and is not
recommended.) The background errors may be on a regular latitude—longitude, or reduced Gaussian grid. They are
interpolated bilinearly in latitude and longitude onto the reduced Gaussian analysis grid by 8 GHIRCE
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At this stage, all processors have complete fields of background error. Each processor now allocates a buffer (con-
fusingly called FCEBUF) iryomfcebto hold background errors for those gridpoints which are local to the proc-
essor.

A large loop over variables follows. For each variable, the GRIB parameter code is examined. Depending on the
setting of LSTABAL, LRDQERR, and on the presence or absence of vorticity errors in the background error file,
the variable may be ignored (by cycling VARIABLE_LOOP) or an offset, IOFF, into the background error buffer

is calculated.

The background errors are interpolated onto the model levels by a GllNo-FCE. A number of variable-depend-

ent things now happen. First, geopotential height errors are converted to geopotential by multiplying by . Second,
wind component errors are converted to vorticity errors bgiéihocscaling. (Note that if vorticity errors are avail-

able in the file, then these will be used by preference. Wind component errors will be ignored.) Finally, if errors for
the unbalanced components of temperature, divergence, ozone or surface pressure are not present in the file, the
corresponding elements of the background error buffer are initialized to sensible values.

Background errors for specific humidity are read from the background-error file if the namelist variable LRDQERR
is set. Currently, it is usual to calculate specific humidity errors as a function of background humidity and various
other parameters. This is done by a calSfbBEP{'01B00Z000’), which in turn callSSUSHFCE The calculation

of background errors for specific humidity is describe8ubsection 4.3.4

Next, one of two routines is calle@&UMDFCEcalculates a vertically average ‘pattern’ of background error. This

is required if the background errors are to be represented as a product of a vertical profile of global mean error and
a horizontal pattern, and was the default with the ‘ald’ . The pattern is stored in FGMWNE. Note in particular
thatSUMDFCE:is called if horizontally-constant background errors are requested by setting LCFCE. In this case,
all elements of FGMWNE are set to one.

Alternatively, SUPRFFCEHis called to calculate global mean profiles of the input background errors. This is the
default. The profiles are stored in FCEIMN.

The final step in processing the background errors is ta&&GHPG'00000Y000). This, in turn, callSUSEPFCE

to modify the background errors. The modification takes one of two forms. If separable background errors have
been requested, the contents of the background error buffer are replaced by the product of the vertical profile stored
in FCEMN and the horizontal pattern stored in FGMWNE. Otherwise, the background errors for each variable at
each level are multiplied by the ratio of the corresponding elements of FCEMN and FCEIMN. The result of this
operation is to adjust the global mean profiles of background error to match those stored in FCEMN.

7.3 DIAGNOSIS OF BACKGROUND ERROR VARIANCES

The analysis errors are calculated by subtracting a correction from the variances of background error. The first stage
in the calculation is therefore to determine the background error variances. This is done by sulRGMIFES

which is called fronTCVAL. One of two methods may be employed, depending on whether NBGVECS is equal to,

or greater than, zero. In either case, the estimated variances of background error are stored in the analysis error
buffer, ANEBUF (inyomaneb.

If NBGVECS is zero, as it is by default, then background errors for variables which are explicitly present in the
background error buffer, FCEBUF, are copied into ANEBUF and squared. Errors for those variables whose back-
ground errors are defined implicitly through the change of variable are estimated using simple scaling of appropri-
ate explicit errors. This scaling is performed by a call$d SIGA

If NBGVECS is non-zero, then the variances of background error are estimated using randomization. This method
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assumes that the change of variable transforms the background error covariance matrix into the identity matrix. A
sample of NBGVECS vectors drawn from a multi-dimensional Gaussian distribution with zero mean and identity
covariance matrix is generated by calls to the Gaussian random number geGek&OEV. These vectors are
transformed to the space of physical variablesthyAVARIN. The transformed variables form a sample drawn
from the distribution of background errors. A call$d EPC'0AAO00A000’) transforms each vector to gridpoint
space and accumulates the sums of squares in ANEBUF. Finally, the sums of squares are divided by the number of
vectors by a call t&&CALEAE to provide a noisy, but unbiassed estimate of the variances of background error ac-
tually used in the analysis. The noise may be filtered by a cALIBGERR which transforms the variances to
spectral coefficients, multiplies each coefficientdmz(min((n/NBGTRUNC),l)T[/Z) , and then transforms to
grid space. The default is to filter with a very large value of NBGTRUNC. Effectively, the background errors are
simply spectrally truncated. It is highly recommended that the filtering is performed, since it prevents a grid-scale
numerical instability which occurs when the error growth model introduces spatial features which cannot be re-
solved by the spectral control variable.

The code allows two further configurations of the background error estimation. Neither is operational at present.
The two configurations are controlled by switches LBGOBS and LBGM (namvar), respectively. If LBGOBS=.T.
then the full set of tangent-linear observation operators will be applied to the NBGVECS random vectors, in model
grid point space. This is done in the routiB&0OBScalled fromVEC2GPE under SCAN2MTL. The TL routines

are required as the observation operators have been linearized around the background state. Theadsult is
ground errors in observation space They are stored and accumulated in ANEBUF and written out as grib-fields,
for geopotential, temperature, wind, humidity, total ozone, total column water vapour, TOVS and ATOVS radiance
channels, 10 metre wind and 2 metre temperature. If in addition LBGM=.T. then the randomized estimate of back-
ground error will be propagated in time, using the adiabatic tangent linear model, i.e. a CAllT®TL from
BGVECS The eigenvectors of the analysis Hessian (next section) are also propagated similarly in time, by a call
to CNT3TL from XFORMEYV, to obtairflow dependent background errors The number of model integrations
required by LBGM is NBGVECS+invtot, which is typically 50+100=150. If LBGM=.T. then the simplified error
growth model §ection 7.7 is not used. In that case the routine ESTSIG is used only to limit the error growth pro-
duced by the model to within 10 and 90 % of the climate variance for vorticity.

The background errors diagnosedb$VECSmay be written out for diagnostic purposes by setting LWRISIGB.
The errors are written by a callf{6RITESD (called fromCVAL)..

7.4 CALCULATION OF EIGENVALUES AND EIGENVECTORS OF THE HESSIAN

The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvectors of the Hessian
of the cost function. This is done using a combined Lanczos and conjugate-gradient algofithiBRAD, called

from CVAL under the control of LAVCGL. Note thafONGRAD requires that the cost function is strictly quad-

ratic. The tangent linear model and observation operators must be invoked by setting L131TL and LOBSTL.
(L131TL should be set even in 3D-Var.) Variational quality control must be disabled by unsetting LVARQCG and
LQSCATT must be set to request a quadratic cost function for scatterometer observations.

CONGRADstarts by transforming the initial control variable and gradient to a space with euclidian inner product.
Typically, this transformation is simply a multiplication by SCALPSQRT, but may also involve preconditioning
via calls toPRECOND The transformed initial gradient is normalized to give the first Lanczos vector. Depending
on the setting of LIOWKCGL, the Lanczos vectors are stored either on the MIO file associated with unit NWK-
CGL, or in the allocated array VCGLWK.

Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of the Hessian and the
latest search direction. This is calculatedXdsl = [|d|(0J(xy+ d/|d]) —0J (X)) . This finite difference formu-
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la is exact, since the cost function is quadratic.

The optimal step is calculated as the point at which the gradient is orthogonal to the search direction. The control
variable and gradient at the optimal point are also calculated. Once the gradient at the optimal point is known, it is
orthogonalized with respect to previous gradients, and the search direction and gradient for the next iteration are
calculated. The tridiagonal matrix of the Lanczos algorithm is initialized and its eigenvalues and eigenvectors are
determined by a call to the NAG routiR®@8JEF

The leading eigenvalue of the tridiagonal system is compared against the leading converged eigenvalue of the Hes-
sian matrix. This provides a sensitive test that the algorithm is behaving correctly. Any increase in the leading ei-
genvalue provides an early indication of failure (for example, due to a bad gradient) and the algorithm is
immediately terminated. The calculation is not aborted, since the test detects the failure of the algorithm before the
converged eigenvalues and eigenvectors become corrupted.

The new Lanczos vector is calculated by normalizing the gradient and the subroutine loops back to perform the
next iteration.

After the last iteration, the converged eigenvectors of the Hessian are calculated by\6atliigECS Note that

the criterion used to decide which eigenvalues have converged is relaxed at this §tdge-ta\v|| < g||v| , Where
€ is given by EVBCGL. The default vaule for EVBCGL &1 .The eigenvectors are pass€¢eQ&MEV, which
calculates the analysis errors. This part of the calculation is descriBedtion 7.6

Finally, CONGRADtransforms the control vector and gradient from the euclidian space used internally to the usual
space of the control variable.

7.5 THE PRECONDITIONER

CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the Hessian
matrix of the cost function. The preconditioner useB@NGRAD s a matrix of the form

L
I+ Z (ki = Dww] (7.1)
-1

where the vectorsy;  are orthogonal. The pdips,w;} are calculateBiEPPCMand are intended to approx-
imate some of the eigenpairs (i.e. eigenvalues and associated eigenvectors) of the Hessian matrix of the cost func-
tion. They are calculated as follows.

A set ofL vectorsy; ,isread in usifiEADVEC. These vectors are assumed to satisfy

B—ZuiuiTzPa (7.2)

whereB is the background-error covariance matrix, Bpd  is the analysis-error covariance matrix. Vectors which
meet this criterion can be written out from an earlier forecast error calculation by setting LWRIEVEC. The vectors
are transformed to the space of the control vector by call3-téVAR to give an approximation to the inverse of

the Hessian matrix
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L

- Z Lup(Lu) =)™ (7.3)

1=1

(Here,L denotes the change-of-variable operator implement€tHby AR .)

Let us denote by the matrix whose columns are the vectprs . A sequence of Householder transformations is
now performed to transforrhU  to upper triangular. Let us represent this sequence of Householder transforma-
tions by the matrixQ . The@QLU s upper triangular, which means (@t )(QLU )T is zero except for an

L x L block in the top left hand corner.

Itis clear that(QLU )(QLU )T has only. non-zero eigenvalues. Moreover, the non-zero eigenvalues are the ei-
genvalues of thd x L block matrix, and the eigenvectoré@ifU )(QLU )T are the eigenvectors of the block
matrix, appended by zeroes. These eigenvalues and eigenvectors are calculated by a call to the NAG routine
FO2FAF.

Now, sinceQ is an orthogonal matrix, we h@@T = | . So, we may ®t€7.3)as

1-Q"(QLU)(QLY) Q= (3™ (7.4)
Let us denote the eigenpairs(@LU )(QLU )T by;.v;} . Then we may \Edteg(7.4)as

L
T LN w1
- z p(QV)(QV) =(3") (7.5)
1=1
The orthogonality ofQ and the orthonormality of the eigenvectgrs , means that the v@cTqus are orthonor-
mal. They are, in fact, the required vectars, of the preconditioner matrix.

InvertingEq. (7.5)gives

| — Z éwiwin" (7.6)
1

Definingy; = 1—1/p; gives the required approximation to the Hessian matrix.

The preconditioner vectors are sorted in decreasing ordgr of , and all vectors forykidh are rejected. These
vectors cannot be good approximations to eigenvectors of the Hessian matrix, since the eigenvalues of the Hessian
matrix are all greater than or equal to one. A final refinement to the calculation is to reduce large valpyes of  to a
maximum of 10. This was found to be necessary in practice to avoid ill-conditioning the minimization.

The numbersy; are stored in RCGLPC. The vectofs,  are stored in VCGLPC.

Application of the preconditioner is straightforward, and is performed by subroRfteCOND This routine can
also apply the inverse, the symmetric square root, or the inverse of the symmetric square root of the preconditioner
matrix. Application of the latter matrices relies on the observation that if
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M =1+ (1 — D)w,w, (7.7)

with orthonormalw; , then the expressions tart M2

1/y;, Ju; and1/(,/i;) respectively.

1/2

awd result from replagjng Eqir(7.7)by

7.6 CALCULATION OF ANALYSIS -ERROR VARIANCES

The eigenvectors and eigenvalues of the Hessian matrix calculat€DbyGRAD are passed t&FORMEYV,
which uses them to estimate the analysis error variances. If preconditioning has been employed, then the eigenvec-

tors and eigenvalues provide an approximation to the preconditioned H(M§%éﬁ] M2 , of the form
K
MY 23M V2= + Z (A =1)vyv; (7.8)
1=1
The approximation is equivalent to setting to one all but the lealing  eigenvalues of the preconditioned Hessian.
The first step is to undo the preconditioning. Multiplying to the left and right E)/f , gives
K
=M + Z O —D)(MY A MY 2T (7.9)
1=1

Substituting for the preconditioner matrix frasg. (7.7) gives the following

I =1+ Zsis;iT (7.10)

where

O
_ B(Hi—l)l/zwi fori=1...L

S =
1/2, ,1/2
Jn-1)Ym

(7.11)
Vi-L fori=L+1...L+K

Operationally, preconditioning is not used. Howe¥&tORMEV makes no particular use of this fact. It simply sets
L to zero inEgs. (7.10and(7.11)

The first step ilKFORMEYV is to calculate the vectoss . They are stored in VCGLWK.

The next step is to invert the approximate Hessian matrix defin&d|b{7.10) Let S be the matrix whose columns
are the vectors; . Then, applying the Shermann—Morrison—-Woodbury formula, the inverse of the approximate
Hessian matrix is
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3 t=1-s(1+s"s) 'S’ (7.12)

The matrix(l + STS) is formed and its Cholesky decomposition is calculated using the NAG routine FO7FDF. This
gives a lower triangular matri€  such that

It =1—(schsch’ (7.13)

The matrix(SC_l) is calculated by back-substitution.

The final stage in the calculation of the analysis errors is to transform the columns of the (Salﬁlg to the
space of model variables by appplying the inverse change of variable)/ARIN. This gives the required ap-
proximation to the analysis error covariance matrix

P,=B-WV' (7.14)

whereV = L7'sc™ , and wheré - represents the inverse of the change of variable. The coluvhns of  may be
written out (e.g. for diagnostic purposes, or to form the preconditioner for a subsequent minimization) by setting
LWRIEVEC. The columns o/  are then transformed to gridpoint space, and their sums of squares (i.e. the diag-
onal elements oV " in gridpoint space) are subtracted from the variances of background error which were stored
in ANEBUF before the minimization by GVECS

The analysis errors are calculated as the difference between the background errors and a correction derived from
the eigenvectors of the Hessian. If the background errors are underestimated, there is a danger that the correction
will be larger than the background error, giving negative variances of analysis error. This is unlikely to happen if
the background errors are estimated using randomization, or for variables whose background errors are explicitly
specified in the background cost function, but is possible for variables such as temperature whose background er-
rors are not explicitly specified. To guard against this eventuality, if NBGVECS is zero, then the variances of anal-
ysis error for variables whose background errors are not explicit are estimated by applying a scaling to the explicit
variables by a call t&STSIGAfrom CVAL. The variances are then converted to standard deviations and written

out by a call taVRITESD.

7.7 CALCULATION OF FORECAST ERROR VARIANCES

The analysis errors are inflated according to the error growth modehwaifarvi (1995) to provide estimates of
short term forecast error. This is done by a calEf®TSIG There is also an option to advect the background errors
for vorticity as if they were a passive tracer. The advection is perform@d¥BIGA.

The error growth model is

d
E‘t? = (a+bo) _EG-E (7.15)

Here,a represents growth due to model errtrs, represents the exponential growth rate of small erqqys, and
represents the standard deviation of saturated forecast errors.

The saturation standard deviations are calculateds times the standard deviation of each field. The standard
deviations have been calculated for each month from the re-analysis d&tas&tlGreads these climatological
error fields from file ‘stdev_of_climate’ by callifrgEADGRIB, and interpolates them in the horizontal and vertical
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usingSUHIFCEand SUVIFCE. The climatological errors may also be artificially increased in the tropics under

the control of LFACHRO. This is the default, and is recommended in preference to using LFACHR, since it means
that the forecast errors that are archived, and are used to screen observations, are closer to those used to formulate
the background cost function. If climate standard deviations are not available for any field, they are estimated as
10 times the global mean background error for the field.

The growth due to model error is set to 0.1 times the global mean background error per day. The exponential growth
rate,b , is set to 0.4 per day.

The error growth model is integrated for a period of NFGFCLEN hours. The integration is done analytically using
the expression given bavijarvi (1995). Two precautions are taken in integrating the error growth model. First,
negative analysis error variances are set to zero. Second, the growth rate due to model error is limited to a sensible
value with respect to the saturation errors. This was found to be necessary to prevent numerical problems when
calculating specific humidity errors for the upper levels of the model.

ESTSIGoverwrites the contents of ANEBUF with the estimated variances of forecast error. The variances are con-
verted to standard deviations and written out\tiRITESD.
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CHAPTER 8 Gravity-wave control

Table of contents
8.1 Introduction
8.2 Normal-mode initialization
8.3 Computation of normal modes
8.3.1 Vertical modes
8.3.2 Horizontal modes and help arrays
8.4 Implementation of NMI
8.5 Computation of
8.6 Digital filter initialization

8.7 Implementation of DFI as a weak constraint in 4D-Var

8.1 INTRODUCTION

In 3D-Var, gravity-wave control is achieved via the techniques of normal-mode initialization (NMI), in 4D-Var a
weak constraint digital filter is used. The construction of a high-resolution analysis by combining a high-resolution
background with increments defined at lower resolution makes direct use of an incremental form of nonlinear NMI,
asinChapter 1 ‘Incremental formulation of 3D/4D variational assimilation—an overvien3D-Var andChapter

3 ‘4D variational assimilation’ Eq. (3.3pr 4D-Var. There is an initialization step in creating the low-resolution
background field, seSection 2.2 Computation of the penalty terd,  (sEe. (1.1) is based on NMI methods

for 3D-Var, on DFI for 4D-Var.

Section 8.2provides a brief overview of NMI techniques, together with references to scientific papers in which
further details can be foun8ection 8.3lescribes the computation of normal modes and related aBagton 8.4
documents the implementation of nonlinear NMI in 3D- and 4D-Var, w@#etion 8.5describes the computation

of J.. Section 8.@jives an overview of digital filter initialization technigues whaection 8. ®escribes its imple-
mentation.

8.2 NORMAL -MODE INITIALIZATION

If the model equations are linearized about a state of rest, the solutions can (with a certain amount of arbitrariness)
be classified into ‘slow’ (Rossby) and ‘fast’ (gravity) modes. This classification defines two mutually orthogonal
subspaces of the finite-dimensional vector space containing the moded state . Thus, the model state can be written
as

X = Xg+Xg (8.1)

wherexg is the ‘slow’ component and;  the ‘fast’ componeiiear NMI consists of removing the fast com-
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ponent altogethexg = 0 ). Since the model is nonlinear, a much better balance is obtained by setimgethe
cy of the fast component to zemd = 0 ); it is this balance condition wiaalinearNMI seeks to impose.

Nonlinear NMI was first demonstrated Bjachenhaue(1977), in the context of a spectral shallow-water model.

For a multi-level model, the first stage in the modal decomposition is a vertical transform; each vertical mode then
has its own set of horizontal slow and fast modes (for the shallower vertical modes, all the corresponding horizontal
modes can be considered as ‘slow’). In the case of a multi-level spectral model using the ECMWF hybrid vertical
coordinate the details may be found in the reporisrgen(1987), which also describes techniques for taking into
account forcing by physical (non-adiabatic) processes and the diurnal and semi-diurnal tidal signals. Although
these options are still coded in the IFS, they are no longer used operationally at ECMWF and will not be described
in this documentation.

Implicit normal mode initialization Tempertoril988) is based on the observation that, except at the largest hori-
zontal scales, the results of NMI can be reproduced almost exactly without computing the horizontal normal modes
at all. The calculation reduces to solving sets of elliptic equations. In the case of a spectral Tesdpéton

1989), these sets of equations are tridiagonal in spectral space. The IFS code includes the option of ‘partially im-
plicit NMI’, in which the initialization increments are computed using the full ‘explicit’ NMI procedure for large
horizontal scales while the remaining increments at smaller horizontal scales are computed using the simpler im-
plicit procedure.

8.3 COMPUTATION OF NORMAL MODES

8.3.1 Vertical modes

The vertical normal modes depend on the number of levels in the model and on their vertical distribution. They also
depend on the choice of reference temperature SITR (assumed isothermal) and reference surface pressure (SIPR).
The vertical modes used by the initialization routines are also used in the semi-implicit scheme for the forward in-
tegration of the model. The computationdf a®d  also uses the vertical normal modes, but for these purposes
different values of SITR and SIPR may be selected. Thus the vertical modes are computedidihYiN and
SUSINMI, the latter being used especially in 4D-Var where it is necessary to alternate between applications using
different choices of SITR and SIPR. The vertical modes are computed by first cAllIBYIAT to set up a vertical
structure matrix and then calling an eigenvalue/eigenvector routine EIGSOL (at the end of SUDYN, it calls routine
RG in the auxiliary library). After reordering and normalization, the eigenvectors (vertical modes) are stored in the
matrix SIMO, while the corresponding eigenvalues (equivalent depths) are stored in the array SIVP. The inverse of
SIMO is computed and stored in SIMI.

8.3.2 Horizontal modes and help arrays

The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral truncation NX-
MAX. For ‘explicit’ NMI, NXMAX is equal to the model’s spectral truncation NSMAX. Normally, ‘partially im-

plicit NMI" is chosen by setting the switch LRPIMP to .TRUE. In this case the explicit NMI increments are used
only up to spectral truncation NLEX (21 by default) but in order to blend the explicit and implicit increments
smoothly, explicit increments are computed up to a slightly higher resolution. By default,
NXMAX =NLEX +5 .

For most applications of the NMI procedure in the operational suite, it is considered that the larger horizontal scales
are best left uninitialized (they include, for example, atmospheric tidal signals and large-scale tropical circulations
driven by diabatic processes). To cater for this option there is another logical switch, LASSI (‘adiabatic small-scale
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initialization’), which sets to zero all the initialization increments for total wavenumbers up to NFILTM (= 19 by
default). Since only the small-scale increments are used, the NMI can be completely implicit: NLEX is set to 0 and
there is no need to calculate the ‘explicit’ horizontal normal modes.

All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical modes. By default,
NVMOD =5.

The horizontal modes are computed by callBigMODE3 In turn, SUMODE3Ecomputes the explicit modes and
their frequencies whilSUMODE3Ilcomputes the ‘help’ arrays required to invert the tridiagonal systems encoun-
tered in implicit NMI.

8.4 IMPLEMENTATION OF NMI

Nonlinear NMI is invoked by callindNNMI3. Model tendencies are computed by callBgEPOto perform one
(forward) timestep. The tendencies are then suppliéd@3DPRJwhich computes the required increments, using
the ‘explicit’ (Machenhauer) or the ‘implicit’ scheme (or both, after which the results are merged). The increments
are added to the original spectral fields and the process is iterated NITNMI (by default 2) times.

8.5 COMPUTATION OF J,
In the notation oEq. (8.1) the penalty ternd . is defined by

3. = g|(x=%p)g|? (8.2)

wheree is an empirically chosen weighting factor, is the current state of the control variabkg and is the back-
ground. The nornj H2 is based on a weighted sum of squares of spectral coefficients. Only the first NVMOD ver-
tical modes are included in the evaluatior{&?®).

J. is computed by calling the routifreOSJC Control passes througtCCOMPto NMIJCTL, whereJ . is eval-
uated by callingSTEPOtwice, then projecting the differences in the tendencies on to the gravity modes via
MO3DPRJ and finally computingl,  iNMICOST.

8.6 DIGITAL FILTER INITIALIZATION

Digital filter initialization consists in removing high frequency oscillations from the temporal signal represented
by the meteorological fields. A general description of digital filter initialization can be fouhginoh (1993). It

can be implemented as a strong constraint by filtering the model fields at the beginning of each forecast or as a
weak constraint as describedGauthierand Thepaut (2000).

Time oscillations exceeding a cut-off frequerwy = (2m)/ T, can be filtered by applying a digital filter to a time
seriesf, = f(t) fort, = kAt At being the timestep. This proceeds by doing a convolutib(t)f with a step
function h(t) so that

00

fohity) = thfN_k

K = —0
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The step functiorh,  is found to be

_ sin(w:kAt)
k™ kTt

In practice, the convolution is restricted to a finite time interval of time $pan . We camyrite2M At and

M
fehty = z oy fy

k=-M

with a, = —h_, . This truncation introduces Gibbs oscillations which can be attenuated by introducing a Lanczos
window which implies that the weights,  are defined®gs = -h_ W, with

sin((km)/ (M + 1))

Wi = =k M+ D

An alternative which is used at ECMWF has been proposed by Lynch to use a Dolph-Chebyshev window in which
case

M
1
Wi = 2M + 1 1+ 2rmz_O-I-2|\/|(X0(3059m/2)CosmGk

wherel/x, = cos(mAt)/1, ,1/r = cosh(2Macostx,) 8, = (k2m)/M andr,,, isthe Chebyshev polyno-
mial of degree2M . The time span of the window is chosen sa {frat M At

8.7 IMPLEMENTATION OF DFI AS A WEAK CONSTRAINT IN 4D-VAR

In the context of variational data assimilation, the digital filter is used as a weak constraint. A penalty term is added
to the cost function and replaces the NMI based penalty term.

