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ABSTRACT

Data assimilation is briefly described in its variational formulation. Both three- and four-dimensional variational assim-
ilation are presented with an emphasis on their comparison, strengths and weaknesses. A toy model is used to illustrate
the benefit of including the time dimension in the analysis, before summarizing a few operational results.

1 Introduction

Data assimilation is a major component of Numerical Weather Prediction. The data assimilation problem con-
sists in using the available observations together with the model trajectory to provide an accurate description
of the atmospheric state. This so-called “analysis” can then be used to initialize a forecast or on its own, for
instance to help understand atmospheric properties or in the context of field experiments or re-analyses over
long periods of time. There are mainly two different ways of performing data assimilation. The sequential way
is using observations in small batches in time, as they become available. In contrast, the continuous way is
working over time windows, using all the observations together. This is particularly well suited for re-analyses
problems to obtain the best possible state of the atmosphere at time t using observations before and after this
time. In general, for operational NWP, the time window of interest is typically 3 to 12 hours, due to the fre-
quency of forecasts which are issued to the users. The most commonly used is the 6-hour assimilation window,
which will be the basis of most of the discussions in this paper. There are various sources of information avail-
able within the assimilation window. The two main ones are the observations and a background vector (which
usually comes from a short-range forecast). All this information characterizes the atmospheric state x, but each
source of information is characterized by various errors (mainly instrument or representativeness errors for the
observations, forecast error for the background information). One cannot simply mix this information together
to get an analysis, without taking these errors into account. There is a need for a statistical approach to set up
the problem properly. In other words, one needs to find the best compromise between the various sources of in-
formation, trusting each of them according to their error statistics. The error statistics are assumed to be known
in this paper, although this is the subject of active research: in practice, one can only evaluate or approximate
a few of their components and assumptions are needed to define completely the relevant matrices. There is a
particular technique, called variational assimilation, which solves the analysis problem through the optimisa-
tion of a given criterion (minimisation of a so-called cost-function). This allows to solve the global problem
in one go, and it is now widely used in the meteorological community. There are various ways to account
for the time dimension in this optimisation problem. The principle of four-dimensional variational (4D-Var)
assimilation usually assumes implicitly that the forecast model is perfect” within the assimilation window
and looks for the model trajectory which best fits the data (background and observations) over the window. A
straightforward approximation of 4D-Var is 3D-Var where there is no attempt to use the time dimension within
the assimilation window: one looks for the best compromise between the background and all available observa-
tions as if they were at the analysis time. A more complex approximation of 4D-Var is 3D-FGAT (First-Guess
at the Appropriate Time) in which one compares the model to observations using the model trajectory over the
assimilation window, but performs the analysis in three-dimensions (at the central time of the window). These
three variations of variational techniques will be further discussed in the various sections of this paper.
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2 General description of variational assimilation

2.1 Statistical estimation: the viewpoint of least squares

With the observations
y=HX+¢&

and the background vector (which usually comes from a short-range forecast)
Xp =X+ &,
The least squares method for obtaining the estimation is to minimize the cost function
3(x) = 3(x—%;) "B~ —x,) + 5(y — HX) TRy — HX) (1)

where B is the covariance matrix of the background error &, and R the covariance matrix of the observation
error & which includes the instrument error and representativeness error. H is called the observation operator
which maps the variable from the model space to the observation space. The minimisation of (1) requires the
gradient of the cost function with respect to x to vanish, namely

’33(;) =B} (x—x,) —HTR™}(y—Hx) =0 2
The solution of (2) is given (e.g., Lorenc, 1986) by
Xa = Xp+ K(y —Hxp) = (I = KH)x, + Ky ©)
where the optimal gain matrix K is given by
K=BHT(HBHT+R) 1=(B 1+HTRH) HTR? )
The corresponding analysis error is given by
ga= (I —KH)g,+Ke (5)
Note that the expressions for the analysis and its error have the same form. The analysis error covariance is
A=(1-KH)B(I —=KH)T+KRKT = (I —KH)B (6)

where the background and the observation errors have been assumed to be uncorrelated. Note that the simpler
expression A = (I —KH)B is valid only when the B and R matrices in K are correctly specified. In this case,
the term “optimal interpolation” (Ol) is used to name the analysis scheme. If that is not the case, the expression
A = (I —KH)B(l —KH)T + KRKT is more general for any K. The term “statistical interpolation” (SI) is
preferable.