During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital filter is applied to
the increments. This gives afiltered increment valid at the mid-point of the assimilation window (array RACCSPA).
The value of the non-filtered increment valid at the same time is also stored (array RSTOSPA).

The weak constraint term which is added to the cost function is the moist energy norm of the departure between
those two states times a weight factor. All these computations are conducted in spectral space and applied to the
spectral fields. The norm of the departure is computed in two steps. In EVJCDFI, the difference between RACC-
SPA and RSTOSPA is computed and summed in array RSUMJCDFI for each wavenumber. Then, in EVCOST, the
contributions from each wavenumbers and variables are added to obtain the final value of the penalty term.
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CHAPTER 9 Data partitioning (OBSORT)

Table of contents

9.1 Introduction

9.2 Data flow with the analysis components
9.3 Observational data partitioning

9.4 Data partitioning scheme

9.5 The parallel data flow of the OBSORT
9.6 OBSORT calling tree

9.1 INTRODUCTION

The observational data partitioning scheme has been encapsulated into a separate module called OBSORT. The
program OBSORT redistributes the observational data across the available processors. Data supported must be ei-
ther in the CMA and/or BUFR formats. As a result the subsequent steps in the general analysis data flow will be
well load-balanced with respect to observation handling and the total elapsed time for the analysis is reduced. The
facilities offered by the OBSORT can be used as a stand-alone executable, or used via callldg ®@SORT
subroutine. The latter form is normally used, and is found in the OBSPROKECMA and FEEDBACK) and
IFS/Screening. We have five different modes of the OBSORT:

. Mode 0, submodulB8UFRsort Partitioning and splitting of the BUFR data among the available
processors (no geographical order, though).

. Mode 1, submodule CMA+BUFRsofGeographical re-ordering of the CMA data in conjunction
with the counterpart BUFR data; it is consequently called the CMA-data-driven BUFR sort.

. Mode 2, submodule CMAsor&eographical re-ordering of the CMA data.; it also copes with the
virtual-processor case where fewer processors than are required by the main analysis can produce
more CMA files than the actual number of processors used by the OBSORT.

. Mode 3, submodul&/ATCHUPR. Matching up and updating the ECMA data present in one
geographical distribution with the CCMA data present in another distribution.

. Mode 4, submodulg¢ MATCHUR The same as MATCHUP, but for virtual processors. More than
NPROCECMA files are brought back to thBIPROCiles in the same order as the BUFR
counterparts were left after the MAKECMA.

9.2 DATA FLOW WITH THE ANALYSIS COMPONENTS

This section describes OBSORT as a part of the analysis pre- and postprocessing (OBSPROC) and the main anal-
ysis; it illustrates why we need the OBSORT. The following discussion applies girthke-processoimplemen-

tation only. In a later section, where the module OBSORT is introduced, the parallel aspects are covered in more
detail.

Data-assimilation cycle (sd€g. 9.1) starts by retrieval of BUFR data. Currently there are four different BUFR
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files involved: conventional observations, or GTS, and TOVS, SCAT and SSMI satellite observations. Files are pre-
pared for a 6-hour data assimilation period both in the 3D- and 4D-VAR contexts. In the near future BUFR files for
12- and even 24-hour periods will be prepared for the 4D-VAR purposes. Storagewise BUFR files occupy from a
few megabytes to tens of megabytes, depending on a chosen BUFR compression scheme.

In the first stepMAKECMA picks up prepared BUFR files and decodes them. All, except formally erroneous ob-
servational data, are transformed to the CMA format and written to a so-called Extended CMA-file (ECMA). Fur-
thermore, the unpacked BUFR data are also written into another BUFR-format-conforming file, where the high
BUFR compression rate is relaxed. The output BUFR file maintains the same order of the observations as its coun-
terpart CMA file, which in turn contains only about 80% of the information that is present in the BUFR file. The
reduction in information content is the main reason for creating a new BUFR file. However it should be empha-
sized that the BUFR data, as such, are not used in the main analysis.

(BUFR) - MAKECMA L s (BUFR)

ECMA—

}

SCREENING

CCMA)—

}

MINIMIZATION

(Fields) R

MATCHUP

(ECMA) * Y
FEEDBACK

(BUFR) -

FORECAST

Figure 9.1 Dataflow in observation processing at the ECMWEF on a single processor implementation.

In the next step, the ECMA file is passed to the process for screening the observations; this rejects undesirable ob-
servations, using information from the meteorological fields within the IFS. At the start-up time the current state
of the atmosphere is known in terms of the observations, and in terms of tha pesti estimate of the atmos-

phere, together with the estimate of its uncertainty (or error). The quality of the observations is checked against a
6-hour forecast valid at the analysis time. The screening scheme picks up the best set of observations by rejecting
erroneous, duplicated, blacklisted etc. observations, so that they are omitted from further processing.

All the observations passing this test are written to a so-called Compressed CMA-file (CCMA); this conforms to
the CMA format, but occupies much less space—about one tenth of the original ECMA. The ECMA file is also
updated, since there is a need for data monitoring, even of the rejected observations.
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The observations for the actual data assimilation (the minimization) are passed through a CCMA file. The file is
read into the memory in one large chunk to make subsequent operations on the data as fast as possible. Interpolation
and extrapolation from the forecast-model grid-point space to the observation space can take place in a flexible
manner, without the need to carry out complicated data conversions that were a feature of the older systems.

The minimization provides the initial-condition fields for the subsequent global forecast. It also updates the CCMA
file with the observation departures from the analysis fields. At this point it is possible to start feeding information

back to the archive, but in practice this step is postponed until the time-critical forecast-model run has been fin-
ished.

The subsequent observation-processing step to the minimization is Rel€@HUP; this is part of the OBSORT
library, that is described iBection 9.3The purpose of MATCHUP is to read the latest CCMA and ECMA data
and return the extra information found in the CCMA file back to the ECMA file. This enables the data, that existed
only as areduced set after the minimization, to be included within an ECMA set.

When the ECMA file is up to date, the last part of the process starts with FEEDBACK, the purpose of which is to
encode the ECMA file back into a highly compressed BUFR format. It also separates data back into the groups of
GTS, TOVS, SCAT and SSMI and retains the original input time periods (typically 6 hours). For this purpose the
FEEDBACK needs not only the updated ECMA but also the (semi-)original BUFR file fromil &ki€ECMA out-

put. This is necessary because this BUFR file contains some information not present in the ECMA. After FEED-
BACK has run the resulting BUFR files are ready for archiving.

9.3 OBSERVATIONAL DATA PARTITIONING

Due to the high data volume and the time-critical scheduling in operations, it is necessary to parallelize all obser-
vation-processing components. Most of the modules described in the section about the data flow rely on availability
of large memory, since the CMA data are brought into core for efficient data-management reasons. This eliminates
the need for slow random-access I/O operations when the contents of a particular observation message are needed.

The fact that there is always a limit for the maximum available memory per processor, forces us to look at parallel
processing almost immediately. At the time of writing, a typical set of the CMA data for a 6-hour data assimilation
period consumes a half gigabyte of disk space (or 100-200 MB if packed CMA format is used; see below). When
brought into the memory the total CMA array size is often doubled due to the data the shuffling algorithm (see the
section on the reshuffling), for which both incoming and outgoing CMA data are kept in memory. Also, some non-
neglible in-core space is needed to hold certain global table information.

Disk-space consumption by the CMA files is greatly reduced by the introduction of various packed CMA formats.
The implementation of the packing is such that when CMA data are written out they are packed as a part of the I/
O process using novel vectorizable packing algorithms. The reverse naturally holds when reading the data. As a
result, file-size reductions, from 50 to 85%, are not uncommon with neglible cost in the ‘on-the-fly’ packing/un-
packing.

Although the screening module effectively reduces the size of the CMA data by an order of magnitude, it is that
very module which requires maximum amount of in-core memory as well as disk-space time during the course of

a data-assimilation cycle. Fortunately the screening is a part of the IFS and, thus, parallelization in grid-point
space has been present there from day one. Some additions apart from the OBSORT are needed, though, to accom-
modate full handling of observational data by the IFS.
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9.4 DATA PARTITIONING SCHEME

In the parallel implementation it might, at first sight, look feasible to split up observational data set evenly (and
geographically randomly) among the available processors. However, there are considerable differencies in the dis-
tribution of observations over the globe, and thus certain regions might be more ‘expensive to process’ than others,
because of the variable amount of floating-point operations per observation type when calculating contributions to
the cost function in the minimization.

Furthermore, it would be convenient to have approximately the same geographical distribution of observations as

in the grid-point space in order to reduce communication between processors during the interpolation and extrap-

olation phases. This has led us to assign an observation-type-dependent weight for each CMA report, and to have
the same processing grid (of size NPROCA times NPROCB) as the main analysis scheme.

Figure 9.2 A typical split of the globe containing observational data, produced by the OBSORT for 2x3
processor grid. Each box contains approximately the same amount of observations (in a weighted sense). A
number denotes the processor identifier to which observations in a particular box belong. Partition boxes are

different from those used in the grid-point calculations.

We have found the following geographical partitioning of observational data works well, and is practical for obser-
vation handling (seBig. 9.2):

1) Set the origin for observational-data space on the Greenwich meridian, since this obeys the
convention chosen in the GRIB-field origin definition.

2) Choose NPROCA to be the number of latitudinal bands from north to south, and NPROCB to be the
number of longitudinal boxes within each latitude band.

3) Set the number of processors to NPROC = NPROCHPROCB.

4) Read the local CMA files and build up a table of the observational data that contains the
geographical and processor location, the unique sequence number, the time stamp, the 4D-VAR
time slot, the relative weight, the pointers to local CMA data etc., for each observation

5) Communicate the local table, and sort locally, the resulting global table with respect to time slot
(4D-VAR) and time stamp, and unique sequence number.
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6) For each time slot, sort the locally available global-information table with respect to latitude (from
north to south). Subdivide the table into the suitable parts, so that every latitude band contains about
the same amount of observations in a weighted sense.

7 Continue in similar fashion for each latitude band to resolve the final longitudinal boxes.

8) Assign one box for each processor and update the destination-processor information (the processor
where each particular observation ends up) into the global table.

9) Shuffle the actual CMA data, based on the information in the global table. This step involves
essentially all-to-all communication, where every processor (very likely) sends a few CMA reports
to every other processor (including itself, but via local copies rather than by message passing). An
efficient way to communicate data is to use parallel data-transfer channels with a tournament table-
like approach, where each processor communicates with each other processor in turn forming a
parallel pattern of communication.

Because of inadequate load balancing in the main analysis process, the requirement for strict geographical parti-
tioning has recently been relaxed. In the enhanced scheme, the already resolved partitions are broken up by reas-
signing the location of the observations found in a processor box to a new processor. This remapping is done in
round-robin fashion where, for example, the observations 1, 2, 3, 4 in the box#1 are destined to the boxes 1, 2, 3,
4, respectively.

9.5 THE PARALLEL DATA FLOW OF THE OBSORT

In the parallel implementatiori{g. 9.3) we have to revise the dataflow diagram described in a previous section,
which was meant only for the single-threaded execution. Program mobiidé&ECMA, SCREENING and
FEEDBACK had to be tied to OBSORT in order to run them in parallel with observations. It turns out, that a call
to the OBSORT library entry point is the only notable change in introducing parallelism in the observation process-
ing process.

Read Read Read
CMA#1 CMA#2 CMA#3

/
Communicate
global table

Y \
Sort

d

Sort Sort
table table table
\ Y /
Shuffle
CMA-data
/ y \
Write Write Write
CMA#1 CMA#2 CMA#3

Figure 9.3 Dataflow in observation processing in the parallel scheme.

77
IFS Documentation Cycle CY23r4 (Edited 19 September 2003)



9 Part Il: ‘Data assimilation’
A\~

Before going on, it is advisable to explain some internal details in re-ordering (or shuffling) of the observational
data. We concentrate on CMAsort, where no BUFR data are present. The extra cost of having BUFR data in
CMA+BUFRsort, would not alter the generality expressed here, though.

BUFRsort
/- MAKECMA
CMA+BUF$ort

Y

/[I-SCREENING
CMAsort

l

MINIMIZATION

Matchup
FORECAST //~-FEEDBACK

BUFRsort

Figure 9.4 The five main stages when redistributing CMA data among processors.

Fig. 9.4shows the five main stages in the geographical data re-ordering. Firstly, every processor reads the local
CMA-files independently of each other, and establishes local tables that the contain the necessary information for
the subsequent data shuffle. The second stage makes these tables global through defining the all-to-all communi-
cation steps; thus every processor obtains a local copy of a potentially large table. As a result, every processor
knows all about the initial distribution of observations among the other processors. The third phase re-orders the
global tables (now physically local) independently on each processor. In the fourth step the actual shuffle of CMA
data takes place. This is also an all-to-all operation. In the worst case scenario, every CMA report would end up in
a new owner processor. Finally, the new distribution is written out, again one CMA file per processor indepedently
of the others.

A recent change to OBSORT has been to enable more CMA files to be written than processors were available to
OBSORT. This so-called virtual-processor approach allows us to release more resources from the computer system
to the main analysis running, possibly with considerably larger number of processors than OBSORT.

The /0O, in OBSORT, to the CMA file is done in two chunks. Firstly for the DDR sections, and secondly for the
large bulk-data part. All the 1/0 uses pre-allocation and buffered 1/O in addition to a possible ‘on-the-fly’ CMA
packing. Wherever possible the memory-resident file system is used extensively. Furthermore, a so-called concate-
nated CMA file has been introduced that contaiigpacked) CMA files together in one file. This option has re-
duced the 1/O contention.

Prior to the actualAKECMA , we wanted to add functionality that redistributes the few input BUFR files among
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the available processors. Despite an extra step, it boosts overall execution performance of the parallel MAKECMA,
since all processors—not only the first few—uwill enter into the BUFR data decoding phase. Currently each proc-
essor tries to read in one or more BUFR files in a cyclic fashion. If there were fewer files than processors, then only
the few first processors would get a single file; others would remain idle for a while. For each BUFR message, an
artificial latitude and longitude is assigned. Also, the basic contents of a BUFR message is checked to get a proper
weight assigned. After this, the BUFR data can be partitioned in a manner of the ‘geographical’ re-ordering ex-
plained earlier. Despite the tricks involved, this method gives good results and offers nearly maximal re-use of the
existing source code in OBSORT.

After receiving re-distributed BUFR dataJAKECMA continues to perform its decoding functions, but now in a

fully parallel mode. Every MAKECMA process(or) unpacks and writes both a new CMA report and the counter-
part BUFR message to a temporary file, one by one. However, the geographical ordering is not optimal for the
screening purposes. Therefore, the OBSORT needs to be consulted and a CMA-data shuffle followed by a CMA-
driven BUFR sort (i.e. CMA+BUFRsort) will be performed as a final substep in MAKECMA.

The screening proceeds in parallel mode by reading local ECMA files, one per processor, and performing its data
validation functions. Once the resulting CCMA data set is ready, it may occur that in some of the processors
CCMA data has almost vanished due to different kinds of rejections. Therefore, it is necessary to create new geo-
graphical distribution of observational data, now applied to the CCMA data. The new reordering is done as a final
step in the screening.

There is a special function present in the OBSORT for post-adjustment of clustered data. It was found that with a
different number of processors more data got rejected in one case than in another one. Certain observation types,
like AIREPs, tended to cluster around partitions’ boundaries. In the first case, a processor owned all the correspond-
ing observations, since there were no partition boundaries in the neighbourhood; in the second case an AIREP clus-
ter got effectively split among two adjacent processors. For reproducibility reasons, it was necessary to check the
existence of such clusters and to move the clustered observations completely into the lowest numbered processor
around the processors’ boundary

For a better parallel performance in the minimization it is crucial to obtain a good load balance. Therefore, the OB-
SORT’s unique feature that assigns weights for each observation report plays an important role. There are a few
built-in weight functions in OBSORT. Depending on the contents of the observation, a different weight gets as-
signed. The weight functions are controlled by an external input file, where separate weight coefficients can be as-
signed for each observation type.

Finally, it was soon clear, that ATCHUP could be integrated inthe FEEDBACK. As a resMIRTCHUP is per-

formed quickly as the first parallel task in FEEDBACK. The updated local ECMA data is then passed back in a
form of CMA array to the actual FEEDBACK which encodes information back to a highly compressed BUFR for-
mat. Furthermore, the FEEDBACK benefits also from OBSORT's built-in feature to collect BUFR (or CMA) data
into a single processor. This way we were able to get from the final, but still distributed, BUFR data back to the
non-distributed and ready-to-archive BUFR data in a rather elegant manner. And the fact that the original BUFR-
message order was not necessary (or even possible ?) to be preserved, has simplified the programming.

To accomodate the virtual-processor approach, a recent chahf€li6HUP has been introduced to perform so-
called virtual MATCHUP (or VMATCHUP) prior to the genuine MATCHUP. This option enables us to bring the
full set of ECMA files used in the main analysis back to fewer ECMA files, and to preserve the same CMA report
order as in the BUFR message counterparts after MAKECMA.
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9.6 OBSORTCALLING TREE
LIB_OBSORT

SWAP_FWD
INIT_COMMON

SUNUMC
SETCOMBU
SUBUOCTP
SETBUFR
BUPRQ
SETCOMCM
SUCMOCTP
SUCMA

CHECK_NAMELIST
BUFRSORT

EXPAND_STRING
DUMP_NAMELIST
PRECHECK
. PRECHECK_CMA_ARRAY
. SYNC_TIMESLOT_DATA
. GLOBAL
. INIT_COMMON
. GEN_TIMESLOT_DATA
. UPDCAL2
. REF_TIME
. PRECHECK_CMA
. CMA_ATTACH
. CMA_INFO
. CMA_GET_DDRS
. SYNC_TIMESLOT_DATA
. CMA_DETACH
. PRECHECK_BUFR_ARRAY
. UTIL_NUMPROD_ARRAY
. PRECHECK_BUFR
. OLDBUFR_OPEN
. UTIL_NUMPROD
. OLDBUFR_CLOSE
GLOBAL
READ_BUFR
. UTIL_PRODLENGTH
. OLDBUFR_OPEN
. OLDBUFR_READ
. OLDBUFR_CLOSE
. GLOBAL
MAKESEQNO_OBSORT
. PRECHECK
. FILL_SEQNOLIST
. READ_BUFR
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CRACK_BUFR_HDR
. BUS012
. BUFRSORT_PREPARE
. CRACK_BUFR_HDR
. OBS_SORT
. COLLECT
. KEYSORT
. REF_TIME
. CHECK_DUPLICATES
. GLOBE_SPLIT
. KEYSORT
. MERGE_CLUSTERS
. BUFR_TRAFFIC_INFO

. IFS_WRITE
. GLOBAL
. .BUFR_SHUFFLE

. SETUP_COMM_DATA
. BUFR_COPY_BUFFER
. WRITE_BUFR
. OLDBUFR_OPEN
. UTIL_ALLOC_IOBUF
. OLDBUFR_WRITE
. OLDBUFR_CLOSE
. BUFR_FORM_EXPLIST
. GEN_TIMESLOT_DATA
. MAPSORT
. EXPAND_STRING
. DUMP_NAMELIST
. PRECHECK
. READ_CMA
. CMA_ATTACH
. CMA_GET_DDRS
. . CMA_BIN_INFO
. CMA_READ
. CMA_CLOSE
. GLOBAL
. REF_TIME
. SORT_PREPARE
. REF_TIME
. GLOBAL
. OBS_SORT
. VMAPSORT
. EXPAND_STRING

. . VCMA_TRAFFIC_INFO
. GLOBAL
. IFS_WRITE

. OPTIMAL_MSGLEN
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UTIL_IGETENV
. GLOBAL
«  VCMA_SHUFFLE
. SETUP_COMM_DATA
. DUMP_INFO
. CMA_COPY_BUFFER
. GLOBAL
«  WRITE_OBSMAP
. CMA_STAT
. CMA_OPEN
. DATE_AND_TIME
. CMA_WRITEI
. CMA_CLOSE
. UPDATE_DDR
. GLOBAL
. DATE_AND_TIME
«  ADD_SATELLITE
. .REF_TIME
«  WRITE_CMA
. CMA_GET_CONCAT_BYNAME
. CMA_OPEN
. CMA_BIN_INFO
. CMA_IS_PACKED
. GLOBAL
. CMA2PCMA
. CMA_INFO
. OPTIMAL_MSGLEN
. COMM_WRITE
. CMA_WRITE
. CMA_CLOSE
CMA_TRAFFIC_INFO
. GLOBAL
IFS_WRITE
OPTIMAL_MSGLEN
CMA_SHUFFLE
. SETUP_COMM_DATA
. CMA_COPY_BUFFER
UPDATE_DDR
WRITE_CMA
READ_BUFR
BUFR_PTRLEN_UPDATE
. COLLECT
. KEYSORT
BUFR_TRAFFIC_INFO
BUFR_SHUFFLE
WRITE_BUFR
CMA_GET_CONCAT_BYNAME
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. EXPAND_STRING
. MATCHUP

EXPAND_STRING
DUMP_NAMELIST
PRECHECK
READ_CMA
MATCHUP_PREPARE
OBS_MATCHUP

. COLLECT

. . KEYSORT
. CHECK_DUPLICATES
. . KEYSEARCH

CMA_TRAFFIC_INFO
OPTIMAL_MSGLEN
CMA_SHUFFLE
MATCHUP_PERFORM

. KEYSEARCH

. MATCHUP_REPORT
UPDATE_DDR
WRITE_CMA

. VMATCHUP

EXPAND_STRING
DUMP_NAMELIST
READ_OBSMAP

. CMA_STAT

. CMA_OPEN

. . CMA_READI

. DISTR

. CMA_DETACH

. CMA_ATTACH

. CMA_CLOSE

. DISTR_OBS

. GLOBAL

. COLLECT
PRECHECK

READ_CMA
VMATCHUP_PREPARE

. COLLECT

KEYSORT
VMATCHUP_TRAFFIC_INFO
. GLOBAL
OPTIMAL_MSGLEN
XCMA_SHUFFLE

. SETUP_COMM_DATA
UPDATE_DDR
WRITE_CMA

. SWAP_BWD
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CHAPTER 10 Observation screening
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10.6.5 Redundancy check

10.6.6 Thinning

10.6.7 A summary of the current use of observations
10.6.8 Compression of the ODB

10.7 A massively-parallel computing environment

10.1 INTRODUCTION

This chapter describes the observation screening in the ECMWF 3D/4D-Var data assimilation. A more general de-
scription can be found idarvinenand Undén(1997). The purpose of the observation screening is to select a clean
array of observations to be used in the data assimilation. This selection involves quality checks, removal of dupli-
cated observations, thinning of their resolution etc.. The new selection algorithm was implemented operationally
in September 1996 and was designed to reproduce (to a large extent) the selection of observations that the old
screening of the ECMWF Ol analysis code used to makenpergand Shaw1985 and 1987;6nnberg 1989).

This chapter was prepared in September 1997 by Heikki Jarvinen, Roger Saunders and Didier Lemeur, and updated
in February 1999 by Roger Saunders for TOVS processing, by Elias Holm and Francois Bouttier for the remainder.

10.2 THE STRUCTURE OF THE OBSERVATION SCREENING

10.2.1 The incoming observations

Before the first trajectory integration, the observations are extracted from a data base of observations converted
from the BUFR archive to a set of CMA files (by prograaisproc andobsortdescribed in the ‘observation’ part

of the documentation). These data have already undergone some rudimentary quality control, e.g. a check for the
observation format and position, for the climatological and hydrostatic limits, as well as for the internal and tem-
poral consistencyNorris, 1990). The so-called RDB (Report Data Base) flag is assigned at this stage. Then a set
of observation files suitable for assimilation is created in a separate observation preprocessing module. This entails
format conversions, changes of some observed variables (like calculation of relative humidity from dry and wet
bulb temperatures), as well as assignment of observation error statistics. The resulting ‘extended’ CMA file set (ec-
ma# ; # = processor id) contains all the observational information from the six-hour data window available at the
cut-off time, and is an input for the IFS. The observation screening then selects the best quality and unique obser-
vations, preferably close to the middle of the data window because the background is not interpolated to the exact
time of the observation. Unlike the Ol, the 3D- and 4D-Var data assimilation is global and, therefore, no separate
data selection for analysis boxes is needed.

10.2.2 The screening run

The ECMWEF 3D/4D-Var data assimilation system makes use of an incremental minimization sclmmtes( et

al. 1994 and 1997) to reduce the computational cost. The variational data assimilation starts with the first (high
resolution) trajectory run (CONF = 2, LSCREEN = .TRUE.). During this run the model counterparts for all the
observations are calculated through the nonlinear observation operators (controlled by taskob). As soon as these
background departures are available for observations, the screening can be performed. For the observation screen-
ing, the background errors (errgrib - file) are interpolated to the observation locations for the observed variables
(sufger).
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Technically, the final result of the observation screening is a pair of observation arrays. The original ‘extended’ ob-
servation array now contains observations complemented by the background departures, together with quality con-
trol information for most of the observations. This array is stored for later feedback (ecma.# - set of files). The
compressed observation array is a subset of the original array of observations, and is passed for the subsequent min-
imization job. The compressed array (ccma.# - set of files) contains only the observations to be used in the varia-
tional assimilation. Memory wise, the first trajectory run is a demanding one as all the observations are kept in
memory. Prior to the screening the model fields are deallocated (dealmod) as most of the information necessary in
the screening is stored in the observation data base (ODB).

10.2.3 General rationale of the observation screening

The general logic in the 3D/4D-Var observation screening algorithm is to malkeddpendendecisions first, i.e.

the ones that do not depend on any other observations or decisions (decis). One example is the background quality
control for one observed variable. These can be carried out in any order without affecting the result of any other
independent decision. The rest of the decisions are considered as mdagslydenon other observations or de-

cisions, and they are taken next, following a certain logical order. For instance, the horizontal thinning of TOVS
reports is only performed for the subset of reports that passed the background quality control. Finally, the observa-
tion array is compressed (compres) for the minimization in such a way that it only contains the data that will be
used.

10.2.4 3D- versus 4D-Var screening

In the 3D-Var assimilation system, the observations processed have been gathered over a 6-hour long time window
(from 3 hours before to 3 hours after the nominal analysis time) ; all the screening is performed as if they have
actually been performed simultaneously at the central analysis time. In the early implementation of the 4D-Var as-
similation system, the same processing called 3D-screening was applied over the 6-hour long 4D-Var time window,
which resulted in essentially the same screening decisions as in 3D-Var, except that the model comparison with the
observation was performed at almost the appropriate time with no more than a 30-minute approximation.

In summer 1997, a new screening procedure called 4D-screening was implemented that took into account the time
dimension of the observations. The time window was divided in timeslots of typically 1-hour length (30mn for the
first and the last time slot). The 3D-screening algorithm was then applied separately to observations in each times-
lot. This allowed more data to be used by 4D-Var, for instance, all messages from an hourly reporting station can
now be used, whereas only one (closest to central time) would have been allowed by the redundancy check in the
3D-screening. The 4D-screening behaviour is activated by switch LSCREA4D ; it is meant to be used in conjunction
with time correlation of observation errors where appropriate, as explaidédimeret al(1999) and in the chap-

ter on conventional obs error constraints.

10.3 THE INDEPENDENT OBSERVATION SCREENING DECISIONS

10.3.1 Preliminary check of observations

The observation screening begins with a preliminary check of the completeness of the reports (prech). None of the
following values should be missing from a report: observed value, background departure, observation error and ver-
tical coordinate of observation. Also a check for a missing station altitude is performed for synop, temp and pilot
reports. The reporting practice for synop and temp mass observations (surface pressure and geopotential height) is
checked (repra), as explained in the appendix. At this stage also, the observation error for synop geopotential ob-
servations is inflated if the reported level is far from the true station level (addoer). The inflation is defined as a
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proportion of the difference between the reported level and the true station altitude by adding 2% of the height dif-
ference to the observation error.

10.3.2 Blacklisting

Next, the observations are scanned through for blacklisting. At the set-up stage the blacklist interface is initialized
(blinit) to the external blacklist library (libbl95.a). The interface between the IFS and the black-list is in the IFS
routine BLACK. The blacklist itself consists formally of two parts. Firstly, the selection of variables for assimila-
tion is done using the data selection part of the blacklist file. This controls which observation types, variables, ver-
tical ranges etc. will be selected for the assimilation. Some more complicated decisions are also performed through
the data selection file; for instance, an orographic rejection limit is applied in the case of the observation being too
deep inside the model orography. This part of the blacklist also provides a handy tool for experimentation with the
observing system, as well as with the assimilation system itself. Secondly, a normal monthly monitoring blacklist
is applied for discarding the stations that have recently been reporting in an excessively noisy or biased manner
compared with the ECMWF background field. A full documentation of the new blacklisting mechanism is found

in Jarvinenet al.(1996).

10.3.3 Background quality control

The background quality control (FIRST) is performed for all the variables that are intended to be used in the as-
similation. The procedure is as follows. The variance of the background depgruké(x,) can be estimated as
a sum of observation and background error variamf;%s oﬁ , assuming that the observation and the background
errors are uncorrelated. After normalizing witly  , the estimate of variance for the normalized departure is given
by 1+ ci/ cﬁ . In the background quality control, the square of the normalized background departure is considered
as suspect when it exceeds its expected variance more than by a predefined multiple (FGCHK, SUFGLIM). For the
wind observations, the background quality control is performed simultaneously for both wind components (FG-
WND). In practice, there is an associated background quality-control flag with four possible values, namely 0 for
a correct, 1 for a probably correct, 2 for a probably incorrect and 3 for an incorrect observation, respectively
(SUSCREOQ)Table 10.1gives the predefined limits for the background quality control in terms of multiples of the
expected variance of the normalized background departure. These values can be changed in namelist NAMJO. For
satob winds the background error limits are modified as explainfggpbiendix A

TABLE 10.1 THE PREDEFINED LIMITS FOR THE BACKGROUND QUALITY CONTROLGIVEN IN TERMS OF MULTIPLES
OF THE EXPECTED VARIANCE OF THE NORMALIZED BACKGROUND DEPARTURE

Variable Flag 1 Flag 2 Flag 3
u, v 9.00 16.00 25.00
z, ps 12.25 25.00 36.00

dz X X X
T 9.00 16.00 25.00
rh, q 9.00 16.00 25.00

Flag values are denoted by 1 for a probably correct, 2 for a probably
incorrect and 3 for an incorrect observation. The variables are
denoted by u and v for wind components, z for geopotential height,
ps for surface pressure, dz for thickness, T for temperature, rh

for relative humidity and q for specific humidity, respectively.

There is also a background quality control for the observed wind direction (FGWIND). The predefined error limits

88
IFS Documentation Cycle CY23r4 (Edited 19 September 2003)



Chapter 10 ‘Observation screening’ ' 20+

of 60°, 9C° and 128 apply for flag values 1, 2 and 3, respectively. The background quality control for the wind
direction is applied only above 700 hPa for upper-air observations for wind speeds IargehSthzm_l . If the
wind-direction background quality-control flag has been set to a value that is greater than or equal to 2, the back-
ground quality-control flag for the wind observations is increased by 1. For scatterometer winds, a test for high
wind speeds and cold SST is applied in the IFS routine FGWIND.

10.4 SCREENING OF SATELLITE RADIANCES

This section describes the use of RTOVS, valid in April 1999. At the time of writing it was planned to switch to
using 1-C radiances for which the processing is rather different; it is described in a separate chapter of the docu-
mentation.

10.4.1 General

The radiances from the RTOVS 120 km BUFR data received from NESDIS are preprocessed in a dedicated module
which performs several functions to allow the assimilation of TOVS radiances in 4D-Var (the NESDIS retrievals
are not used in 4D-Var, but are only monitored with the background profiles). This module is called ADVAR and

is part of the TOVSCODE library (libtovscode.a). ADVAR is called for each TOVS observation with the model
background temperature, specific-humidity and ozone profiles, and surface parameters interpolated to the location
of the observations. For each analysis cycle there are typically 22,000 TOVS observations in total, for a dual polar
orbiter system. ADVAR performs the following functions described below, dependent on the setting of a switch IS
which determines the mode of operation of ADVAR

. Inthe screening pass ADVAR is called twice by TOVCLR, once with IS setto 1 (when all the operations described
below are performed) and once with IS set to —1 (when only the high resolution radiance departures for 4D-Var are
computed). When IS is set to —1 the profile extrapolation and 1D-Var retrieval is not performed. Finally if IS is set
to 0 then the background radiances are computed from the profiles, but the 1D-Var retrieval is not performed, an
option only used for offline tests. Several input files are required for ADVAR which are listed in Table 0.2. A set
up routine for ADVAR (SUADVAR) is called within the IFS by SURAD to open the necessary files and fill com-
mon arrays for ADVAR and the fast radiative transfer model RTTOV-5. The various operations performed by AD-
VAR are described below. The full scientific description of ADVAR is described in the pageyiget. al.(1993).

10.4.2 Input

The fast radiative-transfer model RTTOV-5 for TOVS radiances requires an input profile of 40 levels from 1013.25

to 0.1 hPa. RTTOV-5 has been described in detatbhynders et al1999). The original forecast model tempera-

ture, specific-humidity and ozone profiles are interpolated onto the fixed pressure levels required by RTTOV-5 be-
fore they are input to ADVAR. For the 31 level model, the background profiles are only available up to 10 hPa, and
S0 an extrapolation has to be performed up to 0.1 hPa for temperature using the NESDIS retrievals to 1 hPa, and a
simple extrapolation based on model atmospheres above this level. Climatological mean profiles are assumed for
water vapour and ozone. For the 50- and 60-level versions of the model with levels in the stratosphere this extrap-
olation is not necessary. Once the full profile is defined and checked (see below) RTTOV-5 is called to compute the
background radiances from the background profiles. Background radiances are computed for all the TOVS chan-
nels listed inTable 10.2but only a subset of the channels are subsequently used in the 1D-Var retrieval.
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TABLE 10.2 TOVSCHANNEL USAGE AND (O+F) ERRORS ASSUMED INLD-VAR (THE ERRORS USED INMMD-VAR
ARE INFLATED BY 50%)

Clear Cloudy Land/mixed Sea-ice
Channel Number 1/4D-Var usage
o © (K) )

1 All/global 1.40 1.40 1.40 1.40
2 All/global 035 0.35 0.35 0.35
3 All/global 0.30 0.30 0.30 0.30
4 Clear/sea/global 0.20 0.20 0.20
5 Clear/sea/global 0.30 0.30 0.30
6 Clear/sea/global 0.40 0.80 0.80
7 Clear/sea 0.60 1.20
8 Clear/sea 1.00 2.00
9 FG only

10 Clear/sea 0.80 1.60
11 Clear/global 1.10 1.10 1.10
12 Clear/global 1.50 1.50 1.50
13 Clear/sea 0.50 1.00
14 Clear/sea 0.35 0.70
15 Clear/sea 0.30 0.60
16 FG only

17 FG only

18 FG only

19 FG only

21 QC check

22 All/sed 0.30 0.30 1.00
23 AII/gIobaI* 0.22 0.22 0.22 0.22
24 All/global 0.25 0.25 0.25 0.25
25 All/global 0.60 0.60 0.60 0.60
26 All/global 1.00 1.00 1.00 1.00
27 All/global 1.80 1.80 1.80 1.80

*Cloudy data not used in tropics

10.4.3 Bias correction

The next step is to apply the bias correction to the NESDIS radiances. The details of the bias correction for TOVS
radiances is given igyre(1992) andHarris (1997). An update to the bias correction coefficients is performed once

a month on the past two to four weeks of radiance-departure statistics, the exact period depending on how rapidly
the biases have changed during the period. The bias-correction coefficients are stored in afile for all of the satellites,
and this is used in ADVAR. The bias correction code is in the BIASCOR subdirectory of TOVSCODE.
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10.4.4 Quality control

Several quality checks are then applied to the measured and background radiances, and ADVAR returns a flag
(IFAIL); this is zero if all the checks are passed, but is set to a specific value if a problem is detected. The values
for IFAIL and their meaning are given ifable 10.3 The radiances or retrievals are only used in 4D-Var if IFAIL

is zero. The gross checks applied are:

0] Check that the background profile vector is within realistic limits (e.g. temperature is within the
range 150-350 K, specific humidity is positive and not supersaturated, ozone is within
climatological extremes). ADVAR terminates with a severe error flag if this test fails.

(i)  The measured and background brightness temperatures are present for all required channels and are
within the range 150-350 K.

TABLE 10.3 DEFINITION OF 1D-VAR FAILURE FLAGS AND TYPICAL RATES IN THEIFS.

IFAIL Typical % Comment
0 80% Retrieval OK
nn 1.0% Measurement cost too high for channal
55 17% At edge of scan, otherwise OK
66 0% Failed stability check (not applied)
99 0.5% Minimization failed to converge
100 1.0% Failed window channel cloud test
5nn 0.1% Channehn failed fine background check
6nn 0.3% Channehn failed gross background check
7nn 0% Bad background radiance for channel nn
887 0.3% background profile outsideTov limits
888 0% background profile corrupt
9nn 0% Radiances for channel nn corrupt
999 0% No valid scan or valid satid or bias coeffs

A series of more critical tests are then applied where ADVAR continues even if the test fails but returns a non-zero
IFAIL value.

M Gross background check (i.e. the measured radiance departures from the background are less than
20 K).

(i)  The background temperature, specific humidity and ozone profiles are checked to make sure they
are close to, or within, the range encompassed by the diverse 32 (or 35 for ozone) profile data set for
which the RTTOV is valid.

(i) A fine background check where the square of the radiance departures are flagged if they are greater
than 16x[KBKT+O+F] (see below for definitions).

(iv) A check for cloud contamination for the HIRS channels is included by checking that the radiance
departure for HIRS channel 8 is inside the range —4 to +8 K over the sea and south of 20°N. Over
land the thresholds are brighter north of 20°N. IFAIL is set to 100 if outside this range.

(v) Radiances at the two extreme edge positions of the swath are flagged at present and not used in 4D-
Var.
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(vi) Checks are also made that the bias-correction coefficients, satellite id, and scan position are all valid
before proceeding.

10.4.5 Retrieval

TaABLE 10.4 HLES REQUIRED BYADVAR

Filename Contents

chanspec.dat Specifies channel usage

rmtberr.dat Specifies radiance observation errors (O+F)

fcbkerr.dat Specifies 1D-Var background error covari-
ances (B)

bcor.dat Bias correction coefficients

rt_coef_ieee.dat or RTTOV coefficients in binary or ascii format.
rt_coef_fmt.dat

The main task for ADVAR is to perform a 1D-Var retrieval of temperature, water vapour and ozone profiles. Details
on the theory of 1D-Var retrieval are describedBbyre et al. (1993), and so only the technical details described

here are concerned with the implementation at ECMWEF. Each radiance profile is assigned to be clear, partly cloudy
or cloudy by NESDIS, and different TOVS channels and observation errors are used for each type adladiéd in

10.2 The files defining the channel selection and observation plus forward modg|@#ie) covariances are giv-

en inTable 10.4and no interchannel correlations are assumed (i.e. a diagonal matriX)OFké errors specified

here are subsequently used in 4D-Var, but are inflated by 50%. The background-error cov&rfanedigl3 levels

are also specified in a file, and for temperature are close to the global-mean background errors assumed in 4D-Var.
For specific humidity the background errors assumed in 1D-Var follow the same formulation as in 4Ralaar(

et al. 1997) and the correlations are the same as in 4D-Var.

The minimization of the cost function is performed using the method of Newtonian iteration, and up to 5 iterations
are allowed before the minimization fails. Convergence is obtained when the profile departures are less than 0.4
times o, at every level. If the cost function of the observed radiance in any of the channels exceeds a predefined
threshold then a flag is set indicating an inconsistent set of radiances. The output of 1D-Var includes background
and retrieved temperature, water-vapour and ozone profiles, together with several retrieved surface parameters also
included in the 1D-Var control vector. The retrieved profiles are output both on the 43 levels and as virtual layer-
mean temperatures on 15 levels and layer-mean column water vapour on 3 levels to match the NESDIS retrievals.

A final check on the stability of the retrieved profile is provided in the code, but is not implemented as the profiles
are not used in 4D-Var.

10.4.6 SSM/I radiances

SSM/lI radiances are also screened in a similar module DVSSMI, which performs a similar set of functions to AD-
VAR B by retrieving the total column water vapour, surface wind speed and cloud liquid-water path. The total cloud
water vapour retrievals have been activated operationally in Spring 1998, with an horizontal thinning to 250km.

A specialized libraryssmicodeis used for the retrievals. Some documentation can be foueiardand Saun-
ders (1999). At the time of writing it is envisaged to start using surface wind speed retrievals over sea in summer
1999.
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10.5 SATTEROMETER PROCESSING

10.5.1 Introduction

This section describes the flow of ERS, NSCAT, and QuikSCAT scatterometer data through the assimilation sys-
tem. Some tasks like thinning of ERS data and retrieval of 50 km QuikSCAT winds are performed in modules be-
fore the screening but it is most natural to describe the whole processing step here. This section provides a working
knowledge of the software, and guidance on possible modifications and updates. It is not intended to explain the
scientific background of microwave remote sensing or scatterometry and assumes some knowledge of these topics
(seeStoffelen(1999), Freilich and Dunbar (1999)).

This section is broken into five subsections. The first is the introduction, which you are reading now. The second
is background information about scatterometer processing at ECMWEF. The background includes a brief history of
the software, lists persons who contributed the changes and outlines the structure and function of the whole library.
Subsections 3-5 describe processing for scatterometers used or currently in use at ECMWF, i.e. ERS-1 and ERS-
2, NSCAT and QuikSCAT.

10.5.2 Background

ESA's ERS-1 scatterometer was launched in July 1991 and stopped operating in June 2000. The successor ERS-2
was launched in 1995 and is still functioning well. Data from ERS-2 were introduced into operations at ECMWF

in January 1996. Scatterometer data from ERS-2 have been used in operations since that time. Ad Stoffelen, David
Anderson and Ross Hoffman were the first to work on the problem at ECMWF. Stoffelen and Anderson worked on
QC and wind retrieval issues in the Ol system of the day. Hoffman looked at assimilation of sigma0’s directly in
3D-Var. Once in operations, several others (Herve Roquet, Catherine Gaffard, Didier LeMeur and Lars Isaksen)
took turns monitoring and improving the use of the data. Lately Mark Leidner worked on the use of data from
NASA scatterometers (NSCAT and QuikSCAT).

Source code for scatterometer processing resides in ClearCase under the project name scat. The library contains
the following directories:

etimesort/ source code for pre-processing ERS data

module/ shared modules

gbukey/ source code for adding RDB info to QuikSCAT 50km BUFR

gfilter/ source code for pre-processing QuikSCAT 25km BUFR

gretrieve/ source code for SeaWinds wind retrieval

test/ empty directory for future test code

e* and g* directories contain processing software specific to ERS and QuikSCAT, respectively. NSCAT-specific
codes have not been put in ClearCase, because the satellite stopped operating in June 1997, i.e. its data will never
be used in operations.

10.5.3 ERS Wind scatterometer processing

Fig. 10.1 shows a simple flow chart for ERS processing at ECMWF. Below the processing chain in described in
general and the functionality of each executable in the scat library in particular.

The MARS archive definitions for the different wind scatterometer observations are:
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with
feedback info

Figure 10.1 ERS processing

TABLE 10.5
BUFR/MARS CMA code type Satellite ID
obstype

ERS-1 122 122 1

ERS-2 122 122 2

NSCAT 136 210 280
QUIKSCAT 137* 300 281
QUIkSCAT 138 301 281

* For QuikSCAT the BUFR format changed January 2000 which is
reflected in the change of MARS obstype from 137 to 138 and change
in BUFR sequence descriptor.

Data for a given time window are retrieved from MARS. These data are then input to program timesort, which sorts
the observations by time and removes duplicate records. Duplicate records occur in the input data because more
than one ground station may receive the same ERS data. Duplicated data are almost identical and their time stamps
will differ by a small margin (< 4 seconds). Duplicates are rejected on this basis.

ERS winds are retrieved as part of the IFS observation pre-processor, OBSPROC (IFS Documentation Part I: Ob-
servation Processing). Within OBSPROC, the three sigma0’s are decoded from BUFR, and used to retrieve winds
for 50 km diameter foot prints. The ERS winds are available at 25 km resolution, i.e. over sampled. Itis not possible
to determine a unique wind vector solution, at least two ambiguous solutions will be found. Only the most likely
wind and the first one in the opposite direction are kept and written to the observation data base (ODB) file . ERS
winds are retrieved instead of using the unique wind distributed by ESA to be able to supply two winds to the var-
iational data assimilation system at ECMWEF, and to be able to apply bias corrections to sigma0 before wind re-
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trieval, and finally to be able to apply quality controls to the retrieved winds via the retrieval residual.

A horizontal thinning is performed on the 19x19 data layout of the ERS scatterometer reports. In that case the proc-
ess is defined with respect to the particular measurement geometry of the instrument. Indeed the backscatter data
are acquired within individual cells related to a 450 km wide grid with a mesh of 25 km in the across and along
track directions. 19 measurement nodes are thus defined across the scatterometer’s swath, numbered from 1 to 19
as the incidence angle increases, while 19 rows are also considered in the along track direction to gather the data
in squares of 19 by 19 points. The thinning factor is controlled by LSCATTHI and NTHINSCA in namelist NAM-
MKCMA. The inner two nodes are skipped (smallest incidence angles) because the scatterometer operates best at
larger incidence angles. Then, every NTHINSCA node is used (default NTHMNSCresults in use of node 3,

7,11, 15, and 19) in every NTHINSCA row. The data are thus by default used at a resolution of 100 km instead of
the original 25 km sampling distance. This simple way of thinning is preferable because ERS wind measurements
typically always are of the same high quality as they are not affected by rain or clouds. It should be noted that the
thinning process is actually set up in the observation pre-processing (OBSPROC), but that only a flag is assigned
at that stage, which is then applied in the screening. In that way all the data are completely pre-processed before
assimilation, and the subsequent information kept in the feedback files allows to perform their monitoring at the
full resolution.

In the IFS, the two retrieved winds are used in an obs cost function with 2 minima (see pp_obs/hjo.F90). The func-
tion is not quadratic, but depends on the 4th power and root of the product of the departures of Suffie(
and Anderson (1997)). It is very similar to the sum of two quadratic cost functions.

Quality control decisions made by the IFS screening run are:
High wind speed check Data rejected if observed or first guess wind speeds are above 25 m/s
(RSCAWLI). Performed bpbs_preprodfgwnd.F90
Sea ice checkData rejected if sea ice fraction is greater than 0.1 (RSCATLI). Performed by
obs_preprodfgwnd.F90
Global Quality Control: If the average distance-to-the-cone residual for the backscatter
measurements during a (1 hour) time slot for any of the active nodes is above the QC threshold all
ERS data for that time slot is blacklisted. This is done by the rooimepreprodscaqgc.F90.

There is no back ground wind check performed on scatterometer data, but data may be de-weighted or effectively
removed from the analysis during the minimisation in 4D-Var by variational quality codtnalérssorand Jarvin-
en (1999)).

Quality control decisions and departures from background and analyses are appended to each subset in the feed-
back BUFR message.

ERS feedback messages have a PRESCAT section sandwiched between the original ERS and the feedback data.
The PRESCAT section contains outputs about the quality of the winds from the retrieval.

Here are some of the key words and bits to examine in the ERS feedback message (these are in the order in which
they are encountered in the processing):

Winds retrieved at ESA: BUFR descriptor 11012 for speed and 11011 for direction winds available in observation
part of BUFR file.

Winds retrieved at ECMWF : BUFR descriptor 11192 for u and 11193 for v winds retrieved in program OB-
SPROC.

Report rejected by thinning if BUFR descriptor 33229 (Report Event Word 2) = 1. QC decision made by pro-
gram OBSPROC in subroutine scatsin.F90.
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Background departures x 2 ambiguities BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and
for v ('V - COMPONENT AT 10 M’). BUFR descriptor 8024 = 33, BUFR descriptor 33210 = 1, BUFR descriptor
33211 =1001.

Report rejected by high wind speed checlf BUFR descriptor 33233 (Report Status Word 1) = 16. QC decision
made by program IFS in subroutioks_preprodfgwnd.F90.

Report rejected if Sea Ice faction > 0.1BUFR descriptor 33220 (Report Event Word 1) = 12. QC decision made
by program IFS in subroutirabs_preprodfgwnd.F90.

Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision made by
program IFS in subroutingbs_preprodersqgc.F90.

Datum 4D-Var quality control status: BUFR descriptor 33233 (Report Status Word 1) = 1/2/4/8 1 - active, 2 -
passive 4 - rejected8 - blacklisted Datum. 4D-Var variational quality control rejection BUFR descriptor 33236
(Datum event Word 1) bit 27 =1

Analysis departures x 2 ambiguities:BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and for v
(‘'V - COMPONENT AT 10 M’). BUFR descriptor 8024 = 33, BUFR descriptor 33210 =9, BUFR descriptor 33211
=999.