2.2 Statistical estimation: the viewpoint of minimum variance

The OI/SI scheme in the early literature was often derived from the viewpoint of the minimum analysis error
variance. Moreover, the analysis equation is usually derived using the form of component and the observation
operator H is not explicitly present in the equation (e.g., Lorenc, 1981), which often leads to a forest of super-
scripts and subscripts. Here we give a more compact derivation using the form of the vector-matrix. Because
the problem is linear, the solution is expected to take the form

Xa— X, = K (y — Hxp) (7
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That is, the analysis increment is the linear combination of the innovation departure (also called observation
increment y — Hx,)) with a matrix K to be determined as the weight of the linear combination. Assuming that
the background error and the observation error are uncorrelated, the analysis error covariance is given by

A=(I—KH)B(I—KH)T+KRKT (8)

The solution of the minimum variance requires ﬁiKtrace(A) = 0. Using the following two relations about the
derivative of matrices

4 _ pTAT
d—Atrace(BAC) =B'C’,

J T T
—trace(ABA')=A(B+B
S trace(ABAT) = A(B+B),
one gets

2 trace(A)

=—(1-KH)(B+B"HT+K(R+RT)

9)
= —2( —KH)BHT+2KR
= —2BHT +2K(HBHT +R)
and the optimal weight matrix K is then given by
K =BHT(HBHT+R) 1 (10)

As expected, the result is the same as that derived from the viewpoint of the least squares.

2.3 3D/4D-Var algorithm

The direct minimisation of J(x) as given in (1) is called 3D-Var. It has been described above for a linear
version, for which a direct solution can also be obtained. More generally, the formulation can be generalized to
conditions with a non-linear observation operator H. In this case, Hx in Eq. (1) should be replaced by H(x). The
solution can be obtained by an iterative minimization algorithm which requires the computation of the gradient
of the cost function with respect to the state vector at each iterative step. Currently, the variational algorithms
are algorithms that use the adjoint (AD) model (of the tangent linear model) of the non-linear model H to
compute this gradient (Le Dimet and Talagrand, 1986; Lewis and Derber, 1985). Consequently, the variational
algorithm is sometimes called the “adjoint method”. The 4D-Var algorithm can be considered as an extension
of the 3D-Var to the time dimension, for which the operator H also includes the dynamical models to evolve
in time the atmospheric state. One of the advantages of the 4D-Var algorithm over 3D-Var is to better consider
the time distribution of observations such as from remote-sensing instruments. The standard 4D-Var algorithm
and the incremental algorithm (currently used in the operational implementations) are described below.

2.3.1 Standard algorithm of the 4D-Var

The atmospheric flow is governed by a number of dynamical and physical laws. One can symbolically write
the NWP model as

Xit1 = Mij;(X;) (11)
where M, ,; is the non-linear NWP model from time t; to t, ;. A perturbation of the atmospheric state is
evolved by the tangent linear (TL) model, namely

0%y 1 =M 1i(X)0% (12)
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Note that the linearisation is performed in the vicinity of x;. In general, the NWP model has both systematic and
random errors which should be considered in the algorithm. For the sake of simplicity, one does not treat them
in the following description. That is, the model is used as a “strong constraint” according to the terminology in
Sasaki (1970).

In the standard formulation of the 4D-Var (Le Dimet and Talagrand, 1986), the solution is found by mini-
mizing a cost function J(x,) which measures the distance between the model trajectory and the observations as
well as the background at the initial time during a time window (i.e., 6h, 12h, 24h), given by

J(X) = %(Xo —Xp) "B (X —%p)

(13)

P4

+ [H (%) —yil "R H; (%) — v

N =

where

Xo Is the model state at time t,)

Xy, is the background state at time t,, which is often a 6h forecast from the previous analysis.
B is the background error covariance matrix

y; is the observation vector at time t;

H; is the observation operator at time t;

X; =M; o(Xo) is the model state at time t;

R; is the observation error covariance matrix at time t;.
Substituting the dynamical constraint (11) into the cost function, the constrained minimization problem be-
comes unconstrained, and the control variable of the optimal control problem is reduced to the initial model

state X,. The minimization of Eq. (13) requires its gradient with respect to the control variable X, to vanish,
namely

O, J (%) = B Xg — %] + iM[oHiTRi—l[Hi(xi) —y;]=0 (14)

where H, is the tangent linear operator of the observation operator H, (H; is the corresponding adjoint operator
and is simply the complex-conjugate transpose of the tangent linear by definition) and

MIO = MIOM ;,1"'MIi—1 (15)

is usually called the adjoint model (ADM) and is a backward integration from time t; to t,. It can be programmed
from the tangent linear model (TLM) of a NWP model and there is no need to derive analytically the adjoint
equations (Talagrand and Courtier, 1987).