10.5.4 NASA scatterometer (NSCAT) processing

NSCAT data has been used experimentally for impact experiments in 4D-Var as well as a surrogate for QuikSCAT
data (another Ku-band scatterometer). The processing is not automatic in IFS , as is the case for ERS and Quik-
SCAT. The NSCAT data quality is more consistent compared to ERS and QuikSCAT, because the archived NSCAT
data are a re-processed science product, not an "as-is” real-time product.

Data for the whole 9-month mission are stored on ecfs in HDF format archived in ecfs:/oparch/nscat/50km/L17 -
Level 1.7 files (sigma0 data) and ecfs:/oparch/nscat/50km/L20 - Level 2.0 files (wind data).

The format and content of HDF NSCAT files are thoroughly documented in QuikSCAT Science Data Product Us-
er's Manual (avaialble from ECMWF or JPL). Level 1.7 and 2.0 files are present for each orbit in the mission. Each
sigmao file has a corresponding wind file.

Assimilation experiments with NSCAT data are only possible after offline processing of the data. Please contact
the research department for further information.

10.5.5 NASA TQUIK” scatterometer (QUikSCAT) processing

The implementation of QUikSCAT data processing borrowed many lessons from the use of NSCAT data. Quik-
SCAT, however, was implemented to be used operationally, so the process is more streamigdlG2.

The processing of QuikSCAT data will now be described.

Data for a given time window are retrieved from MARS. These data are then fed to prgfjtem/qscat_filter,
which sorts the observations by time, and removes duplicate/incomplete records

Duplicate and incomplete records are part of the QuikSCAT real-time data stream because of Seawinds’ conically-
scanning geometry. See Leidner et al. (1999) for a discussion of duplicate and incomplete records introduced by
the scanning geometry.

QuikSCAT winds are retrieved with progragretrieve/gscat25to50km. The input is 25-km QuikSCAT BUFR
messages. These are decoded, consecutive rows are paired together, sigma0’s are grouped into 50-km boxes, and
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winds are retrieved at this resolution. The output is 50-km BUFR messages, including sigma0’s and winds. The 50
km resolution is more representative of the scales resolved by the increments in 4D-Var.

The winds are used just as in NSCAT. The winds are re-ordered (most likely first and its 180-degree opposite is
next), and only the first two are used in 4D-Var.

Here are some of the key words and bits to examine in the QuikSCAT feedback message (these are in the order in
which they are encountered in the processing):

Background departures x 2 ambiguities Like for ERS described above.
Report rejected if sea ice fraction is > 0.1Like for ERS described above.

Report rejected if data not in the sweet spotswhen BUFR descriptor 33229 (Report Event Word 2) = 3. QC
decision made by program IFS in subroutis_preprodgscatqgc.F90.

Report rejected if number of winds is < 2:when BUFR descriptor 33220 (Report Event Word 1) = 3. QC decision
made by program IFS in subroutiobs_preprodqscatqc.F90.

Report rejected if wind directions are too closewhen BUFR descriptor 33229 (Report Event Word 2) = 2. QC
decision made by program IFS in subroutivs_preprodqgscatqc.F90.

Datum rejected if number of ambiguities > 2: when BUFR descriptor 33236 (Datum Event Word 1) = 19. QC
decision made by program IFS in subroutis_preprodqgscatqgc.F90.

Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision made by
program IFS in subroutine obs_preproc/qscatqc.F90.

Datum 4D-Var quality control: Like for ERS described above.

Analysis departures x 2 ambiguitiesLike for ERS described above.

MARS QUIkSCAT BUFR (25 kml)

gscat25to50k

feedback

QuikSCAT BUFR

50 km resolution
MARS with feedback info

Figure 10.2 QuickSCAT processing
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10.6 THE DEPENDENT OBSERVATION SCREENING DECISIONS

10.6.1 Update of the observations

Just before performing the dependent screening decisions, the flag information gathered so far is converted into a
status of the reports, namely active, passive, rejected or blacklisted, and also into a status of the data in the reports
(FLGTST). The reports with a RDB report flag value 2 (probably incorrect) or higher for latitude, longitude, date
and time are rejected. For the observed data there are RDB datum flags for the variable and for the pressure, i.e. the
pressure level of the observation. The rejection limits for these are as follows: all data are rejected for the maximum
RDB datum flag value 3 (incorrect), non-standard-level data are rejected for the maximum RDB datum flag value
2, and for the pressure RDB datum flag the rejection limit is 1 (probably correct). The background quality control
rejection limits are flag value 3 for all the data, and flag value 2 for the non-standard-level data.

10.6.2 Global time—location arrays

Some of the dependent decisions require a global view to the data which is not available as the memory is distrib-
uted. Thereforead hoc global time—location arrays are formed and broadcast in order to provide this view
(GLOBA, DISTR).

10.6.3 Vertical consistency of multilevel reports

The first dependent decisions are the vertical-consistency check of multilevel reports (VERCO), and the removal
of duplicated levels from the reports. The vertical-consistency check of multilevel reports is applied in such a way
that if four consecutive layers are found to be of suspicious quality, even having a flag value one, then these layers
are rejected, and also all the layers above these four are rejected in the case of geopotential observations. These
decisions clearly require the quality-control information, and they are therefore ‘dependent’ on the preceding de-
cisions.

10.6.4 Removal of duplicated reports

The duplicated reports will be removed next. That is performed (MISCE, DUPLI, REDSL) by searching pairs of
collocated reports of the same observation types, and then checking the content of these reports. It may, for in-
stance, happen that an airep report is formally duplicated by having a slightly different station identifier but with
the observed variables inside these reports being exactly the same, or partially duplicated. The pair-wise checking
of duplicates results in a rejection of some or all of the content of one of the reports.

10.6.5 Redundancy check

The redundancy check of the reports, together with the level selection of multilevel reports, is performed next for
the active reports that are collocated and that originate from the same station (REDUN). In 3D-screening, this
check applies to the whole observation time window. In 4D-screening (LSCRE4D=.true.), this check applies sep-
arately in each timeslot.

Forland synop and paobreports, the report closest to the analysis time with most active data is retained, whereas
the other reports from that station are considered as redundant and are therefore rejected from the assimilation (RE-
DRP, REDMO). Foship synop and dribu observations the redundancy check is done in a slightly modified fash-

ion (REDGL). These observations are considered as potentially redundant if the moving platforms are within a
circle with a radius of 1° latitude. Also in this case only the report closest to the analysis time with most active data

is retained. All the data from the multileviedmp and pilot reports from same station are considered at the same
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time in the redundancy check (REDOR, SELEC). The principle is to retain the best quality data in the vicinity of
standard levels and closest to the analysis time. One such datum will, however, only be retained in one of the re-
ports. A wind observation, for instance, from a sounding station may therefore be retained either in a temp orin a
pilot report, depending on which one happens to be of a better qualglynép massobservation, if made at the

same time and at the same station as the temp report, is redundant if there are any temp geopotential height obser-
vations that are no more than 50 hPa above the synop mass observation (REDSM).

10.6.6 Thinning

Finally, a horizontal thinning is performed for the airep, TOVS, SSM/I and SATOB reports. The horizontal thinning

of reports means that a predefined minimum horizontal distance between the nearby reports from the same platform
is enforced. For airep reports the free distance between reports is currently enforced to about 125 km. The thinning
of the airep data is performed with respect to one aircraft at a time (MOVPL, THIAIR). Reports from different air-
craft may however be very close to each other. In this removal of redundant reports the best quality data is retained
as the preceding quality control is taken into account. In vertical, the thinning is performed for layers around stand-
ard pressure levels, thus allowing more reports for ascending and descending flight paths.

Thinning of TOVS, SSM/I and SATOB reports are each done in two stages controlled by THINN. For TOVS
(THINNER), a minimum distance of about 70 km is enforced and, thereafter, a repeated scan is performed to
achieve the final separation of roughly 250 km between reports from one platform. The thinning algorithm is the
same as used for aireps except that for TOVS a different preference order is applied: a sea sounding is preferred
over a land one, a clear sounding is preferred over a cloudy one and, finally, the closest observation time to the
analysis time is preferred. A similar thinning technique is applied to SSM/I data and SATOB high-density data
(THINNER).

The screening of SATOB data has been extended for atmospheric motion wind observations, including individual
quality estimate. The quality information from the quality control performed by the producer at extraction time is
appended to each wind observation. This Quality Indicator (QI) is introduced as an additional criterion in the thin-
ning step; priority is given to the observation with the highest QI value.

TABLE 10.6 ASUMMARY OF THE CURRENT USE OF OBSERVATIONS IN THBD/4D-VAR DATA ASSIMILATION AT

THE ECMWF.
Observation type Variables used Remarks
synop u, Vv, ps (orz), rh u andv used only over sea, in the tropics also over low

terrain (< 150 m). Orographic rejection limit 6 hPaiflor
100 hPa forz and 800 m fops

airep u,v, T Not used in full resolution. Used only below 50 hPa

satob u, Vv Selected areas and levels. thinning of high-density
winds.

dribu u, v, ps Orographic rejection limit 800m fgrs

temp uv,Tq Used on all reported levelgonly below 300 hPa. 10 m

u andv used over land only in tropics over low terrain
(< 150 m). Orographic rejection limit 10 hPa fqrv
andT, and -4 hPa foqg
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TABLE 10.6 ASUMMARY OF THE CURRENT USE OF OBSERVATIONS IN TH8D/4D-VAR DATA ASSIMILATION AT

THE ECMWF.
Observation type Variables used Remarks
pilot u, v Used on or closest to standard pressure levels. 10 m

andv used over land only in tropics over low terrain (<
150 m). Orographic rejection limit 10hPa foandv

tovs Th For TOVS radiance usage see Table 0.3 and the chapter
on 1C radiance processing.

paob ps Used south of 1%. Orographic rejection limit 800 m
for ps

scatt u, v Not used in full resolution. Used if SST is warmer than
273 K or if both observed and background wind less
than 25m s

ssm/i tOWV

Thinned, used over sea.

The variables are as ifiable 10.1 with the addition thaf'b stands for brightness temperature andv
stands for total cloud water vapour. The observation types are shortergahdpfor synoptic surface
observationsairep for aircraft reports,satob for satellite cloud track windsdribu for drifting buoy
reportstempfor radiosonde soundinggilot for wind soundingstovsfor satellite temperature soundings,
paobfor pseudo observations of surface pressuresaatifor scatterometer reports

Apart from this thinning, the other observation dependent decisions involved by the screening of the scatterometer
data come essentially from the application of a sea-ice contamination test from the model sea-surface-temperature
analysis, using a minimum threshold of 273 K, and a high-wind rejection test with an upper-wind speed limit set
to 25ms" for the higher of the scatterometer and background winds (FGWIND).

In addition, the quality flag set in OBSPROC is also applied, and an extra quality control is done on the wind re-
trieval residual, or the so-called ‘normalized distance to the cone’. After being implicitly checked for each report
through the OBSPROC flag (different from O if its value is larger than 3), this quantity is tested in global average
over the 6 hours of the analysis cycle for each of the 19 measurement nodes across the swath. All the data are then
rejected in bulk if an excessive value is found for any node (more than 1.3 times the expected average) where the
number of data taken into account is judged to be significant (i.e. more than 500). While the first check, performed
locally, aims at avoiding geophysical effects not explained by the transfer function CMOD4, such as rain or sea-
state effects in the vicinity of deep lows, this global quality control on the distance to the cone allows the detection
of technical anomalies not reported in real time by ESA that are likely to affect the measurements in a correlated
way and at larger scales. Such anomalies, which occur typically in the case of orbital manoeuvres, are missed by
the preliminary test of the instrumental quality flag in OBSPROC.

10.6.7 A summary of the current use of observations

A summary of the current status of use of observations in the 3D-Var data assimilation is Gadele ih0.6

10.6.8 Compression of the ODB

After the observation screening roughly a fraction of 1/10 of all the observed data are active and so the compressed
observation array for the minimization run only contains those data (COMPRES ). The large compression rate is
mainly driven by the number of TOVS data, since after the screening there are only 10—-20% of the TOVS reports
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left, whereas for the conventional observations the figure is around 40%. As a part of the compression, the obser-
vations are re-sorted amongst the processors for the minimization job in order to achieve a more optimal load bal-
ancing of the parallel computer.

10.7 AMASSIVELY -PARALLEL COMPUTING ENVIRONMENT

The migration of operational codes at the ECMWF to support a massively-parallel computing environment has set

a requirement for reproducibility. The observation screening needs to result in exactly the same selection of obser-
vations when different numbers of processors are used for the computations. As mentioned earlier, in the observa-
tion screening there are the two basic types of decision to be made. Independent decisions, on one hand, are those
where no information concerning any other observation or decision is needed. In a parallel-computing environment
these decisions can be happily made by different processors fully in parallel. For dependent decisions, on the other
hand, a global view of the observations is needed which implies that some communication between the processors
is required. The observation array is, however, far too large to be copied for each individual processor. Therefore,
the implementation of observation screening at the ECMWEF is such that only the minimum necessary information
concerning the reports is communicated globally.

The global view of the observations is provided in the form of a global ‘time—location’ array for selected observa-
tion types. That array contains compact information concerning the reports that are still active at this stage. For
instance, the observation time, location and station identifier as well as the owner processor of that report are in-
cluded. The time—location array is composed at each processor locally and then collected for merging and redistri-
bution to each processor. After the redistribution, the array is sorted locally within the processors according to the
unigue sequence number. Thus, every processor has exactly the same information to start with, and the dependent
decisions can be performed in a reproducible manner independently of the computer configuration.

The time—location array is just large enough for all the dependent decisions, except for the redundancy checking
of the multilevel temp and pilot reports. This is a special case, in the sense that the information concerning each
and every observed variable from each level is needed. Hence, the whole multilevel report has to be communicated.
The alternative to this would be to force the observation clusters of the multilevel reports always into one processor
without splitting them. In that case the codes responsible for the creation of the observation arrays for assimilation
would need to ensure the geographical integrity of the observation arrays distributed amongst the processors. This
is, however, not possible in all the cases, and the observation screening has to be able to cope with this. Currently,
itis coded in such a way that only a limited number of multilevel temp and pilot reports, based on the time—location
array, are communicated between the appropriate processors as copies of these common stations.

APPENDIX A

A.1 BAD REPORTING PRACTICE OF SYNOP AND TEMP REPORTS

The way the synoptic surface stations report mass observations (pressure or geopotential height) is considered as
bad if the

. station altitude is above 800 m and station reports mean sea level pressure
. station altitude is above 800 m and station reports 1000 hpa level

. station altitude is above 1700 m and station reports 900 hpa level

. station altitude is below 300 m and station reports 900 hpa level

. station altitude is above 2300 m and station reports 850 hpa level
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. station altitude is below 800 m and station reports 850 hpa level

. station altitude is above 3700 m and station reports 700 hpa level
. station altitude is below 2300 m and station reports 700 hpa level
. station altitude is below 3700 m and station reports 500 hpa level

The reporting practice is also considered as bad if the station reports 500 gpm, 1000 gpm, 2000 gpm, 3000 gpm or
4000 gpm level pressure, respectively, and station altitude is more than 800 m different from the reported level.

For temp geopotentials the reporting practice is considered as bad if the

. station altitude is above 800 m and station reports 1000 hpa level
. station altitude is above 2300 m and station reports 850 hpa level
. station altitude is above 3700 m and station reports 700 hpa level

A.2 REVISED BACKGROUND QUALITY CONTROL FOR SELECTED OBSERVATIONS

The background quality-control rejection limits are applied more strictly for some observation types than stated in
Table 10.1 The special cases are the following ones

. airep wind observations with zero wind speed are rejected if the background wind exceeds 5 m/s

. for airep and dribu wind observations the rejection limit is multiplied by 0.5, and for pilot wind by
0.8

. for satob wind observations the rejection limit is multiplied by 0.1, except below 700 hPa level
where it is multiplied by 0.2

. no background quality control is applied for scatt winds

. for dribu surface pressure observations the rejection limit is multiplied by 0.9, and for paob surface
pressure by 0.7

. for airep temperature observations the rejection limit is multiplied by 1.6

A.3 USE OF ATMOSPHERIC MOTION WINDS

This appendix describes those parts of the ECMWF assimilation system which involves some special code for the
AMW case, i.e. the data selection and the FG quality check. It refers to the operational status as from December
1996. A thinning procedure was introduced for high-density winds in Spring 1998.

A.3.1 Data selection

There are several model independent checks which AMW data have to pass in order to be considered for the as-
similation process:

Check on longitude/latitude
. AMW must be within a circle of 55° from the sub-satellite point

Check on levels depending on the computational method
. WW CMW and WVYMW must be above 400 hPa
. VIS CMW must be below 700 hPa
. IR CMW can be used at all levels.

Check on land/sea
. All AMW over sea are used
. AMW over land is not used north of 20°N. .
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. For Meteosat (0° mission) instead of 20°N this threshold is 35°N to allow usage of AMW over north
Africa.

. For Meteost (63° mission) the use of AMW has been extended over Asia if above 500 hPa. This is
restriced for longitudes east of 30°E.

. AMW are blacklisted over the Himalayas as a precautionary measure.

. AMW over land south of 20°N (35°N for Meteosat) is used if above 500 hPa.
Check on satellite (35°N for Meteosat) is used if above 500 hPa.

This is a temporary selection on certain channels or satellites. At present channels and satellite used are:
. METEOSAT cloud tracked winds with 90 min temporal sampling
. METEQOSAT IR (not at medium level), VIS, WV
. METEOSAT HVIS, also at asynoptic times, only if Ql,=
(Automatic Quality Contro=  PASSED
. GOES IR & WV (NOT at asynoptic times)
. GMS IR & VIS

A.3.2 Background quality check

The background quality check is based on a comparison of the AMW deviation from the background. Observed
wind components are checked together. The AMW is flaggedjwith or 2 or 3 if this deviation squared is greater

than a predetermined multiple ERRLIM * ZREJMOD of its estimated variance, as given by the following expres-
sion:

if [ D2 > (sfg 2 + sobs 2 ) * ERRLIMj * ZREJMOD] then flagg where D 2 = 1/2 (Du2 +D v2) with Du, Dv
wind component deviations from background; sfg std of the background wind component error (meamtbr
Vv); sobs std of the observation wind component erram gt for levels below 700 hPa includets3.5 at 500
hPa, 4.3m S at400 hPaandss™  for all levels above; ERRLIM;j is 8 forj=1, 18 for j=2 and 20 for j=3. The
value of ZREJMOD depends on the level of AMW and normally its value is:

. ZREJMOD = 0.2 for low level

. ZREJMOD = 0.1 for all others levels

A special check or asymmetric check is applied when the observed speed is morerthg 4 slower than the
background speed SPDfg. This check has a more restrictive rejection limit:

. ZREJMOD = 0.15 at low level

. ZREJMOD = 0.07 in the tropics

. ZREJMOD = 0.075 - 0.00125 * SPDfg all others

. ZREJMOD = 0.0 if SPDfg > 6t st (observation gets alwaysjftag)

When the data is passed to the following variational quality control its probability of being used depend on the

flagj. With flagj = 1 the data will be assimilated, with flag=2 it will be given an intermediate probability and
might be used or not and finally the analysis will reject all datajwitB
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Part II: D ATA ASSIMILATION

CHAPTER 11 Analysis of snow

Snow depth is a model prognostic variable that needs to be analysed. Its analysis is performed in a module that is
currently separated from the analysis of the atmosphere and of the soil wetness. This module includes also the sea-
surface temperature, sea-ice fraction and screen-level temperature and relative humidity.

Table of contents
11.1 Organization
11.2 Snow-depth analysis

11.3 Technical aspects

11.1 ORGANIZATION

The snow analysis is a 3-D sequential analysis performed every 6 hours using a successive correction method. The
snow-depth background s® (units: m) is estimated from the short-range forecast of snow water equi\xmgnt
(units: m of water equivalent) and snow deng’fy (units : IQ:m

»  1000x W?
S = —
Ps
The snow-depth analysisS? is performed using snow-depth observations and the snow-depth background field.
If snow-depth observations are not available, the snow accumulation/melting is simulated from the model 6-hour

forecast and a weak relaxation towards climatology is addedsmbw climateis used to ensure the stability of
the scheme and to give a seasonal snow trend in areas without any snow observations.

11.2 SNOW-DEPTH ANALYSIS

The observation§°  are snow depths from SYNOP reports. The backgroﬁﬁd is  defined above. The analysis is
done using a Cressman spatial interpolation:

The weight functiorw,, is the product of functions of the horizontal distance and vertical displadement  (mod-
el minus obs height) between the observation and analysis points:

w = H(r)v(h),
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where
D’ﬁm— r O
H(r) = maxG5——, 00
max+ r D
and
v(h) =1 if 0<h
h2_.—h®
v(h) = 2*— if -h,,,<h <0
hmax+h
v(h) =0 if h<-h_ .

The snow depth is preserved when the model height is above the observing station, but it is severely reduced below.
The influence distances are sertn, = 250 km hpgd, = 300 m.

In addition to the preliminary quality control in the observation data base, the following checks are applied for each
grid point :

. if Tgm < 8°C only snow depth observations below 140 cm are accepted.

« this limit is reduced to 70 cm if5,, > 8°C

. snow-depth observations are rejected if they differ by more than 50 cm from the background.

. when only one snow-depth observation is available within the influence ragjys , the snow
depth increments are set to zero.

. snow-depth analysis is limited to 140 cm.

. snow-depth increments are set to zero when larger {{i&60— 16Tk2)m) mm (W'h%,{;e is
expressed in Celsius)

. snow-depth analysis is set to zero if below 0.04 cm

. if there is no snow in the background and in more than half of the observations within a circle of

radiusr,,, , the snow-depth increment is kept to zero.

The analysis of snow depth is finally weighted with climatological vaBfeyd to provide the final analysis:

Sa — (1_a)Sa+aSclim

The relaxation coefficiend is set to 0.02 corresponding to a time scale of 12.5 days. The global snow depth cli-
matology is taken fronfrosterand Davy (1988). Finally the snow density from the background is used to archive
the analysis in terms of snow water equivalent :

a_ pexS
s 1000

The snow density is unchanged in the analysis proqebs=: pi’

Areas with permanent snow and ice (defined using the Global Land Cover Characterization product) are set to an
arbitrary high value at each analysis cydl( = 10m ).
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11.3 TECHNICAL ASPECTS

The snow analysis software is implemented as a branch of the more comprehensive surface and screen-level anal-
ysis (SSA) package. The other branches currently include two-metre temperature and relative humidity analysis,
and also sea surface temperature and sea-ice fraction analyses. The program organization when performing snow
analysis is roughly as follows:
. SSA
. CONTROL_SSA
. INISNW
. SCAN_DDR
. COORDINATES
. GETFIELDS
. SCAN_CMA
. SCAN_OBS
. LAND_OBS
. INITIAL_REJECTION
. REDUNDANT_OBS
. SNOW_ANALYSIS
. SUCSNW
. SCAN_OBS

FG20BS
. SUCSNW
. SNOW_FG

. FDB_OUTPUT

. PRINT_SUMMARY

. PLOTDATA

. FEEDBACK

The main progransSAcalls CONTROL _SSAwhere most of the setup and namelist handling are done. Routine
INISNW performs initialization of the actual snow analysis by sensing the size of the observation array file (CMA-
file) in SCAN_DDRand generating latitudinal coordinates that stem from the model resolution in concern and ze-
ros of the Bessel function.

After this, all input fields are read into memory @ETFIELDS They consist of the snow water equivalent and
snow density from the first-guess (6-hour forecdstjp temperature first guess, snow-depth climate (varies month-
ly with a linear temporal interpolation), land/sea mask and finally the orography in a form of the geopotential.

In SCAN_CMA observations are read into memory and a quick validity check of the non-applicable observations
for this analysis is performed. Furthermore, the land/sea mask is calculdtédNin_ OBS for the retained snow
depth observation points.

Additional screening is done iNITIAL_REJECTION and inREDUNDANT_OBS The former one sets up an
internal table where all the observations which survived from the quick screening are placed with a minimum con-
text information. This routine rejects some of the observations entered into the table due to inconsistencies.

The routineREDUNDANT _OBSremoves time duplicates and retains the observations of the station in concern
with the closest (and the most recent) to the analysis time. Since only synoptic observations are considered, slowly
moving platform handling present in tREEDUNDANT _OBSis not applicable to the snow analysis.

The actual snow analysis is performed ung8&lOW_ANALYSIS The analysis technique is Cressman’s succes-
sive correction method (routirf@JCSNW). The structure functions are set to be separable in horizontal and verti-
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cal directions. A special mountain region handling is performed, depending whether the datum or grid point is in
the valley or at high altitudes, as explained before.

The snow-depth background (i.e. first guess) field is constructed from the model first-guess snow water equivalent
and snow density. Once the snow-depth first guess field is present, it is used to calculate the first guess departure at
snow-depth observation points. This increment is finally added to the snow depth fields at grid points producing
the final snow depth output field, which is output in roulidds OUTPUT

The accuracy of the analysis is estimate®RINT _SUMMARY where some important statistics are summarized.
The internal observation table can be printed if requested fa@TDATA and an updated observation file for
feedback purposes can be created in roliEEDBACK.

The main logicals of the namelist NAMSSA are :

. L_SNOW_ANALYSIS : When set to TRUE, the snow analysis is performed.

. L_SNOW_DEPTH_ANA : When set to TRUE, the snow analysis is performed in snow depth (in
opposition to snow water equivalent assuming a constant value of 250%fpmobserved snow
density).

. L_USE_SNOW_CLIMATE : When set to TRUE, a relaxation of the snow analysis towards a
monthly climatology is performed with a time scale of 12.5 days (this constant is hard coded in
SNOW_FQ.

. L_USE_FG_FIELD : When set to TRUE the snow analysis is set to the first-guess value (no use of
observations) and there is no relaxation to climatology.
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CHAPTER 12 Land surface analysis

12.1 INTRODUCTION

Soil temperature and soil water content are prognostic variables of the forecasting system and, as a consequence,
they need to be initialised at each analysis cycle. Currently the land surface analysis is performed every 6 hours and
is decoupled from the atmospheric analysis. The absence of routine observations on soil moisture and soil temper-
ature requires to use proxy data. The ECMWEF soil analysis relies on SYNOP temperature and relative humidity at
screen-level (2 m) available on the GTS (around 12000 reports over the globe are provided every 6 hours). Firstly,
a screen-level analysis is performed for temperature and humidity. Secondly, the screen-level analysis increments
are used as inputs to perform the analysis in the soil.

12.2 SCREEN-LEVEL ANALYSIS

12.2.1 Methodology

Two independent analyses are performed for 2 m temperature and 2 m relative humidity. The method used is a two-
dimensional univariate statistical interpolation. In a first step, the background field (6 h or 12 h forecast) is inter-
polated horizontally to the observation locations using a bilinear interpolation scheme and background increments
AX; are estimated at each observation location

The analysis incremem@.x"j1 at each model grid-ppint  are then expressed as a linear combination of the first-
guess increments (up td  values) :

AXY = ZwixAxi (12.1)

whereW; are optimum weights given (in matrix form) by :
(B+O)W =b (12.2)

The column vectob (dimensioN ) represents the background error covariance between the obdervation and
the model grid-poinj . ThéN x N matriB describes the error covariances of background fields between pairs
of observations. The horizontal correlation coefficients (structure functiorts) of Band are assumed to have the
following form:

.. AT 2
u(i ) = expd5| 4| B (12.3)

wherer;; is the horizontal separation between points jand dand  the e-folding distance taken to 300 km (hard
coded in subroutine OIINC).

Therefore :

B(i, J) = opxu(i, j) (12.4)
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with o, the standard deviation of background errors.

The covariance matrix of observation err@s  is sedyio< I wiere  is the standard deviation of observation
errors and the identity matrix.

The standard deviations of background and observation errors are set respectively tod ZKfantemperature

and 5% and 10% for relative humidity. The number of observations closest to a given grid point that are considered
to solve(12.1)is N = 50 (scanned within a radius of 1000 km). The analysis is performed over land and ocean
but only land (ocean) observations are used for model land (ocean) grid points.

12.2.2 Quality controls

Gross quality checks are first applied to the observations suéhthg] [2, 10Q T ang® Where is the
dewpoint temperature. Redundant observations are also removed by keeping only the closest (and more recent) to
the analysis time.

Observation points that differ by more than 300 m from the model orography are rejected.

For each datum a check is applied based on statistical interpolation methodology. An observation is rejected if it
satisfies :

AX{| >y.Jol+ of (12.5)

wherey has been set to 3, both for temperature and humidity analyses.

The number of used observations every 6 hours varies between 4000 and 6000 corresponding to around 40% of the
available observations.

The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived product is dew-
point temperature that uses the 2 m temperature andlysis to perform the conversion :

d _ 17.502x 273.16- 32.18Y¥

T 17.05-¥

(12.6)
with

T,—273.16

T,—32.19 (12.7)

W = log(RH,) + 17.502x

12.2.3 Technical aspects

The technical aspects are similar to the snow analysis (see Chapter 11) expect for the computation of the analysis
increments obtained from the subroutibié) PD instead ofSUCSNW(Cressman interpolation).

SubroutineDISET selects theN  closest observations from a given grid-point.

SubroutineOIINC provides the analysis increments from Equatid@g.1) and (12.2) by first computing
qg=(B+ O)_lAX (in subroutineEQUSOLVE- inversion of a linear system) which does not depend upon the
position of the analysis gridpoint and then estimabﬁg (in subrobtine PRODUC.

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA:
1) C_SSA TYPE : ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis
2) L_Ol: “ true’ for statistical interpolation and ‘false’ for Cressman interpolation
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3) N_OISET: number of observations (paramebr )

4) SIGMAB : standard deviation of background error (parameger )

5) SIGMAO : standard deviation of observation error (paramgger )

6) TOL_RH : Tolerance criteria for RH observations (parameter in Equéitibh)

7 TOL_T : Tolerance criteria for T observations (paramgter in Equélb)

8) SCAN_RAD_2M(1) : Scanning radius for available observations (set to 1000 km)

12.3 SOIL ANALYSIS

The soil analysis scheme is based on an “local” optimum interpolation technique as deschsdanf(1991)
andDouville et al. (2001). The analysis increments from the screen-level analysis are used to produce increments
for the water content in the first three soil layers (correponding to the root zone) :

d d
es(Ta) —es(Ty)
A8 = ax(T,—T,)+bx|100>-2—2>" (12.8)
a” b { es(T2)
and for the first soil temperature layer :
AT = ¢cx(T,—T,) (12.9)

The coefficientsa anth are defined as the product of optimum coeffiaients 3 and minimising the variance of
analysis error and of empirical functios; F, aRd reducing the size of the optimum coefficients when the
coupling between the soil and the lower boundary layer is weak.

RH
Og Dja 0
a=—01+0 RHD}pTG_pRHTpRHeD (12.10)
¢0y, (o, U O
and
O¢ DTSHDZ O
B = —xr01+Cxp0 |PrHe —PrRHTPTED (12.11)
@0y, Lo, U g
with
[ oM,
¢ = |1+0=0 || 1+ Ggpl | = Prut (12.12)
(o, 00 RHE

wherep,, represents the correlation of background errors between parameterg  and

The statistics of background errors have been obtained from a series of Monte-Carlo experiments with a single-
column version of the atmospheric model where initial conditions for soil moisture have been perturbed randomly.
They were obtained for a clear-sky situation with strong solar insolation. Empirical functions are aimed to reduce
soil increments when atmospheric forecast errors contain less information about soil moisture. To obtain negligible
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soil-moisture corrections during the night and in wintes, is a function of the cosine of the mean solar zenith
anglep,, , averaged over the 6 h prior to the analysis time :

F, = %{1+tanr{)\(uM—0.5)]} A=7 (12.13)

The optimum coefficients are also reduced when the radiative forcing at the surface is weak (cloudy or rainy situ-
tations). For this purpose, the atmospheric transmittance  is computed from the mean downward surface solar
radiation forecasted during the previous 6 hatRg[] as:

R quM
- =g
w = B it (12.14)

whereS, is the solar constant.

The empirical functiorf, is expressed as :

H 0 Tr <Trmin
— E T —Trmin
Fz = O T Trmin < Tr < Trmax (12.15)
[ rmax ™ trmin
. 1 Tr > Trmax
With T, = 0.2 and T, = 0.9 .

The empirical functiorF;  reduces soil moisture increments over mountainous areas :

0 0 z> Zmax
g
Z-Z
F3 = E..%Z ] _;ax EF Zmin <Z< Zmax (12-16)
[ min max
0 1 Z< Zmin

whereZ is the model orograph¥,,,,, =500 m afig,,  =3000 m.

Furthermore, soil moisture increments are set to zero if one of the following conditions is fufilled:
1) The last 6 h precipitation exceeds 0.6 mm
2) The instantaneous wind speed exceeds 18 m s
3) The air temperature is below freezing
4) There is snow on the ground

To reduce soil moisture increments over bare soil surfaces, the standard deviations and the correlations coefficients
are also weighted by the vegetation fractiép = ¢, +cy , where low and high vegetation cover are defined in
Chapter 7 of the Physics Documentation.

The statistics of forecast errors necessary to compute the optimum coefficients are Tilee ir2.1

The correlations have been produced from the Monte-Carlo experiments. The standard deviation of background
error for soil moistureosy is set to 0.013m? on the basis of ECMWF forecasts differences between day 1 and
day 2 of the net surface water budget (precipitation minus evaporation minus runoff).

The standard deviation of analysis erar  is given by the screen-level analysis from :
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1 1.1
= ==+5 (12.17)
Oa O, O
From the values chosen for the screen-level analg/is 1.2K ogrli'd: 4.47 %.
Soil moisture increments®  are such that they keep soil moisture within the wilting Bgjnt and the field ca-
pacity 8.,, values, i.e.:
. if 6, <8;,,then 8, = min(6,, 6, + AB)
. if 6,>8p,,,then8, = max(6,,, 6,+A0)
Finally the coefficients providing the analysis increments are :
a=C,xaxF;F,F
Y v (12.18)
b =C,xBxF,;F,F;
and
c=(1-FyF; (12.19)

The coefficientc is such that soil temperature is more effective during night and in winter, when the temperature
errors are less likely to be related to soil moisture. This way, 2 m temperature errors are not used to correct soll
moisture and soil temperature at the same time.

TABLE 12.1 SATISTICS OF BACKGROUND ERRORS FOR SOIL MOISTURE DERIVED FROMONTE-CARLO
EXPERIMENTS

Coefficient Value
Pro1 -0.82
Pre2 —0.92
Pre3 -0.90
PrHe1 0.83
PrHe2 0.93
PrHe3 0.91
op 1.25K
o 9.5%
PrRHT -0.99

In the 12 h 4D-Var configuration, the soil analysis is performed twice during the assimilation window and the sum
of the increments is added to the background values at analysis time.
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CHAPTER 13 Sea surface temperature and sea-ice
analysis

THIS CHAPTER IS NOT YET AVAILABLE
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CHAPTER 14 Reduced-rank Kalman filter

Table of contents
14.1 The modified change-of-variable

14.2 The Hessian singular vector calculation

14.1 THE MODIFIED CHANGE -OF-VARIABLE

From the point of view of the analysis, the reduced-rank Kalman filter (sometimes known as the “simplified” Ka-
Iman filter) consists of a modification to the change-of-variable. The control variable for the analysis is defined as

x = XT|Y O/xL sx (14.1)
Fl

wherel is the static change of variable used in 3D- and 40War;  is a small, square, upper-triangular matrix; and

X is an orthogonal matrix which rotates the control variable so that the leading few elements correspond to a sub-

space of interest, such as the space spanned by a set of singular vectors.

The background cost function corresponding to the change of variable defiagd (. 1)is

;
J, = 6xTLTXT{E F ]XL 3 (14.2)
=

whereE = U'U+F'F .

The aim of the reduced-rank Kalman filter is to choose the matiices Fand to be good approximations to the
corresponding sub-matrices from the true covariance matrix of background error (in the space defined by the ma-
tricesL andX ). The algorithm is described in detail by Fisher (1998) [ECMWF rd Tech Memo 260]. The modi-
fied change-of-variable is completely specified by two sets of vesiors zand k forl...NSKFVECS . The
vectorss, define the subspace of interest, while for dach , the vector  defines the action of the inverse of the
true covariance matrix of background errorgn

The main namelist or the reduced rank Kalman filter is NAMSKF. This contains LSKF, the global switch for the
modified change of variable; NSKFVECS, the number of pairs of vegprs zand ; and CINSKFY and CINSK-
FZ, which are the names of the files containing the vectprs  zgnd  respectively. The remaining variables in the
namelist are used in the Hessian simplified vector calculation, and are described later.

The setup routine for the reduced-rank Kalman filteé8isSKF. After reading the namelist NAMSKEF to find how

many vectors to read, and from which filéd)SKFreads the vectors, into SKFROT (jromskj) andz, into
ZZVECS. Both sets of vectors are read using the roulB&\DVEC, which expects spectral fields of vorticity,
divergence, specific humidity, temperature and LNSP. The fields must be on model levels, but may be of a different
spectral truncation to that of the analysis increments, in which case they are truncated or padded with zeroes as
appropriate. The, vectors are usually produced by the Hessian singular vector calculation described below, and

117
(Edited 19 September 2003)



9 Part Il: ‘Data assimilation’
A\~

must be scaled by the reciprocal of the eigenvalue which is stored in the GRIB header for each field, and is returned
in the optional argument GREADVEC. The vectors are transformed to control vector space and then to a space
with a Euclidean inner product by calls@6IAVAR, CHAVARINAD andLCZTOIFS

Next, the orthogonal transformation represented by the mxtrix Eqir{14.1)is constructed. This transformation
consists of a sequence of Householder matrices (i.e. matrices of the(femuuT) , Where is a normalized
vector). The transformation is constructed so that it sets to zero all but the first NSKFVECS elements of each of
the vectors in SKFROT. The vectors which define the transformation are stored in SKFR@MEh), overwtrit-

ing the previous content. The non-zero elements of the transformed vésiprs are retained in the array ZU. The
transpose of the orthogonal transform is applied to the vectors in ZZVEC. Since the Householder matrices are sym-
metric, the transpose &f  is equivalent to applying the sequence of Householder matrices in reverse order.

At this stage, SKFROT contains the matdx  and ZU contains the m&trix  in the following equation (equation
11 of Fisher, 1998)

7 =

T
EF H (14.3)

F G|O

The matrixS is upper-triangular, so the elementdof &hd may be determined by back-substitution. Following

this calculationE may not be exactly symmetric, due to rounding errors and the fact that the change-of-variable
is not exactly invertible. It is explicitly symmetrized by replacing each eleiagnt (Epy E;;)/2

The matrixU inEg. (14.1)is the Cholesky square root ¢E — FTF) . The decomposition requires that the latter
matrix is positive definite. This is also the condition for positive definiteness of the background error covariance
matrix implied by the change of variable. The Cholesky decomposition of the n(EtHxFTF) is performed us-
ing the NAG routind=-07FDF. If the decomposition fails due to an indefinite matrix, then the elements of the matrix

F are reduced by a factor of 2 and the Cholesky decomposition is attempted again. A maximum of 4 attempts are
made.

The elements of the matri¥  are stored in the leading NSKFVECS elements of each vector of SKFMAT. The
remaining elements contain the matkix

The modified change-of-variable is appliedivAR2, CVAR2IN, CVAR2AD, andCVAR2INAD. In the case of
CVARZ2, the code corresponds exactly to the change of variable defirteql if14.1) The inverse, adjoint and in-
verse-adjoint of the change 6VAR2 are similar. The inverse makes use of the following equation, and uses back-
substitution to apply the matrid ™

-1 1
{U ﬂ = [U 0] , (14.4)
Fl FU™ |

14.2 THE HESSIAN SINGULAR VECTOR CALCULATION

The reduced-rank Kalman filter requires as input pairs of vectors which sa,tisty(Pf)_lsk ,where isaflow-
dependent approximation to the true covariance matrix of background error. Fisher (1998) [ECMWF rd tech memo
260] describes how pairs of vectors satisfying this requirement may be calculated during the course of a “Hessian
singular vector” calculation. That is, a singular vector calculation in which the inner product at initial time is de-
fined by the Hessian matrix of an analysis cost function. The vesfors  are partially-evolved singular vectors. The
vectorsz, are produced during the adjoint model integration.
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The Hessian singular vector calculation is controlled using the namelist NAMLCZ. The global switch for the cal-
culation is LJACDAV. Initial and final time inner products are selected by NLANTYPE. For NLANTYPE=6 or 8,

the initial time inner product is defined by the analysis Hessian. Otherwise, the spectral inner product is used. For
NLANTYPE=8 or 9, the final time inner product is defined by the background error covariance matrix. Otherwise,
the energy inner product is used. The final time inner product may be restricted to a given geographic area using
the variables ALAT1, ALON1, ALAT and ALONS. The optimization time is specified in units of timesteps by
NJDSTOP. The maximum number of iterations to be performeddyDAV (see below) is specifed by NITERL.

The calculation will stop when this number of iterations has been performed, or when NEIGEVO singular vectors
have been calculated.

The control-level routine iISUN3, which is called directly fromCNTO. Much of the first part of£UN3 is con-
cerned with initialization of observations, etc. which are needed by the analysis Hessian calculation. This part of
the code is essentially the same as the corresponding @artAdf, and will not be described here.

The Hessian singular vector calculation is unusual in that it explicitly changes the values of NCONF and NSTOP
during the calculation. During the parts of the calculation which resemble an analysis, NCONF is set to 131 and
NSTOP is set to zero. When the calculation resembles the ordinary singular vector calculation, NCONF is set to
601 and NSTOP is set to the optimization time for the singular vector calculation defined by NJDSTOP. The scalar
product is also recalculated at various times in the code. In general, however, a spectral inner product is used for
most of the calculation. When other inner products are required, they are calculated using an explicit weight matrix
rather than by resetting the SCALP array.

After the initializations for the Hessian calculation, the trajectory for the singular vector calculation is created. A
starting vector for the singular vector calculation is initialized, and the gradient for zero control variable is calcu-
lated and saved in VAZG (yomcva.

The singular vectors are calculated by a call#®LAN2, which writes them to the file svif€UN3reads the vec-

tors and callS£NT3TL to give the singular vectors at final time. These are written to the file svevo. The vegtors
required for the reduced rank Kalman filter are written during the tangent linear integration at a step specified by
NWRISKF (in NAMSKF). The vectorg, required by the reduced rank Kalman filter are produced by a call to
CNT3AD. The switch LWRISKF (also in NAMSKF) determines whether the vedprs zand  are written.

NALANZ2 provides an interface to the main generalized eigenvector sAleDAV. The main task diALAN2
is to write the singular vectors to the file svifs, and to perform some diagno3ti€AV calculates the Hessian
singular vectors as the solutions to the following generalized eigenvector equation

MTWMx = AJ"x (14.5)
whereM denotes the tangent linear modél, defines the inner product at optimization timé&, and is the Hes-
sian of an analysis cost function. The algorithm requires operators which Npr!yM J"and  to arbitrary vec-

tors. These operations are represented in the code by the subrafikes\dOPM respectively. SubroutinePM
calculates a Hessian-vector product as a finite difference between the gradient for the input vector, and the gradient
for zero control vector which is in VAZG. The gradient for the input vector is calculated by a $ali4.

JACDAV starts with an initial matriyy  of KSTART vectors. The columns\of  are orthonormalized with respect
to the initial time inner product by a call dORTHODM. That is, they are made to satisWTJ"V =1 MOR-
THODM also applie®©PK andOPM to the vectors.

Next, the following small ordinary eigenvalue problem is solved

119
IFS Documentation Cycle CY23r4 (Edited 19 September 2003)



Part II: ‘Data assimilation’

3

viIM'wMvy = ey (14.6)

The eigenvalues of this problem are the Ritz values (i.e. approximations to the eigenvalagsjief.5) The re-
sidual,r = M TWMVy —0J"Vy , for the leading unconverged Ritz value is selected. The residual is orthogonal
to the columns oV in the Euclidean sense. A vector which is orthogonal with respect to the Hessian is produced
by first calculating an approximate solution to the linear equalion = r , and then explicitly orthonormalizing

v by a call toMORTHODM. The linear equation is solved by a callR&€ GBFGSwhich implements a precondi-
tioned conjugate gradient algorithm. The accuracy of the solution is determined by GREDBFGS (the required re-
duction in the norm of the error), and NINNER (the maximum number of iterations to be performed). A limited
memory BFGS preconditioner is used, which is applied by the ro&tif©@S The memory size (in pairs of vectors)

is given by MEMBFGS.

Once the vector has been determined, it is included as a new coluxin of , and the process is repeated. It can be
shown that if the linear equatiodi'v = r  is solved exactly, then the algorithm is equivalent to a Lanczos algo-
rithm. If it is solved approximately, the algorithm resembles the Jacobi-Davidson method.
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	1.3 Practical implementation
	As mentioned earlier in Section 1.2, the formulation used is incremental (Courtier et al. 1994). ...
	(i) Comparison of the observations with the background at high resolution to compute the innovati...
	(ii) First minimization at low resolution to produce preliminary low-resolution analysis incremen...
	(iii) Update of the high-resolution trajectory to take non-linear effects partly into account. Ob...
	(iv) Second main minimization at low resolution with tangent-linear physics,
	(v) Formation of the high-resolution analysis (described below) and a comparison of the analysis ...
	(vi) Computation of analysis and background errors, currently at T42L60, as described in Chapter ...
	Each of the job steps is carried out by a different configuration of IFS. They are commonly called:
	(i) The first trajectory run (which includes screening and is sometimes called the screening run)...
	(ii) The main minimization, simplified physics, conf=131, LSPHLC=.T.,
	(iii) The trajectory update, conf=1, LOBS=.T.,
	(iv) The main minimization with physics, conf=131, LSPHLC=.F.,
	(v) The final trajectory runs, conf=1, LOBS=.T., NUPTRA=NRESUPD, with verification screening,
	(vi) The background error minimization, conf=131, LAVCGL=.T.
	A truncation operator (the IFS full-pos post-processing package) allows one to go from high-resol...
	1.3.1 Data flow
	All files containing model fields are coded in GRIB (the GRIB format is described in GRIB.ps). Th...
	The is truncated to the resolution of the minimization to form (the low-resolution background), w...
	The main minimization job writes out the low-resolution background (the previous high-resolution ...
	(1.7)

	1.3.2 Formation of high-resolution analysis
	The analysis field is the sum of the background and of the pseudo-inverse of the truncation opera...

	1.3.3 Humidity and ozone
	The humidity control variable used in the minimization is specific humidity in spectral space (LS...
	The high resolution analysis of in gridpoint space, is modified (in SUGPQLIMDM, called by RDFPINC...
	The ozone control variable used in the minimization is ozone in spectral space (LSPO3). The incre...


	1.4 Preconditioning and control variable
	In practice, it is necessary to precondition the minimization problem in order to obtain a quick ...
	(1.8)
	Comparing Eq. (1.2) and Eq. (1.8) shows that satisfies the requirement. thus becomes the control ...

	1.5 Minimization
	The minimization problem involved in this 3D/4D-Var can be considered as large-scale, since the n...
	The approximation of the Hessian computed during a 3D/4D-Var minimization (read in by SUHESS) is ...
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	2.1 Introduction
	This part of the documentation covers the top level controls of 3D-Var (CVA1) and gives a detaile...

	2.2 Top-level controls
	The routine CVA1 controls the variational configuration of IFS—its flow diagram is shown in Fig. ...
	At the start of CVA1 additional setups for the variational configurations are done (SU1YOM). The ...
	2.2.1 Gradient test
	If LTEST=.true. a gradient test will be performed both before and after minimization. This is don...
	(2.1)
	with . Repeatedly increasing by one order of magnitude, printing at each step should show approac...
	The behaviour of the cost function in the vicinity of in the direction of the gradient is also di...
	(2.2)
	and printed. For explanation of other printed quantities see the routine GRTEST itself.
	Figure 2.1 Flow diagram for subroutine cva1.

	2.2.2 Iterative solution
	When the cost function is exactly quadratic, as is the case in the background error estimation, c...
	In normal 3D/4D-Var, the cost function is allowed to be (weakly) nonlinear. The minimization algo...
	1) Convergence reached, according to the above criterion.
	2) M1QN3 called incorrectly.
	3) Line search failed—step too big, > .
	4) Maximum number of iterations (NITER) reached
	5) Maximum number of simulations (NSIMU) reached
	6) Line search failed—step too small, < RDX, (in namvar).
	7) Impossible gradient value, ‘descent’ direction points uphill.


	2.2.3 Last simulation
	After M1QN3 has returned control to CVA1, one final simulation is performed. This simulation is d...


	2.3 A simulation
	A simulation consists of the computation of and . This is the task of the routine SIM4D, see Fig....
	(2.3)
	The gradient of with respect to the control variable is stored in the array VAZG (YOMCVA).

	• Copy from VAZX to SP3-arrays (YOMSP) using the routine YOMCAIN
	• Compute , the physical model variables, using CHAVARIN:
	. (2.4)
	• Perform the direct integration of the model (if 4D-Var), using the routine CNT3, and compare wi...
	Calculate for which OBSV is the master routine.