In general, the minimization of the cost function is attained by using a ”descent algorithm” as follows:

e Initialize the first-guess as x°(t;) = X, (to)-

e Foriterationstepk=1,--- ,K:

(i) Compute and save the first-guess trajectory and the observation departures [H,(x;) —y;] by integrating
the non-linear model X (t;) = M (t;,t;) (X%(ty))-
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(i) Starting from the adjoint variable &'xX(ty,) = O, integrate the adjoint model (which will use the first-
guess trajectory from step (i)) backwards in time from ty to t,. If meeting the observations in
the course of the integration, the observation forcing H{R™[H;(x;) —y;] is added to the cur-
rently computed &'xX(t;). The integrated final value &'xX(t,) plus the background term gradient
B~1[xX(ty) — ] is the gradient DJ* of cost function with respect to xX(t,). The cost function value
is also computed in this step.

(iii) Find the optimal stepsize p¥(> 0). For a linear model, p¥ should be computed from the Hessian of
the cost function and can be calculated explicitly. For a non-linear model, p* cannot be determined
analytically and has to be estimated approximately (this is generally done by the minimization
subroutine itself).

(iv) Update the first guess with
X(ty) = X¥(tp) — p*DI"

(v) Check to see if some convergence criteria are met. If not, go to (i).

Note that in the standard 4D-Var algorithm as described above, the tangent linear model is not used in the
computation and is only used to derive the adjoint model.

2.3.2 Incremental algorithm of the 4D-Var

The cost of a backward integration of the ADM is about twice that of a forward integration of the non-linear
model. The cost of an iteration will be three times that of a model integration in the standard algorithm.
Additionally, the nonlinearity of the model makes the convergence slower. Courtier et al. (1994) suggested an
incremental 4D-Var algorithm with which the minimization can be carried out at a reduced model resolution
and uses a forward integration of the TLM instead of non-linear one. This leads to an effective reduction of
computational cost. The incremental 4D-Var algorithm is to minimize a cost function given by

1o ro 1g -
J(8%y) = 58%B™15%y+ E_Z)(HicSXi —d) R (H;0x —d)) (16)
1=

where

OXy = (Xg—X,,) is called the increment at time t,

d, =y, —H;(x;) is the innovation departure or observation increment at time t;.

The solution &x§ of the cost function minimization is added to the background to obtain the analysis at t,),
X =x,+S1ox§ (17)

where S~ is an operator transforming the field from low to high resolution. The process of minimization
is similar to the standard algorithm except that the control variable is the increment at time t;, and the incre-
ment trajectory is obtained by the integration of the TLM. The reference trajectory required by the TLM and
ADM is from the background integration and is not updated at each iteration. This drawback can be partially
overcome by an “outer loop” updating the high resolution reference trajectory and the observation departures.
Correspondingly, the iterative procedure of minimizing the incremental control variable is called “inner loop”.
It is possible to use a successively increased inner loop resolution after each outer loop update (referred to as
“multi-incremental” algorithm, Veersé and Thépaut, 1998). Obviously, the incremental algorithm can also be
applied to the 3D-Var algorithm.

Figure 1 gives a schematic view of the incremental implementation of 4D-Var, as it had been introduced oper-
ationally at ECMWF.
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Figure 1: Representation of the incremental 4D-Var (courtesy of Y. Trémolet).