	• Perform the adjoint model integration (if 4D-Var) using CNT3AD, and observation operators’ adjo...
	Calculate , and store it in SP3.

	• and its gradient are calculated in COSJC called from CNT3AD, if LJC is switched on (default) in...
	• Transform to control variable space by applying CHAVARINAD.
	• Copy from SP3 and add to , already in the array VAZG, using YOMCAIN
	• Add the various contributions to the cost function together, in EVCOST, and print to log file u...
	• Increase the simulation counter NSIM4D by one.
	The new and are passed to the minimization algorithm to calculate the of the next iteration, and ...
	sim4d monvar setup an/gradients write-outs
	su2yom
	sucos suic,sucosjb,sujo preset cost-functions
	pvazg=2*pvazx compute gradient & cost-function
	fjbcost= . . . (simple inner product in cont.var space)
	suallt prepare model arrays
	cain transfer cont.var pvazx into model arrays spa3/2
	chavarin convert spa3/2 from cont.var space to model space
	   <l131tl> subfgs convert fields in to increments for TL model
	                   cnt3tl run TL model with computation
	   <else> cnt3 run model with computation
	cnt3ad run forced adjoint model
	chavarinad convert gradient from model to cont.var space
	cainad transfer gradient into pvazg array
	evcost gathercost I/O gather cost-function from all PEs
	calculate and print
	<nsim4d=0 or 999> prtio print breakdown
	readoba , obatabs , prtdpst
	scaas print cost-functions
	   <igrats> cain, stepo with ltwegra : write gradient on disk
	   <ianats> cain, stepo with ltwana : write analysis on disk
	   nsim4d++ increase simulator counter
	Figure 2.2 Flow diagram for the subroutine sim4d.
	2.3.1 Interface between control variable and model arrays
	The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model...
	CAIN is also the interface between the memory distributed spectral arrays and the non-distributed...


	2.4 Interpolation to observation points
	2.4.1 Method
	COBSLAG is the master routine for the horizontal interpolation of model data to observation point...
	• Performs the interpolation, using SLINT
	• Message-passes the result to the processors where the corresponding observations belong, using ...
	• Copies the model data at observation points to the so-called GOM-arrays (yommvo, described belo...
	There are three methods of horizontal interpolation:
	1) LAIDDI: 12-point bi-cubic interpolation, used for all upper-air fields (if NOBSHOR=203) except...
	2) LAIDLI: Bi-linear interpolation, used for surface fields, and
	3) LAIDLIC: Nearest gridpoint, used for cloud parameters.

	The interpolation method for the upper-air fields can be switched to bi-linear by specifying NOBS...
	The adjoint (OBSHORAD) follows the same general pattern but gets further complicated by the fact ...
	stepo (. . . .) scan2m buffer initializations
	cobs setup field pointers
	sc2rdg read grid-point data
	load grid-point arrays
	extmerb grid
	extpolb extrapolation
	cobslag scan observation arrays
	obshor fetch observation lat/lon
	slint horiz interpolation
	to obs point
	(see semilag doc)
	mpobseq exchange data
	among PEs
	insobsec load YOMMVO
	arrays GOMx
	obsv reset ZFJO cost function
	suobarea setup area index for each obs
	(mainly according to satellite ID)
	ecset define obs sets
	sort TOVS/SATEM data
	taskob decide whether to call TL/AD obs operators
	preset ZFJO cost function
	sufaceo ��(TL/AD ) surface obs vertical operator
	upperair �(TL/AD) upper-air obs vertical operator
	satem �����(TL/AD) SATEM / SSM/I obs vertical operator
	tovclr �����(TL/AD) TOVS radiance obs vertical operator
	sum cost-function for each area (diagnostic only)
	sum ZFJO into FJO cost-function
	<lprtgom> prtgom debugging printout of yommvo common
	Figure 2.3 Flow diagram for subroutines scan2mdm and obsv.

	2.4.2 Storage in GOM-arrays
	The GOM arrays (YOMMVO) contain the model values at observation points. The list of upper-air mod...
	• GOMx for conventional data, containing full model profiles of optionally , , , , (ozon), (cloud...
	• GOSx for conventional data, containing surface data of (surface pressure), (skin temperature). ...
	• GSMx for TOVS data, containing full model profiles similar to GOMx
	• GSSx for TOVS data, containing surface data of , , , , , , and , where and are lowest model lev...
	• GSCx for SCAT data, containing lowest model level data of , , , and , and surface data of and ....
	The reason for this split is purely to save space in memory. Model profiles of wind for example a...
	The trajectory GOM5 arrays (identical to GOM) are allocated in the case that tangent linear obser...
	At the end of the adjoint observation operators the GOM-arrays are zeroed and overwritten by the ...
	The r.m.s. of the GOM arrays is printed (by PRTGOM) if the switch LPRTGOM=.true., (in YOMOBS). Th...


	2.5 Computation of the observation cost function
	The cost function computation follows the same pattern for all observational data. This common st...
	2.5.1 Organization in observation sets
	The vertical observation operators are vectorized over NMXLEN (yomdimo) data. To achieve this the...

	2.5.2 Cost function
	The master routine controlling the calls to the individual observation operators is called HOP. T...
	The HOP/HOPTL/HOPAD routines are called from TASKOB/TASKOBTL/TASKOBAD (called from OBSV/ OBSVTL/O...
	The following describes HOP/HOPTL. The adjoint HOPAD follows the reverse order.
	• First prepare for vertical interpolation using the routine PREINT. Data on model levels are ext...
	• The observation array is then searched to see what data is there. The ‘body’ of each observatio...
	• Then the forward calculations are performed. There is an outer loop over all known ‘variable nu...
	• In HDEPART, calculate the departure as
	, (2.5)
	where the two terms in brackets have been computed previously: the first one in the high resoluti...
	If LOBSTL then is

	, (2.6)
	which simplifies to what has been presented in Section 1.2.
	The TOVS radiance bias correction is also carried out at this point by subtracting the bias estim...
	Finally the departure is divided by the observation error (NCMFOE in ODB) to form the normalized ...

	• Departures of correlated data are multiplied by , see 2.5.4. The division by has already taken ...
	• The cost function is computed in HJO, as
	(2.7)
	for all data except SCAT data. The SCAT cost function combines the two ambiguous winds (subscript...

	(2.8)
	These expressions for the cost function are modified by variational quality control, see Section ...

	• HJO also stores the resulting effective departure in the NCMIOM0-word of ODB, for reuse as the ...
	2.5.2 (a) Adjoint
	We have now reached the end of the forward operators. In the adjoint routine HOPAD some of the ta...
	(2.9)
	which is calculated in HOPAD for all data. The gradient of is much more complicated and is calcul...


	2.5.3 tables
	There are two different tables for storing the values. One is purely diagnostic (FJO, yomcosjo1),...

	2.5.4 Correlation of observation error
	The observation error is assumed uncorrelated (i.e. the matrix is diagonal) for all data except t...
	The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation function ...
	The radiosonde geopotential data are vertically correlated (under the switch LRSVCZ) using a cont...
	The vertical correlation of SATEM thickness data is as described in Kelly and Pailleux (1988) and...
	When is non-diagonal, the ‘effective departure’ is calculated by solving the linear system of equ...


	2.6 Variational quality control
	The variational quality control, VarQC, has been described by Andersson and Järvinen (1999). It i...
	2.6.1 Description of the method
	The method is based on Bayesian formalism. First, an a priori estimate of the probability of gros...
	The normal definition of a cost function is
	(2.10)
	where is the probability density function. Instead of the normal assumption of Gaussian statistic...
	(2.11)
	where subscript refers to observation numer . and are the Gaussian and the flat distributions, re...
	(2.12)
	(2.13)
	The flat distribution is defined over an interval which in Eq. (2.13) has been written as a multi...
	: (2.14)
	(2.15)
	(2.16)
	where
	(2.17)

	2.6.2 Implementation
	The a priori information i.e. and are set during the screening, in the routine DEPART, and stored...
	JOCOST computes according to Eq. (2.15) and the QC-weight—the factor within brackets in Eq. (2.16).

	2.6.3 Correlated data
	The quality control of radiosonde height data (if used) is more complex because of the correlatio...
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	3.1 Introduction
	4D-Var is a temporal extension of 3D-Var. Observations are organized in one-hour time-slots as de...
	(3.1)
	with subscript i the time index. Each i corresponds to one-hour time slot. is as before the incre...
	The minimization is performed in the same way as in 3D-Var. However, it works fully in terms of i...
	A way to account in the final 4D-Var analysis for some non-linearities is to define a series of m...
	(3.2)
	with superscript n the minimization index.
	is the current estimate of the atmospheric flow. It is equal to the background for the first mini...
	(3.3)
	The number of times the trajectory is updated, i.e. the number of outer-loops (which corresponds ...
	This can be controlled in the prepIFS set-up, together with the number of inner-loops (iterations...
	The variational quality-control (Chapter 2 ‘3D variational assimilation’ Section 2.6) is switched...
	The final 4D-Var trajectory is post-processed every 3 hours. Fields called 4v are created with in...
	The analysis and forecast error calculations are performed as explained in Chapter 7 ‘Background,...

	3.2 Organization of data in time slots
	3.2.1 Observation preprocessing.
	Observational input data (BUFR-format) is read in by means of 6-hour time-windows in OBSPROC prep...
	In the case of 4D-Var there are NO6HTSL input time-windows. For 6 h, 12 h and 24 h 4D-Var analysi...
	Another affecting parameter (see discussion about reshuffle below) is NOSORTSL (set via OBSPROC n...
	Once all BUFR-data has been successfully read in, the unique sequence numbers for reports (before...
	The sequence numbers are generated without honouring the input time-windows. Currently for CONV-d...
	After the sequence-number generation, all BUFR data is read in and re-shuffled for better load ba...
	An essential step to organise observational data for 4D-Var purposes occurs in the OBSPROC routin...
	Before the reshuffle of observations can take place, some crucial information about 4D-Var run ch...
	• NANTIM and NANDAT are used to calculate an absolute start time and date of an analysis period. ...
	• NOSORTSL, NTBMAR and NTFMAR are used to get parameters NUM_TIME_SLOTS and TIME_DELTA_4DVAR in-l...
	• OBSORT parameter vectors TIME_SLOT_YYYYMMDD and TIME_SLOT_HHMMSS to indicate start date and tim...
	The actual reshuffle is handled via OBSORT routine lib_obsort (in particular mapsort). The initia...
	The reshuffle of the CMA data is done per each time-slot. Currently all data is written into one ...
	When time-slot information has been once placed into the DDR#1, it will be propagated automatical...
	Finally, upon the CMA-data reshuffle also the BUFR data is re-shuffled to retain a one-to-one rel...
	The CMA format is converted to an ODB database suitable for input to the IFS. This conversion is ...

	3.2.2 Inside IFS.
	The timeslot information is read into IFS in RD_OBS_BOXES called from OBADAT. It is possible to r...
	• number of observations (NTSLTOB)
	• length of observations (NTSLLEN)
	• number of SCAT observations(NTSLSCA)
	• number of TOVS observations(NTSLTOV)
	• number of non-SCAT and non-TOVS observations(NTSLNTV)
	The following global information regarding timeslots is extracted
	• number of observations for each processor and time-slot (NTSLTOBP)
	• global number of observations for each time-slot (NTSLTOBG)
	• max (over processors) number of observations for each time-slot (NTSLTOBM)
	The arrays to contain observation equivalents (the GOM-arrays) are allocated to be able to contai...
	1) that the trajectory is only run once
	2) that they are used in screening. The tables needed to message pass the observation equivalents...

	3.2.3 Observation screening in 4D-Var
	The trajectory integration can be performed in the observation screening mode. The part of the IF...
	At the end of the screening, the CCMA-ODBs are reshuffled for load-balancing in the subsequent mi...
	Depending on whether the hourly or 6-hourly screening is applied, the division of observations in...


	3.3 Inner and outer loops: practical implementation
	Similarly to 3D-Var, job steps are carried out with different configurations of the IFS:
	(i) The first trajectory run (which includes screening) – conf=2, LSCREEN=.T.
	(ii) The background error minimization, conf=131, LAVCGL=.T.
	(iii) The main minimization, conf=131
	(iv) The update of the trajectory , conf=1, LOBS=.T.
	Steps (iii) and (iv) are performed times where is the number of outer loops or, equivalently, of ...
	The first trajectory run (i), the background-error minimization (ii) and the first main minimizat...
	The ouput of the minimization steps are the files MXVAxx000+000000, MXVAxx999+000000 (as in 3D-Va...
	The input of the second trajectory is the same as in 3D-Var. The output is an analysis at the ini...
	In summary, the first two trajectories use the background as an input, and the following ones use...
	The number of updates of the trajectory starting from 0 at the first minimization is carried insi...

	3.4 Tangent linear physics
	The first minimization uses the simplified physics (vertical diffusion and surface drag) activate...
	The following minimizations use a more complete linear physics activated by the switches LETRAJP,...
	3.4.1 Set-up
	In order to activate the improved linear physics, the switch LSPHLC of the simplified linear phys...
	The following switches must be set to TRUE : LEPHYS, LAGPHY (also necessary to activate the ECMWF...
	Tunable parameters of the improved physics (which should not in principle be modified) are define...
	Diagram representing the input and output files during a standard 4D-Var analysis consisting of 3...
	trajectory (00)
	Figure 3.1 Diagram representing the input and output files during a standard 4D-Var analysis cons...

	3.4.2 Mixed-phase thermodynamics
	The thermodynamical properties of the water mixed phase are represented by a differentiable weigh...
	(3.4)
	with (RLPALP1) and (RLPTRC).
	The tuning parameter controls the intensity of the smoothing, and the temperature has been chosen...
	This weighting function is used by the large-scale condensation and moist-convection routines.

	3.4.3 Vertical diffusion
	The linear versions of the vertical diffusion scheme are called from the drivers VDFMAINTL and VD...
	Vertical diffusion applies on wind components, dry static energy and specific humidity. The excha...
	In stable conditions (), the drag coefficients are defined as :
	(3.5)
	and
	(3.6)
	with the following expressions for the neutral coefficients :
	(3.7)
	(3.8)
	In unstable conditions (), the drag coefficients are defined as:
	(3.9)
	(3.10)
	The empirical coefficients (RLPBB), (RLPCC) and (RLPDD) are set to 5 in SUPHLI.
	In the planetary boundary layer, the exchange coefficients can formally be writen :
	(3.11)
	with the following mixing length vertical profile :
	(3.12)
	The asymptotic mixing lengh for momemtum is set to 150 m, whereas . The pseudo-depth of the bound...
	If this vertical-diffusion scheme is activated in the nonlinear model (LPHYLIN = .TRUE.), the pos...
	This modified scheme make use of all the routines from the operational vertical diffusion, except...
	The logical LEKPERT in NAMTRAJP controls the perturbations of the exchange and drag coefficients....

	3.4.4 Sub-grid scale orographic effects
	The subgrid-scale orographic scheme is a complete linearization of the operational ECMWF scheme d...

	3.4.5 Large-scale precipitation
	Linearized versions of large-scale condensation scheme are CONDTL and CONDAD. Local supersaturati...

	3.4.6 Long-wave radiation
	The linear long-wave radiation is based on a constant emissivity approach, where only perturbatio...
	(3.13)
	where the net flux arrays (PEMTED5) computed from the full non-linear radiation scheme are stored...

	3.4.7 Deep moist convection
	The partial linearization of the ECMWF mass-flux scheme is performed, leading to the following te...
	(3.14)
	The mass-fluxes profiles associated with the updrafts and the downdrafts and are recomputed in th...
	(3.15)
	which requires extra local storage of the profiles of entrainment and detrainement rates and comp...
	in CUDDRAFN (variables PDMFEN and PDMFDE). Eq. (3.15) is only applied when deep convection is dia...

	3.4.8 Trajectory management
	The ECMWF physics uses the tendencies from the dynamics, and variables at as input to compute the...
	(3.16)
	where the variable has already been updated by the dynamics and by the previous physical processe...
	Thus :
	(3.17)
	In Eq. (3.16), if the operator is nonlinear, its linearization around the basic state , will requ...
	The storage of the trajectory at is performed in CPGLAG by the routine WRPHTRAJ called before the...
	The following three-dimensional fields are stored :
	• For the atmosphere: the prognostic variables (wind components, temperature, specific humidity) ...
	• For the soil: the prognostic variables for temperature and moisture content (used to compute th...
	A number of two-dimensional fields used at time step need to be stored: surface pressure, surface...
	The preliminary computations (pressure and geopotential at full and half model levels, astronomy ...
	The number of fields to be stored is defined in SUTRAJP for 3-D atmospheric fields on full model ...
	The option to store the trajectory on disk (instead of in memory) also exists through the logical...
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	4.1 Introduction
	The background term described in Courtier et al. (1998) was in May 1997 replaced by a new formula...

	4.2 Description of the algorithm
	We use the following notation:
	• is the low–resolution analysis increment, i.e. model field departures from the background,
	• is the assumed background error covariance matrix,
	• , , and are increments of vorticity, divergence, temperature and surface pressure, and specific...
	• and are the balanced parts of the and increments. The concept of balance will be defined below,...
	• and are the unbalanced parts of and , i.e. and , respectively.
	The incremental variational analysis problem, Eq. (1.2) of Chapter 1 ‘Incremental formulation of ...
	The background-error covariance matrix is implied by the design of , which currently has the form
	(4.1)
	where is a balance operator going from the set of variables , , and , to the model variables , , ...
	(4.2)
	So far, the formulation is perfectly general. Now, we restrict to a simple form and choose a part...
	The covariance matrix is assumed to be block-diagonal, with no correlation between the parameters:
	(4.3)
	It implies that the analysis is independent from the other variables. However, assuming that the ...
	Each autocovariance block in the above matrix is itself assumed to be block-diagonal in spectral ...
	The balance relationship is arbitrarily restricted to the following form:
	(4.4)
	So that the complete balance operator is defined by:
	(4.5)
	or equivalently, in matrix form:
	(4.6)
	The matrix blocks , and are, in general, not invertible, but is. As explained above, the inverse ...
	The matrix multiplication of by allows one to write explicitly the implied background error covar...
	(4.7)
	The blocks implied by and its transforms by the balance operator blocks , and are the balanced pa...
	The , and operators used to define the balance have a restricted algebraic structure. and are bot...
	(4.8)
	The operator is a block–diagonal matrix of identical horizontal operators transforming the spectr...
	(4.9)
	The , and operators all have the same structure: block-diagonal, with one full vertical matrix pe...
	The actual calibration of the operator requires the following 4 steps; each one uses a set of 24/...
	1) operator. The horizontal balance coefficients of are computed by a linear regression between t...
	(4.10)
	which relies on the definition of the model vertical geometry and of reference values for . We us...
	2) operator. The vertical blocks of this operator are computed for each wavenumber by a linear re...
	(4.11)
	so that the statistical sampling is better for the small scales than for the large scales because...
	3) and operators. The vertical blocks are computed for each wavenumber exactly like , except that...
	(4.12)
	One notes that the matrix is not square (the output is larger than the input because there is a k...
	4) Error covariances. The vertical autocovariances of the , , and , difference patterns are compu...
	In addition to these 4 steps, some minor preprocessing is performed on the covariances. The verti...

	4.3 Technical implementation
	The statistical calibration is done using dedicated scripts outside the IFS code. First, the 24/4...
	4.3.1 Input files
	The IFS needs these two GSA files to use in e.g. the incremental analysis jobs. The configuration...

	4.3.2 Namelist parameters of
	Some other important namelist options in NAMJG are LCFCE (to enforce uniform background errors), ...
	(This is the setup code tree in IFS cy16r3, option stabal96)
	(namelist namjg has already been read into yomjg in routine sujb below su0yoma)
	sujbcov determine configuration (nonsep93, stabal96 or totenrgy)
	allocate work arrays
	sujbdat read covariance file ‘stabal96.cv’
	commjbdat distribute covariances to all processors
	suprecov prepare vertical interpolation
	truncate / extrapolate spectrally to IFS resolution
	reset q stratospheric correlations
	sujbcor < lcorcosu > prepare Legendre polynomials
	normalize covariance matrices into correlations
	eigenmd factorize inverse vertical correlation matrices
	—> arrays FGEDVNx, FGEGVM
	generate horizontal correlation spectra
	< lcorcosu > sujbcosu generate compactly supported
	horizontal correlation spectra
	inverse square root of horiz correl spectra —> array FGSCNM
	print average vertical correlation matrices
	< kprt>1 > print spectra and gridpoint structures of
	horizontal correlations
	sujbstd calculate total variances at each level
	standard deviation vertical profiles times REDNMC
	—> arrray FCMN / FCEMNP
	suecges horizontal stdev structures (see cycling doc)
	sujbbal read balance file ‘stabal96.bal’
	commjbbal distribute balance to all processors
	convert to IFS truncation —> arrays SDIV, STPS, BFACT/2
	sujbmod (modification of vertical correlations, not supported)
	sujbmap (modification of geometry, not yet implemented)
	sujbdiag (diagnostic of structure functions, not supported)
	sujbstat (online update of statistics, not yet implemented)
	sujbwrit (rewrite of operators, not yet implemented)
	< ljbtest > sujbtest (Technical test of code)
	setup random vector
	cvar2in / cvar2inad adjoint test on them
	cvar2 / cvar2in inverse tests on them
	cvar2ad / cvar2inad inverse tests on them
	Figure 4.1 Calling tree for subroutine sujbcov.

	4.3.3 IFS routines
	Inside the IFS code, is localized in the setups below subroutine sujbcov and in the inverse chang...
	(i) SUJBDAT: Reads covariances from file stabal96.cv,
	Interpolates in the vertical to the model’s vertical levels (if necessary)
	Sets humidity correlations to 0, for pressures less than 100 hPa.
	(ii) SUJBCOR: Sets up spectral correlation operator
	Covariance matrices (one per ) are converted to vertical correlation matrices and horizontal auto...
	(iii) SUJBSTD: Set up background error standard deviations, see Subsection 4.3.4.
	(iv) SUJBBAL: Set up balance constraint. Read the file stabal96.bal and store in yomjg, for later...
	(v) SUJBTEST: Test of the adjoint of the change of variable, if LJBTEST=.true.
	The distributed memory affects the setups below sujbdat and sujbbal when the data files are read ...
	cvar2in < lskf > (see the simplified Kalman filter doc)
	cvaru3i jgcori trmtos mpe_send /mpe_recv for spectral
	to column transposition
	jgvcori matrix multiplications
	by FGEGVNx / FGEDVNx i.e.
	sqrt of vertical correlations
	trstom mpe_send / mpe_recv for column
	to spectral transposition
	jghcori division by FGSCNM i.e.
	inverse sqrt of horizontal correlations
	< lspfce > jgnrsi multiplication by FCEMN i.e.
	average background errors
	< else >����stepo (0AA00XAG0) interface to ��jgnr(x)
	i.e. multiply by
	3D background errors
	balstat apply horizontal balance operator defined by
	BFACT1 / BFACT2 from vorticity to P variable
	balvert trmtos mpe_send / mpe_�recv for spectral
	to column transposition
	apply vertical balance operator defined by
	SDIV / STPS from P to unbalanced variables
	trstom mpe_send / mpe_recv for column
	to spectral transposition
	< lsubfg > addfgs add SP7A3/2 (trajectory) to SPA3/2
	Figure 4.2 Calling tree for subroutine cvar2in.
	In the change of variable, there is a transposition of the fields between the horizontal and vert...

	4.3.4 Background error
	The background standard errors are set up below sujbstd (in SUINFCE, called from SUECGES) and use...

	4.3.4 (a) Humidity
	The humidity background errors are currently not cycled – they are computed (in SUSHFCE under JGN...
	(4.13)
	(4.14)
	The standard deviation in terms of relative humidity is then converted to specific humidity, taki...
	(4.15)
	where is the relative humidity, , is the saturation water-vapour pressure at the temperature in q...
	Humidity increments are forced to be negligibly small above the tropopause to avoid a systematic ...
	More specifically, for each grid column is set to for model levels such that , where the level is...
	(4.16)
	or, if no such level can be found for in the range from 500 to 70hPa, that it is the lowest level...
	.
	Here and are the background temperature and pressure at level of the grid-column.
	In addition, any values of lower than are reset to .
	For pressures less than = 800 hPa, and over the sea, the model of background errors above is modi...
	(4.17)
	where (where LSM = land–sea mask) and =12500.


	Part II: Data assimilation

	CHAPTER 5 Conventional observational constraints
	Table of contents
	5.1 Introduction
	5.2 Data usage
	5.2.1 Controls
	5.2.2 Overview of observation operators
	5.3 The observation operator for geopotential height

	5.3.1 Quadratic vertical interpolation�near the top of the model
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	5.1 Introduction
	The observation operators provide the link between the analysis variables and the observations (L...

	5.2 Data usage
	Observation operators for all observation types that were used by OI have also been implemented i...
	5.2.1 Controls
	The blacklist mechanism is very flexible and allows the complete control of which data to use/not...
	Classes of data can also be switched on and off using the NOTVAR array in NAMJO, however it is pr...
	• 0, means that the data will be used,
	• –1, means that the data will not be used, and
	• –2, means that the data will be passive, i.e. departures will be calculated but there will be n...

	5.2.2 Overview of observation operators
	The operator is subdivided into a sequence of operators, each one of which performs part of the t...
	(i) The inverse change of variable (CHAVARIN) converts from control variables to model variables ...
	(ii) The inverse spectral transforms put the model variables on the model’s reduced Gaussian grid...
	(iii) A 12-point bi-cubic or 4-point bi-linear horizontal interpolation gives vertical profiles o...
	(iv) Vertical integration of, for example, the hydrostatic equation to form geopotential (Section...
	(v) vertical interpolation to the level of the observations.
	The vertical operations depend on the variable. The vertical interpolation is linear in pressure ...
	The vertical interpolation operators for SYNOP 10 m wind (PPUV10M) and 2 m temperature (PPT2M) ma...
	Relative humidity is assumed constant in the lowest model layer to evaluate its 2 m value (PPRH2M...
	The variational analysis procedure requires the gradient of the objective function with respect t...


	5.3 The observation operator for geopotential height
	The geopotential at a given pressure is computed by integrating the hydrostatic equation analytic...
	(5.1)
	where is 288 K, is the geopotential above 1013.25 hPa and is 0.0065 in the ICAO troposphere and 0...
	(5.2)
	where is the model surface pressure and , the model orography. is obtained by vertical interpolat...
	(5.3)
	with
	for and .
	5.3.1 Quadratic vertical interpolation�near the top of the model
	Above the second full level of the model, the linear interpolation (PPINTP)is replaced by a quadr...
	(5.4)
	where , and are constants determined so that the above equation fits the heights at the top level...
	(5.5)
	where 1,2 and 3 refer to levels , respectively.

	5.3.2 Below the model’s orography
	The extrapolation of the geopotential below the model’s orography is carried out as follows: Find...
	(5.6)
	(5.7)
	Find the temperature at mean sea level, (also in CTSTAR)
	(5.8)
	(5.9)
	where is 290.5 K and is 255 K. The geopotential under the model’s orography is (in PPGEOP) calcul...
	(5.10)
	where .


	5.4 The observation operator for wind
	In PPUV a linear interpolation in (PPINTP) is used to interpolate and to the observed pressure le...

	5.5 The observation operators for humidity
	Specific humidity , relative humidity and precipitable water content are linearly interpolated in...
	5.5.1 Saturation vapour pressure
	The saturation vapour pressure is calculated using Tetens’s formula:
	(5.11)
	using FOEEWM (mixed phases, water and ice) in the model and FOEEWMO (water only) for observations...
	(5.12)
	with K.

	5.5.2 Relative humidity
	In GPRH relative humidity is computed:
	(5.13)
	and then in PPRH interpolated to the required observed pressure levels (using PPINTP). Below the ...

	5.5.3 Precipitable water
	In GPPWC precipitable water is calculated as a vertical summation from the top of the model:
	(5.14)
	and then in PPPWC interpolated to the required observed pressure levels (using PPINTP). is assume...

	5.5.4 Specific humidity
	Specific humidity is in PPQ interpolated to the required observed pressure levels (using PPINTP)....


	5.6 The observation operator for temperature
	Temperature is interpolated linearly in pressure (PPINTP), in the routine PPT. Above the highest ...
	(5.15)
	Below the lowest model level the temperature is extrapolated by
	(5.16)
	with , for , but is modified for high orography to , where
	(5.17)
	for , and
	(5.18)
	for . If then is reset to zero. The two temperatures and are computed using Eqs. (5.6) to (5.9).

	5.7 Surface observation operators
	All surface data are processed in the routine SURFACEO. Preparations for the vertical interpolati...
	5.7.1 Mathematical formulation
	An analytical technique (Geleyn, 1988) is used to interpolate values between the lowest model lev...
	(5.19)
	(5.20)
	(5.21)
	where are wind and energy variables, are friction values and is von Kármán’s constant.
	The temperature is linked to the dry static energy by:
	(5.22)
	(5.23)
	Defining the neutral surface exchange coefficient at the height as:
	(5.24)
	The drag and heat coefficients as:
	(5.25)
	(5.26)
	we can set the following quantities:
	, , (5.27)
	and considering the stability function in stable conditions as:
	(5.28)
	we obtain integrating Eqs. (5.19) and (5.20) from 0 to (the lowest model level):
	(5.29)
	(5.30)
	In unstable conditions the stability function can be expressed as:
	(5.31)
	and the vertical profiles for wind and dry static energy are:
	(5.32)
	(5.33)
	The temperature can then be obtained from as:
	(5.34)
	When is set to the observation height, Eqs. (5.29) and (5.30) and Eqs. (5.32)–(5.34) give the pos...

	5.7.2 Surface values of dry static energy
	To determine the dry static energy at the surface we use Eqs. (5.22) and (5.23) where the humidit...
	(5.35)
	is given by (Blondin, 1991):
	(5.36)
	with
	(5.37)
	where is the soil moisture content and is the soil moisture at field capacitiy (2/7 in volumetric...
	where m is a critical value. The wet skin fraction is derived from the skin-reservoir water conte...
	,
	where
	with m being the maximum amount of water that can be held on one layer of leaves, or as a film on...

	5.7.3 Transfer coefficients
	Comparing the Eqs. (5.19) – (5.20) integrated from to with Eqs. (5.24) to (5.26), and can be anal...
	(5.38)
	(5.39)
	Because of the complicated form of the stability functions, the former integrals have been approx...
	(5.40)
	where is given by Eq. (5.24). The bulk Richardson number is defined as:
	(5.41)
	where is the virtual potential temperature. The functions and correspond to the model instability...
	(a) unstable case
	(5.42)
	(5.43)
	C=5
	(b) Stable case
	(5.44)
	(5.45)
	d = 5

	5.7.4 Two-metre relative humidity
	In GPRH relative humidity is computed according to Eq. (5.13). The relative humidity depends on s...
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	6.1 Introduction
	The processing within 3D/4D–Var of satellite data follows the general layout presented in Section...
	The current operational configuration uses TOVS radiances (Andersson et al. 1994), SCAT ambiguous...
	At the introduction of 21r1 (May 1999) we move from the use of RTOVS cloud-cleared radiances to 1...

	6.2 Set-up of the radiative-transfer code
	There are two set–up routines (GETSATID and RTSETUP) for the radiative transfer computations and ...
	6.2.1 Satellite identifiers
	Satellite identifiers are dealt with in just one place in the IFS and that is in the routine GETS...

	6.2.2 Satellite sensors
	The various types of radiance data are classified by sensor. Each satellite sensor is assigned a ...

	6.2.3 Fixed pressure levels and RT validation bounds
	The list of the 43 fixed pressure levels is passed from the RTTOV library (where they have been r...

	6.2.4 Radiance observation errors, bias and emissivity
	Observation errors and bias corrections for 1C radiances are written to the odb in a call to RAD1...


	6.3 Set-up for geopotential thickness and PWC
	NESDIS or 1D-Var thickness and/or PWC data are currently not used in operations (since August 199...
	6.3.1 Layers
	The extended odb (prior to screening) contains the reported layers of SATEM thickness and PWC. Th...

	6.3.2 Observation errors
	The observation errors are given in SURAD and assigned in THICKPWC. Observation errors are otherw...
	The PWC errors are given by
	(6.1)
	where is the saturation PWC for the temperature profile of the background, is the truncation of t...
	(6.2)
	with , the saturation vapour pressure, computed by Eq. (5.11).


	6.4 Observation operators
	The computation of radiances is initiated and controlled by the HOP routine. Thicknesses, PWC and...
	6.4.1 Radiances
	The routine HOP interpolates the model profiles of temperature, humidity and ozone (, and ) to th...
	Some of the radiance channels are highly sensitive to the surface skin temperature, which is also...
	In the case of 1C, or ‘raw’ radiance data, as used since May 1999 (McNally et al. 1999) 1D-Var is...
	In HOP the observation array is searched for radiance data. The compressed ODB (after screening) ...
	The tangent linear HOPTL and the adjoint HOPAD follow the same pattern as HOP. In both the TL and...

	6.4.2 Thicknesses
	The pressures of layer bounds (top T, and bottom B) are found (in HOP) by scanning the observatio...

	6.4.3 Precipitable water from SATEM and SSM/I
	As for thicknesses, the pressures of layer bounds are found by scanning the observation array for...

	6.4.4 Scatterometer winds
	In HOP, the observation array is scanned for SCAT data. Normally two ambiguous pairs of –componen...
	As PPUV10M (Section 5.7) is used also for SCAT data (since cy18r6), the observation operator is e...
	In the adjoint (SURFACAD) there is a separate section of HOP for the calculation of the .
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	7.1 Nomenclature
	The calculation of standard deviations of background errors is unfortunately an area where the us...
	A second source of confusion is that terms ‘background error’ and ‘forecast error’ are often used...

	7.2 Input and ‘massaging’ of background errors
	Background errors for use in are initialised by a call to SUINFCE. This is part of the set-up des...
	At this stage, all processors have complete fields of background error. Each processor now alloca...
	A large loop over variables follows. For each variable, the GRIB parameter code is examined. Depe...
	The background errors are interpolated onto the model levels by a call to SUVIFCE. A number of va...
	Background errors for specific humidity are read from the background-error file if the namelist v...
	Next, one of two routines is called. SUMDFCE calculates a vertically average ‘pattern’ of backgro...
	Alternatively, SUPRFFCE is called to calculate global mean profiles of the input background error...
	The final step in processing the background errors is to call STEPO(‘00000Y000’). This, in turn, ...

	7.3 Diagnosis of background error variances
	The analysis errors are calculated by subtracting a correction from the variances of background e...
	If NBGVECS is zero, as it is by default, then background errors for variables which are explicitl...
	If NBGVECS is non-zero, then the variances of background error are estimated using randomization....
	The code allows two further configurations of the background error estimation. Neither is operati...
	The background errors diagnosed by BGVECS may be written out for diagnostic purposes by setting L...

	7.4 Calculation of eigenvalues and eigenvectors of the Hessian
	The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvecto...
	CONGRAD starts by transforming the initial control variable and gradient to a space with euclidia...
	Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of t...
	The optimal step is calculated as the point at which the gradient is orthogonal to the search dir...
	The leading eigenvalue of the tridiagonal system is compared against the leading converged eigenv...
	The new Lanczos vector is calculated by normalizing the gradient and the subroutine loops back to...
	After the last iteration, the converged eigenvectors of the Hessian are calculated by calling WRE...
	Finally, CONGRAD transforms the control vector and gradient from the euclidian space used interna...

	7.5 The Preconditioner
	CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the...
	(7.1)
	where the vectors are orthogonal. The pairs are calculated in PREPPCM, and are intended to approx...
	A set of vectors, , is read in using READVEC. These vectors are assumed to satisfy
	(7.2)
	where is the background-error covariance matrix, and is the analysis-error covariance matrix. Vec...
	(7.3)
	(Here, denotes the change-of-variable operator implemented by CHAVAR.)
	Let us denote by the matrix whose columns are the vectors . A sequence of Householder transformat...
	It is clear that has only non-zero eigenvalues. Moreover, the non-zero eigenvalues are the eigenv...
	Now, since is an orthogonal matrix, we have . So, we may write Eq. (7.3) as
	(7.4)
	Let us denote the eigenpairs of by . Then we may write Eq. (7.4) as
	(7.5)
	The orthogonality of and the orthonormality of the eigenvectors , means that the vectors are orth...
	Inverting Eq. (7.5) gives
	(7.6)
	Defining gives the required approximation to the Hessian matrix.
	The preconditioner vectors are sorted in decreasing order of , and all vectors for which are reje...
	The numbers are stored in RCGLPC. The vectors, are stored in VCGLPC.
	Application of the preconditioner is straightforward, and is performed by subroutine PRECOND. Thi...
	(7.7)
	with orthonormal , then the expressions for , and result from replacing in Eq. (7.7) by , and res...

	7.6 Calculation of analysis-error variances
	The eigenvectors and eigenvalues of the Hessian matrix calculated by CONGRAD are passed to XFORME...
	(7.8)
	The approximation is equivalent to setting to one all but the leading eigenvalues of the precondi...
	The first step is to undo the preconditioning. Multiplying to the left and right by , gives
	(7.9)
	Substituting for the preconditioner matrix from Eq. (7.7), gives the following
	(7.10)
	where
	(7.11)
	Operationally, preconditioning is not used. However XFORMEV makes no particular use of this fact....
	The first step in XFORMEV is to calculate the vectors . They are stored in VCGLWK.
	The next step is to invert the approximate Hessian matrix defined by Eq. (7.10). Let be the matri...
	(7.12)
	The matrix is formed and its Cholesky decomposition is calculated using the NAG routine F07FDF. T...
	(7.13)
	The matrix is calculated by back-substitution.
	The final stage in the calculation of the analysis errors is to transform the columns of the matr...
	(7.14)
	where , and where represents the inverse of the change of variable. The columns of may be written...
	The analysis errors are calculated as the difference between the background errors and a correcti...

	7.7 Calculation of forecast error variances
	The analysis errors are inflated according to the error growth model of Savijärvi (1995) to provi...
	The error growth model is
	(7.15)
	Here, represents growth due to model errors, represents the exponential growth rate of small erro...
	The saturation standard deviations are calculated as times the standard deviation of each field. ...
	The growth due to model error is set to 0.1 times the global mean background error per day. The e...
	The error growth model is integrated for a period of NFGFCLEN hours. The integration is done anal...
	ESTSIG overwrites the contents of ANEBUF with the estimated variances of forecast error. The vari...

	Part II: Data assimilation

	CHAPTER 8 Gravity-wave control
	Table of contents
	8.1 Introduction
	8.2 Normal-mode initialization
	8.3 Computation of normal modes
	8.3.1 Vertical modes
	8.3.2 Horizontal modes and help arrays
	8.4 Implementation of NMI
	8.5 Computation of
	8.6 Digital filter initialization
	8.7 Implementation of DFI as a weak constraint in 4D-Var


	8.1 Introduction
	In 3D-Var, gravity-wave control is achieved via the techniques of normal-mode initialization (NMI...
	Section 8.2 provides a brief overview of NMI techniques, together with references to scientific p...

	8.2 Normal-mode initialization
	If the model equations are linearized about a state of rest, the solutions can (with a certain am...
	(8.1)
	where is the ‘slow’ component and the ‘fast’ component. Linear NMI consists of removing the fast ...
	Nonlinear NMI was first demonstrated by Machenhauer (1977), in the context of a spectral shallow-...
	Implicit normal mode initialization (Temperton 1988) is based on the observation that, except at ...

	8.3 Computation of normal modes
	8.3.1 Vertical modes
	The vertical normal modes depend on the number of levels in the model and on their vertical distr...

	8.3.2 Horizontal modes and help arrays
	The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral t...
	For most applications of the NMI procedure in the operational suite, it is considered that the la...
	All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical mod...
	The horizontal modes are computed by calling SUMODE3. In turn, SUMODE3E computes the explicit mod...


	8.4 Implementation of NMI
	Nonlinear NMI is invoked by calling NNMI3. Model tendencies are computed by calling STEPO to perf...

	8.5 Computation of
	In the notation of Eq. (8.1), the penalty term is defined by
	(8.2)
	where is an empirically chosen weighting factor, is the current state of the control variable and...
	is computed by calling the routine COSJC. Control passes through JCCOMP to NMIJCTL, where is eval...

	8.6 Digital filter initialization
	Digital filter initialization consists in removing high frequency oscillations from the temporal ...
	Time oscillations exceeding a cut-off frequency can be filtered by applying a digital filter to a...
	The step function is found to be
	In practice, the convolution is restricted to a finite time interval of time span . We can write and
	with . This truncation introduces Gibbs oscillations which can be attenuated by introducing a Lan...
	An alternative which is used at ECMWF has been proposed by Lynch to use a Dolph-Chebyshev window ...
	where , , and is the Chebyshev polynomial of degree . The time span of the window is chosen so th...

	8.7 Implementation of DFI as a weak constraint in 4D-Var
	In the context of variational data assimilation, the digital filter is used as a weak constraint....
	During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital ...
	The weak constraint term which is added to the cost function is the moist energy norm of the depa...
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	9.1 Introduction
	The observational data partitioning scheme has been encapsulated into a separate module called OB...
	• Mode 0, submodule BUFRsort. Partitioning and splitting of the BUFR data among the available pro...
	• Mode 1, submodule CMA+BUFRsort. Geographical re-ordering of the CMA data in conjunction with th...
	• Mode 2, submodule CMAsort. Geographical re-ordering of the CMA data.; it also copes with the vi...
	• Mode 3, submodule MATCHUP. Matching up and updating the ECMA data present in one geographical d...
	• Mode 4, submodule VMATCHUP. The same as MATCHUP, but for virtual processors. More than NPROC EC...

	9.2 Data flow with the analysis components
	This section describes OBSORT as a part of the analysis pre- and postprocessing (OBSPROC) and the...
	Data-assimilation cycle (see Fig. 9.1 ) starts by retrieval of BUFR data. Currently there are fou...
	In the first step MAKECMA picks up prepared BUFR files and decodes them. All, except formally err...
	Figure 9.1 Dataflow in observation processing at the ECMWF on a single processor implementation.
	In the next step, the ECMA file is passed to the process for screening the observations; this rej...
	All the observations passing this test are written to a so-called Compressed CMA-file (CCMA); thi...
	The observations for the actual data assimilation (the minimization) are passed through a CCMA fi...
	The minimization provides the initial-condition fields for the subsequent global forecast. It als...
	The subsequent observation-processing step to the minimization is called MATCHUP; this is part of...
	When the ECMA file is up to date, the last part of the process starts with FEEDBACK, the purpose ...

	9.3 Observational data partitioning
	Due to the high data volume and the time-critical scheduling in operations, it is necessary to pa...
	The fact that there is always a limit for the maximum available memory per processor, forces us t...
	Disk-space consumption by the CMA files is greatly reduced by the introduction of various packed ...
	Although the screening module effectively reduces the size of the CMA data by an order of magnitu...

	9.4 Data partitioning scheme
	In the parallel implementation it might, at first sight, look feasible to split up observational ...
	Furthermore, it would be convenient to have approximately the same geographical distribution of o...
	Figure 9.2 A typical split of the globe containing observational data, produced by the OBSORT for...
	We have found the following geographical partitioning of observational data works well, and is pr...
	1) Set the origin for observational-data space on the Greenwich meridian, since this obeys the co...
	2) Choose NPROCA to be the number of latitudinal bands from north to south, and NPROCB to be the ...
	3) Set the number of processors to NPROC = NPROCA ¥ NPROCB.
	4) Read the local CMA files and build up a table of the observational data that contains the geog...
	5) Communicate the local table, and sort locally, the resulting global table with respect to time...
	6) For each time slot, sort the locally available global-information table with respect to latitu...
	7) Continue in similar fashion for each latitude band to resolve the final longitudinal boxes.
	8) Assign one box for each processor and update the destination-processor information (the proces...
	9) Shuffle the actual CMA data, based on the information in the global table. This step involves ...
	Because of inadequate load balancing in the main analysis process, the requirement for strict geo...

	9.5 The parallel data flow of the OBSORT
	In the parallel implementation (Fig. 9.3 ) we have to revise the dataflow diagram described in a ...
	Figure 9.3 Dataflow in observation processing in the parallel scheme.
	Before going on, it is advisable to explain some internal details in re-ordering (or shuffling) o...
	Figure 9.4 The five main stages when redistributing CMA data among processors.
	Fig. 9.4 shows the five main stages in the geographical data re-ordering. Firstly, every processo...
	A recent change to OBSORT has been to enable more CMA files to be written than processors were av...
	The I/O, in OBSORT, to the CMA file is done in two chunks. Firstly for the DDR sections, and seco...
	Prior to the actual MAKECMA, we wanted to add functionality that redistributes the few input BUFR...
	After receiving re-distributed BUFR data, MAKECMA continues to perform its decoding functions, bu...
	The screening proceeds in parallel mode by reading local ECMA files, one per processor, and perfo...
	There is a special function present in the OBSORT for post-adjustment of clustered data. It was f...
	For a better parallel performance in the minimization it is crucial to obtain a good load balance...
	Finally, it was soon clear, that MATCHUP could be integrated inthe FEEDBACK. As a result MATCHUP ...
	To accomodate the virtual-processor approach, a recent change to MATCHUP has been introduced to p...

	9.6 OBSORT calling tree
	• LIB_OBSORT
	• SWAP_FWD
	• INIT_COMMON
	• SUNUMC
	• SETCOMBU
	• SUBUOCTP
	• SETBUFR
	• BUPRQ
	• SETCOMCM
	• SUCMOCTP
	• SUCMA
	• CHECK_NAMELIST
	• BUFRSORT
	• EXPAND_STRING
	• DUMP_NAMELIST
	• PRECHECK
	• PRECHECK_CMA_ARRAY
	• SYNC_TIMESLOT_DATA
	• GLOBAL
	• INIT_COMMON
	• GEN_TIMESLOT_DATA
	• UPDCAL2
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	10.1 Introduction
	This chapter describes the observation screening in the ECMWF 3D/4D-Var data assimilation. A more...
	This chapter was prepared in September 1997 by Heikki Järvinen, Roger Saunders and Didier Lemeur,...

	10.2 The structure of the observation screening
	10.2.1 The incoming observations
	Before the first trajectory integration, the observations are extracted from a data base of obser...

	10.2.2 The screening run
	The ECMWF 3D/4D-Var data assimilation system makes use of an incremental minimization scheme (Cou...
	Technically, the final result of the observation screening is a pair of observation arrays. The o...

	10.2.3 General rationale of the observation screening
	The general logic in the 3D/4D-Var observation screening algorithm is to make the independent dec...

	10.2.4 3D- versus 4D-Var screening
	In the 3D-Var assimilation system, the observations processed have been gathered over a 6-hour lo...
	In summer 1997, a new screening procedure called 4D-screening was implemented that took into acco...


	10.3 The independent observation screening decisions
	10.3.1 Preliminary check of observations
	The observation screening begins with a preliminary check of the completeness of the reports (pre...

	10.3.2 Blacklisting
	Next, the observations are scanned through for blacklisting. At the set-up stage the blacklist in...

	10.3.3 Background quality control
	The background quality control (FIRST) is performed for all the variables that are intended to be...
	Table 10.1 The predefined limits for the background quality control, given in terms of multiples ...
	u, v
	9.00
	16.00
	25.00
	z, ps
	12.25
	25.00
	36.00
	dz
	x
	x
	x
	T
	9.00
	16.00
	25.00
	rh, q
	9.00
	16.00
	25.00
	Flag values are denoted by 1 for a probably correct, 2 for a probably
	incorrect and 3 for an incorrect observation. The variables are
	denoted by u and v for wind components, z for geopotential height,
	ps for surface pressure, dz for thickness, T for temperature, rh
	for relative humidity and q for specific humidity, respectively.
	There is also a background quality control for the observed wind direction (FGWIND). The predefin...



	10.4 Screening of satellite radiances
	This section describes the use of RTOVS, valid in April 1999. At the time of writing it was plann...
	10.4.1 General
	The radiances from the RTOVS 120 km BUFR data received from NESDIS are preprocessed in a dedicate...
	. In the screening pass ADVAR is called twice by TOVCLR, once with IS set to 1 (when all the oper...

	10.4.2 Input
	The fast radiative-transfer model RTTOV-5 for TOVS radiances requires an input profile of 40 leve...
	Table 10.2 TOVS channel usage and (O+F) errors assumed in 1D-Var (the errors used in 4D-Var are i...
	1
	All/global
	1.40
	1.40
	1.40
	1.40
	2
	All/global
	0.35
	0.35
	0.35
	0.35
	3
	All/global
	0.30
	0.30
	0.30
	0.30
	4
	Clear/sea/global
	0.20
	0.20
	0.20
	5
	Clear/sea/global
	0.30
	0.30
	0.30
	6
	Clear/sea/global
	0.40
	0.80
	0.80
	7
	Clear/sea
	0.60
	1.20
	8
	Clear/sea
	1.00
	2.00
	9
	FG only
	10
	Clear/sea
	0.80
	1.60
	11
	Clear/global
	1.10
	1.10
	1.10
	12
	Clear/global
	1.50
	1.50
	1.50
	13
	Clear/sea
	0.50
	1.00
	14
	Clear/sea
	0.35
	0.70
	15
	Clear/sea
	0.30
	0.60
	16
	FG only
	17
	FG only
	18
	FG only
	19
	FG only
	21
	QC check
	22
	All/sea*
	0.30
	0.30
	1.00
	23
	All/global*
	0.22
	0.22
	0.22
	0.22
	24
	All/global
	0.25
	0.25
	0.25
	0.25
	25
	All/global
	0.60
	0.60
	0.60
	0.60
	26
	All/global
	1.00
	1.00
	1.00
	1.00
	27
	All/global
	1.80
	1.80
	1.80
	1.80
	*Cloudy data not used in tropics


	10.4.3 Bias correction
	The next step is to apply the bias correction to the NESDIS radiances. The details of the bias co...