2.3.3 Quality of theanalysis

The error covariance for the analysis at initial time t, of the assimilation window is equal to the inverse of the
Hessian (the second derivative) of the 4D-Var cost function with respect to the initial state vector x, (control
variable) given by

-1
N
A= (B—1+ %MIH?erHiMi) (18)
i=

Minimization algorithms usually provide approximates of the inverse of the Hessian. However, what we want
to obtain eventually is the analysis error covariance at the end of the assimilation window which could be used
as the background error covariance for the next assimilation cycle. Suppose that the initial error £, within the
assimilation window is evolved by the TLM, namely

& = Mg, (19)

where &; stands for the error at the end of time window and M is the TLM integration from the beginning time
t, to the end time T of the assimilation window. Performing the mathematical expectation operation, one gets
the error covariance for the analysis at the end time T

A; =< ge] >=<Mgy(Mgy)T >=MAMT =M(MA,)T (20)

Note that obtaining A requires 2N (N is the model dimension) integrations of the TLM starting from each

column of the initial covariance matrix A,. For a high dimensional NWP model with N = 107, it becomes an
almost impossible task and is a common issue with the Extended Kalman Filter assimilation scheme described

below.

2.4 Extended Kalman Filter: update of the forecast error covariance matrix

In general, 3D/4D-Var date assimilation is performed in a cycling manner with a fixed assimilation window.
Each cycle uses a short-range ( e.g., 6h) forecast from previous analysis as the new background. Naturally, we
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expect the background error covariance B to depend on the atmospheric state and hence to be time-dependent.
The 4D-Var algorithm uses implicitly flow-dependent structure functions (Thépaut et al., 1996) within an as-
similation window, but the algorithm itself does not provide the estimate of the background error covariance for
the next cycle. The background error covariance is often estimated by the so-called NMC method (Parrish and
Derber, 1992) at most NWP centres and is generally specified as constant. The proper update of the background
error covariance is not done in an operational assimilation context and remains an active research field.

The Kalman filter theory (Kalman, 1960) provides a basis for updating the forecast error covariance. Standard
Kalman Filter (KF) was derived for a linear dynamical system. An extension to non-linear models is referred
to as the Extended Kalman Filter (EKF), which is derived by a number of authors (e.g., Daley 1991). EKF and
KF formulations have no difference in the form, simply the linear operators (of model and observation) in the
KF should be extended to the Tangent Linear (TL) operators in the EKF even though they can use the same
notations. EKF can be regarded as a sequential optimal interpolation (OI) or 3D-Var analysis for which the
observations are used once they are available. In addition, the forecast error covariance is explicitly computed
and used as the background weight for the following analysis. For a perfect forecast model (without model
error), the EKF equations are as follows:

e Analysis Step
X =X} 4+ Knlyn—H(x{)] (21)

with the Kalman gain matrix
Kn=PHIHPIHT + R, 1 (22)
and the optimal analysis error covariance
P = (I = KnHn)Py (23)

or the suboptimal analysis error covariance

PA= (I = KnHn) (P)'(1 = KnHn) T+ KnRLK ] (24)
e [orecast Step
Pl . =MnPIM[ = Mu(MaPY)T (26)

Here x,ﬂ and x3 are the forecast and analyzed state vectors at time t; yn, H and H are respectively the observation
vector, the non-linear observation operator and its TL at time ty; Prf] and Ry, are the forecast and observation
error covariances at t,; M, and M, stand for the non-linear NWP model and its TL model integrating from
time ty to t,,, ;. The main difficulty in using the EKF in NWP models is the large computational and storage
requirements for the error covariance propagation equation (26), which requires 2N integrations of the TLM
(N is the model dimension) and the storage of a N x N covariance matrix. Some simplified schemes based on
the EKF have been proposed (e.g., Todling and Cohn 1994). It is also known that the 4D-Var and the EKF are
equivalent in some circumstances (e.g., with a perfect model and using the same TL approximation, and the
initial background as well as its error covariance are also the same for both). They obtain the same analysis and
corresponding error at the end of a data assimilation window (Rabier et al., 1993). Over the whole assimilation
window, 4D-Var is equivalent to a smoother algorithm. 4D-Var can be extended to non-Gaussian errors (Lorenc
and Hammon, 1988; Andersson and Jarvinen, 1998). Another advantage of 4D-Var is that it can use a wide
range of observations including those with a complex link to atmospheric variables (e.g. radiances; Andersson
et al., 1994). It can also efficiently use asynoptic data as shown in Jérvinen et al (1999).
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3 1D Burgers equation application with advanced assimilation schemes

In this section, we introduce a 1D non-linear advection-diffusion equation (Burgers’ model). Some advanced
assimilation algorithms (variational and Extended Kalman Filter) are implemented and compared.

3.1 1D Burgers model and itstangent linear and adjoint

One considers a 1D non-linear advection-diffusion equation (Burgers’ equation)

du odu 9%

5t + u& = VW (27)

where u(x,t) and v are respectively wind speed and diffusive coefficient and x the coordinate of a 1D periodic

domain, —ma < x < mma with a = 1250km, as defined in Liu and Rabier (2002). The corresponding tangent
linear equation is given by

oou  ddu ou  9%du

It U T TV o

where du is the perturbation in the vicinity of the reference state u. In practice, one will take the trajectory
of the non-linear model as the reference state. The pseudo-spectral method (Orszag 1970) is used to construct
our numerical model and the model variable consists of real Fourier coefficients. A semi-implicit leapfrog
integration initialized by a forward Euler step is used as the time discretization scheme. An Asselin time filter
(Asselin, 1972) is used to remove the computational solution of the leapfrog scheme.

(28)

3.2 Frontal type dynamics

The sinusoidal initial condition
u(x,0) = —Usin(x/a) (29)

with U =20m/s is used as the true field at the initial time t,. It can produce frontal type dynamics (see Ménard,
1994 and references therein), which are commonly observed in the atmospheric wind field. A main property of
the evolution of the initial error for the frontal type dynamics is the rapid growth of error variance near the front
(convergence area). In the subsequent numerical experiments, one always works in the diffusive case with the
Reynolds number Re = 27U /v = 100, for which the maximal development of the front at x = 0 (the strongest
gradient du/0x) is reached at a critical time tc = (a/U) x 11/2 = 27h.

For demonstrating the evolution of the initial error, one constructs an initial background field u,(x,0) by adding
a correlated random noise to the true initial condition u(x,0). The background error correlation is the same
degenerate second-order autoregressive function with a correlation scale of 208km as in Liu and Rabier (2002,
Eq. (6)). The homogeneous error standard deviation gy, is equal to 2m/s. The top panels in Figure 2 give the
results of a 48h integration starting from the true (solid line) and background (dashed line) initial conditions.
One clearly sees the decrease of the error in the divergence areas and the growth in the frontal area near x = 0.
The consequence of this error growth is a misdetermination of the frontal position, such as the one observed in
the forecast at 24h and 48h. The corresponding evolution of the background error field is presented in the same
figure (bottom panels). The solid curves are the difference between two non-linear model integrations respec-
tively with u(x,0) and u,(x,0) as the initial conditions, and the dashed lines are the results of the propagation of
the initial error by the TLM. The error at x = 0 grows up to about 8m/s at time t from the initial error of —2m/s
then decreases slowly during the frontolysis stage. The error obtained by the TLM is only slightly larger than
that obtained by the non-linear model integration even until 48h integration. The precision of the tangent linear
approximation will be high in the subsequent assimilation experiments with a 6h or 24h assimilation window.
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Figure 2: Frontal type dynamics. Top panels: evolution of the wind field, solid line for the true field and
dashed line for the background field; Bottom panels: evolution of the error field, solid line for the difference
between two non-linear model integrations, dashed line for the propagation of the initial error using the
tangent linear model.

3.3 Comparison of several assimilation schemes
Although this is an academic situation, it can be helpful to understand the possible impact of the various
assimilation schemes.

With the frontal type dynamics described above as the true meteorological situation, the following six experi-
ments are compared:

(1) EKF that uses the equation (26) to propagate the forecast error covariance

(2) 3D-VAR-S6 that uses the standard 3D-Var algorithm with a 6h assimilation window

(3) 4D-VAR-S6 that uses the standard 4D-Var algorithm with a 6h assimilation window

(4) 4D-VAR-I6 that uses the incremental 4D-Var algorithm with a 6h assimilation window

(5) 4D-VAR-S24 that uses the standard 4D-Var algorithm with a 24h assimilation window

(6) 4D-VAR-124 that uses the incremental 4D-Var algorithm with a 24h assimilation window.