	10.4.4 Quality control
	Several quality checks are then applied to the measured and background radiances, and ADVAR retur...
	(i) Check that the background profile vector is within realistic limits (e.g. temperature is with...
	(ii) The measured and background brightness temperatures are present for all required channels an...
	Table 10.3 Definition of 1D-Var failure flags and typical rates in the IFS.
	0
	80%
	Retrieval OK
	nn
	1.0%
	Measurement cost too high for channel nn
	55
	17%
	At edge of scan, otherwise OK
	66
	0%
	Failed stability check (not applied)
	99
	0.5%
	Minimization failed to converge
	100
	1.0%
	Failed window channel cloud test
	5nn
	0.1%
	Channel nn failed fine background check
	6nn
	0.3%
	Channel nn failed gross background check
	7nn
	0%
	Bad background radiance for channel nn
	887
	0.3%
	background profile outside rttov limits
	888
	0%
	background profile corrupt
	9nn
	0%
	Radiances for channel nn corrupt
	999
	0%
	No valid scan or valid satid or bias coeffs
	A series of more critical tests are then applied where ADVAR continues even if the test fails but...
	(i) Gross background check (i.e. the measured radiance departures from the background are less th...
	(ii) The background temperature, specific humidity and ozone profiles are checked to make sure th...
	(iii) A fine background check where the square of the radiance departures are flagged if they are...
	(iv) A check for cloud contamination for the HIRS channels is included by checking that the radia...
	(v) Radiances at the two extreme edge positions of the swath are flagged at present and not used ...
	(vi) Checks are also made that the bias-correction coefficients, satellite id, and scan position ...


	10.4.5 Retrieval
	Table 10.4 Files required by ADVAR
	chanspec.dat
	Specifies channel usage
	rmtberr.dat
	Specifies radiance observation errors (O+F)
	fcbkerr.dat
	Specifies 1D-Var background error covariances (B)
	bcor.dat
	Bias correction coefficients
	rt_coef_ieee.dat or
	rt_coef_fmt.dat
	RTTOV coefficients in binary or ascii format.
	The main task for ADVAR is to perform a 1D-Var retrieval of temperature, water vapour and ozone p...
	The minimization of the cost function is performed using the method of Newtonian iteration, and u...
	A final check on the stability of the retrieved profile is provided in the code, but is not imple...


	10.4.6 SSM/I radiances
	SSM/I radiances are also screened in a similar module DVSSMI, which performs a similar set of fun...
	A specialized library, ssmicode is used for the retrievals. Some documentation can be found in Ge...


	10.5 Scatterometer processing
	10.5.1 Introduction
	This section describes the flow of ERS, NSCAT, and QuikSCAT scatterometer data through the assimi...
	This section is broken into five subsections. The first is the introduction, which you are readin...

	10.5.2 Background
	ESA’s ERS-1 scatterometer was launched in July 1991 and stopped operating in June 2000. The succe...
	Source code for scatterometer processing resides in ClearCase under the project name scat. The li...
	etimesort/ source code for pre-processing ERS data
	module/ shared modules
	qbukey/ source code for adding RDB info to QuikSCAT 50km BUFR
	qfilter/ source code for pre-processing QuikSCAT 25km BUFR
	qretrieve/ source code for SeaWinds wind retrieval
	test/ empty directory for future test code
	e* and q* directories contain processing software specific to ERS and QuikSCAT, respectively. NSC...


	10.5.3 ERS Wind scatterometer processing
	Fig. 10.1 shows a simple flow chart for ERS processing at ECMWF. Below the processing chain in de...
	The MARS archive definitions for the different wind scatterometer observations are:
	Figure 10.1 ERS processing
	Table 10.5
	ERS-1
	122
	122
	1
	ERS-2
	122
	122
	2
	NSCAT
	136
	210
	280
	QuikSCAT
	137*
	300
	281
	QuikSCAT
	138
	301
	281
	Data for a given time window are retrieved from MARS. These data are then input to program timeso...
	ERS winds are retrieved as part of the IFS observation pre-processor, OBSPROC (IFS Documentation ...
	A horizontal thinning is performed on the 19x19 data layout of the ERS scatterometer reports. In ...
	In the IFS, the two retrieved winds are used in an obs cost function with 2 minima (see pp_obs/hj...
	Quality control decisions made by the IFS screening run are:
	High wind speed check: Data rejected if observed or first guess wind speeds are above 25 m/s (RSC...
	Sea ice check: Data rejected if sea ice fraction is greater than 0.1 (RSCATLI). Performed by obs_...
	Global Quality Control: If the average distance-to-the-cone residual for the backscatter measurem...
	There is no back ground wind check performed on scatterometer data, but data may be de-weighted o...
	Quality control decisions and departures from background and analyses are appended to each subset...
	ERS feedback messages have a PRESCAT section sandwiched between the original ERS and the feedback...
	Here are some of the key words and bits to examine in the ERS feedback message (these are in the ...
	Winds retrieved at ESA: BUFR descriptor 11012 for speed and 11011 for direction winds available i...
	Winds retrieved at ECMWF: BUFR descriptor 11192 for u and 11193 for v winds retrieved in program ...
	Report rejected by thinning if BUFR descriptor 33229 (Report Event Word 2) = 1. QC decision made ...
	Background departures x 2 ambiguities: BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and...
	Report rejected by high wind speed check if BUFR descriptor 33233 (Report Status Word 1) = 16. QC...
	Report rejected if Sea Ice faction > 0.1: BUFR descriptor 33220 (Report Event Word 1) = 12. QC de...
	Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision...
	Datum 4D-Var quality control status: BUFR descriptor 33233 (Report Status Word 1) = 1/2/4/8 1 - a...
	Analysis departures x 2 ambiguities: BUFR descriptor 224255 for u (‘U - COMPONENT AT 10 M’) and f...



	10.5.4 NASA scatterometer (NSCAT) processing
	NSCAT data has been used experimentally for impact experiments in 4D-Var as well as a surrogate f...
	Data for the whole 9-month mission are stored on ecfs in HDF format archived in ecfs:/oparch/nsca...
	The format and content of HDF NSCAT files are thoroughly documented in QuikSCAT Science Data Prod...
	Assimilation experiments with NSCAT data are only possible after offline processing of the data. ...

	10.5.5 NASA ``QUIK’’ scatterometer (QuikSCAT) processing
	The implementation of QuikSCAT data processing borrowed many lessons from the use of NSCAT data. ...
	The processing of QuikSCAT data will now be described.
	Data for a given time window are retrieved from MARS. These data are then fed to program qfilter/...
	Duplicate and incomplete records are part of the QuikSCAT real-time data stream because of Seawin...
	QuikSCAT winds are retrieved with program qretrieve/qscat25to50km. The input is 25-km QuikSCAT BU...
	The winds are used just as in NSCAT. The winds are re-ordered (most likely first and its 180-degr...
	Here are some of the key words and bits to examine in the QuikSCAT feedback message (these are in...
	Background departures x 2 ambiguities: Like for ERS described above.
	Report rejected if sea ice fraction is > 0.1: Like for ERS described above.
	Report rejected if data not in the sweet spots: when BUFR descriptor 33229 (Report Event Word 2) ...
	Report rejected if number of winds is < 2: when BUFR descriptor 33220 (Report Event Word 1) = 3. ...
	Report rejected if wind directions are too close: when BUFR descriptor 33229 (Report Event Word 2...
	Datum rejected if number of ambiguities > 2: when BUFR descriptor 33236 (Datum Event Word 1) = 19...
	Report rejected if global QC fails: BUFR descriptor 33220 (Report Event Word 1) = 16. QC decision...
	Datum 4D-Var quality control: Like for ERS described above.
	Analysis departures x 2 ambiguities: Like for ERS described above.
	Figure 10.2 QuickSCAT processing


	10.6 The dependent observation screening decisions
	10.6.1 Update of the observations
	Just before performing the dependent screening decisions, the flag information gathered so far is...

	10.6.2 Global time–location arrays
	Some of the dependent decisions require a global view to the data which is not available as the m...

	10.6.3 Vertical consistency of multilevel reports
	The first dependent decisions are the vertical-consistency check of multilevel reports (VERCO), a...

	10.6.4 Removal of duplicated reports
	The duplicated reports will be removed next. That is performed (MISCE, DUPLI, REDSL) by searching...

	10.6.5 Redundancy check
	The redundancy check of the reports, together with the level selection of multilevel reports, is ...
	For land synop and paob reports, the report closest to the analysis time with most active data is...

	10.6.6 Thinning
	Finally, a horizontal thinning is performed for the airep, TOVS, SSM/I and SATOB reports. The hor...
	Thinning of TOVS, SSM/I and SATOB reports are each done in two stages controlled by THINN. For TO...
	The screening of SATOB data has been extended for atmospheric motion wind observations, including...
	Table 10.6 A summary of the current use of observations in the 3D/4D-Var data assimilation at the...
	synop
	u, v, ps (or z), rh
	u and v used only over sea, in the tropics also over low
	terrain (< 150 m). Orographic rejection limit 6 hPa for rh,
	100 hPa for z and 800 m for ps
	airep
	u, v, T
	Not used in full resolution. Used only below 50 hPa
	satob
	u, v
	Selected areas and levels. thinning of high-density winds.
	dribu
	u, v, ps
	Orographic rejection limit 800m for ps
	temp
	u, v, T, q

	Used on all reported levels. q only below 300 hPa. 10 m u and v used over land only in tropics ov...
	pilot
	u, v
	Used on or closest to standard pressure levels. 10 m u and v used over land only in tropics over ...
	tovs
	Tb

	For TOVS radiance usage see Table 0.3 and the chapter on 1C radiance processing.
	paob
	ps

	Used south of 19oS. Orographic rejection limit 800 m for ps
	scatt
	ssm/i
	u, v
	tcwv

	Not used in full resolution. Used if SST is warmer than 273 K or if both observed and background ...
	Thinned, used over sea.
	The variables are as in Table 10.1, with the addition that Tb stands for brightness temperature a...

	Apart from this thinning, the other observation dependent decisions involved by the screening of ...
	In addition, the quality flag set in OBSPROC is also applied, and an extra quality control is don...


	10.6.7 A summary of the current use of observations
	A summary of the current status of use of observations in the 3D-Var data assimilation is given i...

	10.6.8 Compression of the ODB
	After the observation screening roughly a fraction of 1/10 of all the observed data are active an...


	10.7 A massively-parallel computing environment
	The migration of operational codes at the ECMWF to support a massively-parallel computing environ...
	The global view of the observations is provided in the form of a global ‘time–location’ array for...
	The time–location array is just large enough for all the dependent decisions, except for the redu...

	APPENDIX A
	A.1 Bad reporting practice of synop and temp reports
	The way the synoptic surface stations report mass observations (pressure or geopotential height) ...
	• station altitude is above 800 m and station reports mean sea level pressure
	• station altitude is above 800 m and station reports 1000 hpa level
	• station altitude is above 1700 m and station reports 900 hpa level
	• station altitude is below 300 m and station reports 900 hpa level
	• station altitude is above 2300 m and station reports 850 hpa level
	• station altitude is below 800 m and station reports 850 hpa level
	• station altitude is above 3700 m and station reports 700 hpa level
	• station altitude is below 2300 m and station reports 700 hpa level
	• station altitude is below 3700 m and station reports 500 hpa level
	The reporting practice is also considered as bad if the station reports 500 gpm, 1000 gpm, 2000 g...
	For temp geopotentials the reporting practice is considered as bad if the
	• station altitude is above 800 m and station reports 1000 hpa level
	• station altitude is above 2300 m and station reports 850 hpa level
	• station altitude is above 3700 m and station reports 700 hpa level

	A.2 Revised background quality control for selected observations
	The background quality-control rejection limits are applied more strictly for some observation ty...
	• airep wind observations with zero wind speed are rejected if the background wind exceeds 5 m/s
	• for airep and dribu wind observations the rejection limit is multiplied by 0.5, and for pilot w...
	• for satob wind observations the rejection limit is multiplied by 0.1, except below 700 hPa leve...
	• no background quality control is applied for scatt winds
	• for dribu surface pressure observations the rejection limit is multiplied by 0.9, and for paob ...
	• for airep temperature observations the rejection limit is multiplied by 1.6

	A.3 Use of atmospheric motion winds
	This appendix describes those parts of the ECMWF assimilation system which involves some special ...
	A.3.1 Data selection
	There are several model independent checks which AMW data have to pass in order to be considered ...
	Check on longitude/latitude
	• AMW must be within a circle of 55˚ from the sub-satellite point
	Check on levels depending on the computational method
	• WW CMW and WVMW must be above 400 hPa
	• VIS CMW must be below 700 hPa
	• IR CMW can be used at all levels.
	Check on land/sea
	• All AMW over sea are used
	• AMW over land is not used north of 20ºN. .
	• For Meteosat (0º mission) instead of 20ºN this threshold is 35ºN to allow usage of AMW over nor...
	• For Meteost (63º mission) the use of AMW has been extended over Asia if above 500 hPa. This is ...
	• AMW are blacklisted over the Himalayas as a precautionary measure.
	• AMW over land south of 20ºN (35ºN for Meteosat) is used if above 500 hPa.
	Check on satellite (35ºN for Meteosat) is used if above 500 hPa.
	This is a temporary selection on certain channels or satellites. At present channels and satellit...
	• METEOSAT cloud tracked winds with 90 min temporal sampling
	• METEOSAT IR (not at medium level), VIS, WV
	• METEOSAT HVIS, also at asynoptic times, only if (
	• GOES IR & WV (NOT at asynoptic times)
	• GMS IR & VIS

	A.3.2 Background quality check
	The background quality check is based on a comparison of the AMW deviation from the background. O...
	if [ D2 > (sfg 2 + sobs 2 ) * ERRLIMj * ZREJMOD] then flag= j where D 2 = 1/2 (Du2 +D v2) with Du...
	• ZREJMOD = 0.2 for low level
	• ZREJMOD = 0.1 for all others levels
	A special check or asymmetric check is applied when the observed speed is more than 4 slower than...
	• ZREJMOD = 0.15 at low level
	• ZREJMOD = 0.07 in the tropics
	• ZREJMOD = 0.075 – 0.00125 * SPDfg all others
	• ZREJMOD = 0.0 if SPDfg > 60 (observation gets always flag j = 3)
	When the data is passed to the following variational quality control its probability of being use...
	flag j. With flag j = 1 the data will be assimilated, with flag j =2 it will be given an intermed...



	Part II: Data assimilation

	CHAPTER 11 Analysis of snow
	Snow depth is a model prognostic variable that needs to be analysed. Its analysis is performed in...
	Table of contents
	11.1 Organization
	11.2 Snow-depth analysis
	11.3 Technical aspects

	11.1 Organization
	The snow analysis is a 3-D sequential analysis performed every 6 hours using a successive correct...
	The snow-depth analysis is performed using snow-depth observations and the snow-depth background ...

	11.2 Snow-depth analysis
	The observations are snow depths from SYNOP reports. The background is defined above. The analysi...
	The weight function is the product of functions of the horizontal distance and vertical displacem...
	,
	where
	and
	The snow depth is preserved when the model height is above the observing station, but it is sever...
	In addition to the preliminary quality control in the observation data base, the following checks...
	• if only snow depth observations below 140 cm are accepted.
	• this limit is reduced to 70 cm if .
	• snow-depth observations are rejected if they differ by more than 50 cm from the background.
	• when only one snow-depth observation is available within the influence radius , the snow depth ...
	• snow-depth analysis is limited to 140 cm.
	• snow-depth increments are set to zero when larger than mm (where is expressed in Celsius)
	• snow-depth analysis is set to zero if below 0.04 cm
	• if there is no snow in the background and in more than half of the observations within a circle...
	The analysis of snow depth is finally weighted with climatological values to provide the final an...
	The relaxation coefficient is set to 0.02 corresponding to a time scale of 12.5 days. The global ...
	The snow density is unchanged in the analysis process :
	Areas with permanent snow and ice (defined using the Global Land Cover Characterization product) ...

	11.3 Technical aspects
	The snow analysis software is implemented as a branch of the more comprehensive surface and scree...
	• SSA
	• CONTROL_SSA
	• INISNW
	• SCAN_DDR
	• COORDINATES
	• GETFIELDS
	• SCAN_CMA
	• SCAN_OBS
	• LAND_OBS
	• INITIAL_REJECTION
	• REDUNDANT_OBS
	• SNOW_ANALYSIS
	• SUCSNW
	• SCAN_OBS
	• FG2OBS
	• SUCSNW
	• SNOW_FG
	• FDB_OUTPUT
	• PRINT_SUMMARY
	• PLOTDATA
	• FEEDBACK
	The main program SSA calls CONTROL_SSA where most of the setup and namelist handling are done. Ro...
	After this, all input fields are read into memory in GETFIELDS. They consist of the snow water eq...
	In SCAN_CMA observations are read into memory and a quick validity check of the non-applicable ob...
	Additional screening is done in INITIAL_REJECTION and in REDUNDANT_OBS. The former one sets up an...
	The routine REDUNDANT_OBS removes time duplicates and retains the observations of the station in ...
	The actual snow analysis is performed under SNOW_ANALYSIS. The analysis technique is Cressman’s s...
	The snow-depth background (i.e. first guess) field is constructed from the model first-guess snow...
	The accuracy of the analysis is estimated in PRINT_SUMMARY where some important statistics are su...
	The main logicals of the namelist NAMSSA are :
	• L_SNOW_ANALYSIS : When set to TRUE, the snow analysis is performed.
	• L_SNOW_DEPTH_ANA : When set to TRUE, the snow analysis is performed in snow depth (in oppositio...
	• L_USE_SNOW_CLIMATE : When set to TRUE, a relaxation of the snow analysis towards a monthly clim...
	• L_USE_FG_FIELD : When set to TRUE the snow analysis is set to the first-guess value (no use of ...


	CHAPTER 12 Land surface analysis
	12.1 INTRODUCTION
	Soil temperature and soil water content are prognostic variables of the forecasting system and, a...

	12.2 SCREEN-LEVEL ANALYSIS
	12.2.1 Methodology
	Two independent analyses are performed for 2�m temperature and 2�m relative humidity. The method ...
	The analysis increments at each model grid-point are then expressed as a linear combination of th...
	(12.1)
	where are optimum weights given (in matrix form) by :
	(12.2)
	The column vector (dimension ) represents the background error covariance between the observation...
	(12.3)
	where is the horizontal separation between points and and the e-folding distance taken to 300 km ...
	Therefore :
	(12.4)
	with the standard deviation of background errors.
	The covariance matrix of observation errors is set to where is the standard deviation of observat...
	The standard deviations of background and observation errors are set respectively to 1.5 K and 2 ...

	12.2.2 Quality controls
	Gross quality checks are first applied to the observations such as and where is the dewpoint temp...
	Observation points that differ by more than 300�m from the model orography are rejected.
	For each datum a check is applied based on statistical interpolation methodology. An observation ...
	(12.5)
	where has been set to 3, both for temperature and humidity analyses.
	The number of used observations every 6�hours varies between 4000 and 6000 corresponding to aroun...
	The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived prod...
	(12.6)
	with
	(12.7)

	12.2.3 Technical aspects
	The technical aspects are similar to the snow analysis (see Chapter 11) expect for the computatio...
	Subroutine OISET selects the closest observations from a given grid-point.
	Subroutine OIINC provides the analysis increments from Equations (12.1) and (12.2), by first comp...
	Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA:
	1) C_SSA_TYPE : ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis
	2) L_OI : ‘ true’ for statistical interpolation and ‘false’ for Cressman interpolation
	3) N_OISET : number of observations (parameter )
	4) SIGMAB : standard deviation of background error (parameter )
	5) SIGMAO : standard deviation of observation error (parameter )
	6) TOL_RH : Tolerance criteria for RH observations (parameter in Equation (12.5))
	7) TOL_T : Tolerance criteria for T observations (parameter in Equation (12.5))
	8) SCAN_RAD_2M(1) : Scanning radius for available observations (set to 1000 km)


	12.3 SOIL ANALYSIS
	The soil analysis scheme is based on an “local” optimum interpolation technique as described in M...
	(12.8)
	and for the first soil temperature layer :
	(12.9)
	The coefficients and are defined as the product of optimum coefficients and minimising the varian...
	(12.10)
	and
	(12.11)
	with
	(12.12)
	where represents the correlation of background errors between parameters and .
	The statistics of background errors have been obtained from a series of Monte-Carlo experiments w...
	(12.13)
	The optimum coefficients are also reduced when the radiative forcing at the surface is weak (clou...
	(12.14)
	where is the solar constant.
	The empirical function is expressed as :
	(12.15)
	with and .
	The empirical function reduces soil moisture increments over mountainous areas :
	(12.16)
	where is the model orography, =500 m and =3000 m.
	Furthermore, soil moisture increments are set to zero if one of the following conditions is fufil...
	1) The last 6�h precipitation exceeds 0.6 mm
	2) The instantaneous wind speed exceeds 10 m�s-1
	3) The air temperature is below freezing
	4) There is snow on the ground
	To reduce soil moisture increments over bare soil surfaces, the standard deviations and the corre...
	The statistics of forecast errors necessary to compute the optimum coefficients are given in Tabl...
	The correlations have been produced from the Monte-Carlo experiments. The standard deviation of b...
	The standard deviation of analysis error is given by the screen-level analysis from :
	(12.17)
	From the values chosen for the screen-level analyis and %.
	Soil moisture increments are such that they keep soil moisture within the wilting point and the f...
	• if then
	• if then
	Finally the coefficients providing the analysis increments are :
	(12.18)
	and
	(12.19)
	The coefficient is such that soil temperature is more effective during night and in winter, when ...
	Table 12.1 Statistics of background errors for soil moisture derived from Monte-Carlo experiments
	–0.82
	–0.92
	–0.90
	0.83
	0.93
	0.91
	1.25 K
	9.5 %
	–0.99
	In the 12�h 4D-Var configuration, the soil analysis is performed twice during the assimilation wi...
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	14.1 The modified change-of-variable
	From the point of view of the analysis, the reduced-rank Kalman filter (sometimes known as the “s...
	(14.1)
	where is the static change of variable used in 3D- and 4DVar; is a small, square, upper-triangula...
	The background cost function corresponding to the change of variable defined by Eq. (14.1) is
	(14.2)
	where .
	The aim of the reduced-rank Kalman filter is to choose the matrices and to be good approximations...
	The main namelist or the reduced rank Kalman filter is NAMSKF. This contains LSKF, the global swi...
	The setup routine for the reduced-rank Kalman filter is SUSKF. After reading the namelist NAMSKF ...
	Next, the orthogonal transformation represented by the matrix in Eq. (14.1) is constructed. This ...
	At this stage, SKFROT contains the matrix and ZU contains the matrix in the following equation (e...
	(14.3)
	The matrix is upper-triangular, so the elements of and may be determined by back-substitution. Fo...
	The matrix in Eq. (14.1) is the Cholesky square root of . The decomposition requires that the lat...
	The elements of the matrix are stored in the leading NSKFVECS elements of each vector of SKFMAT. ...
	The modified change-of-variable is applied in CVAR2, CVAR2IN, CVAR2AD, and CVAR2INAD. In the case...
	. (14.4)

	14.2 The Hessian singular vector calculation
	The reduced-rank Kalman filter requires as input pairs of vectors which satisfy , where is a flow...
	The Hessian singular vector calculation is controlled using the namelist NAMLCZ. The global switc...
	The control-level routine is CUN3, which is called directly from CNT0. Much of the first part of ...
	The Hessian singular vector calculation is unusual in that it explicitly changes the values of NC...
	After the initializations for the Hessian calculation, the trajectory for the singular vector cal...
	The singular vectors are calculated by a call to NALAN2, which writes them to the file svifs. CUN...
	NALAN2 provides an interface to the main generalized eigenvector solver, JACDAV. The main task of...
	(14.5)
	where denotes the tangent linear model, defines the inner product at optimization time, and is th...
	JACDAV starts with an initial matrix of KSTART vectors. The columns of are orthonormalized with r...
	Next, the following small ordinary eigenvalue problem is solved
	(14.6)
	The eigenvalues of this problem are the Ritz values (i.e. approximations to the eigenvalues) of E...
	Once the vector has been determined, it is included as a new column of , and the process is repea...
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