The schemes (2) ~ (6) use a constant background error covariance for every assimilation cycle. Note that
the names “3D-Var” and “4D-Var” are used to denote the experiments, although our study only deals with a
1D spatial domain. The observation network is fixed and coincides with the grid points associated with the
“spectral” model. The simulated observations are available every 6h. The assimilation is done from 00h to 48h.
At 00h, only the background field is available with the error covariance described in section 3.2. This means
that the observations are located at the end of the assimilation window for a 6h window. The observations
are simulated by adding the uncorrelated random noise to the true field. The observation operator is a real

Fourier (linear) interpolation which transforms directly 2K + 1 real Fourier coefficients to grid point values in
the arbitrary N observation positions. All six experiments are carried out with a Fourier spectral truncation T41
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(83 grid points), the incremental algorithm did not use a reduced resolution and the outer loop to update the
trajectory.
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Figure 3: Analysis RMS error for 6 assimilation schemes (the different schemes are defined at the beginning
of 3.3. The analysis errors are shown every 6 hours starting from 6h, except for 24-hr 4D-Var).

The analysis RMS error for 6 experiments is shown in Figure 3. As expected, the scheme EKF which cor-
rectly propagates the error covariance is obviously the best one. Note that the analysis errors for the 4D-Var
experiments are those at the end of the assimilation window. The equivalence of the 4D-Var and the EKF can
be seen from results at 06h by comparing the scheme EKF and the scheme 4D-VAR-S6. This equivalence
is determined by the consistency of the initial background error covariance and the TLM. 4D-VAR-16 is only
slightly worse than 4D-VAR-S6. The analysis error is further reduced for 4D-VAR-S24 and 4D-VAR-I 24 with
a longer assimilation window. The difference between the incremental and standard 4D-Var algorithms is more
obvious in the first cycle of 4D-VAR-S24 and 4D-VAR-124 for which the update of the trajectory is more
important. In the second cycle for 4D-VAR-S24 and 4D-VAR-124, small initial differences lead to the same
analysis result at 48h, although both are worse than that of EKF due to the incorrect specification of the initial
background (the analysis at 24) error covariance. Finally, one notes that 4D-VAR-S6/16 is systematically better
than 3D-VAR-S6. The improvement comes from the advantage of the dynamical structure functions implied in
the 4D-Var (Thépaut et al., 1996; Rabier et al., 2000).

Figure 4 shows the analysis error fields at 24h for the 6 experiments. One can see that the large error reduction
for EKF, 4D-VAR-S24 and 4D-VAR-I1 24 is located in the divergence areas where the correct propagation of the
background error covariance implies that more weight is given to the accurate background at 24h (see Figure
2 for the evolution of the initial error). However, 4D-VAR-124 has the largest error in the frontal area where
nonlinearity of the flow is stronger and the validity of the incremental formulation is reduced. For 3D-VAR-S6
and 4D-VAR-S6/16, serious overestimation of the background error in the divergent areas implies that more
weight is given to observations, which leads to less error reduction.

This academic example clearly shows that there will be some benefit in including explicitely the time dimension
in the assimilation (4D-Var versus 3D-Var). However, one can notice that even 4D-Var is sub-optimal when
cycled with a constant B matrix.

4 Operational results

After a few papers demonstrating the strengths of 4D-Var in global models on case studies or with simulated
data, Rabier et al (1998) performed some experiments in a context close to the operational one. Results showed
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Figure 4: Analysis error fields at 24h for the 6 assimilation schemes.

that 4D-Var over 6 and 12-hour assimilation windows performed better (in cycling mode) than 3D-Var. The
6-hour 4D-Var was then further developed and tested to reach operational testing. An operational 4D-Var
assimilation system has been respectively implemented on 25th November 1997 at ECMWF (Rabier et al.,
2000; Mahfouf and Rabier 2000; Klinker et al., 2000) and on 20th June 2000 at Météo-France (Janiskové et
al., 1999; Thépaut and Moll, 2000; Gauthier and Thépaut, 2001, Desroziers et al., 2003). Results showed
that, even with only very simplified physics in the minimization, 4D-Var outperforms 3D-Var in the extra-
tropics. 4D-Var performs particularly well in dynamically active areas, such as the Atlantic storm-track (Rabier
et al, 2000; Desroziers et al., 2003). The impact of more elaborate linearized physics in the minimisation are
beneficial mostly in the Tropics. One notes that there is a better agreement between inner and outer loops
when a more elaborate physics package is used in the minimisation (Mahfouf and Rabier, 2000). The overall
performance of 4D-Var is slightly positive, at all ranges. Significance tests show that the improvement was
significant, particularly at short ranges and in the Southern Hemisphere (Klinker et al., 2000).

More recent results compared 3D-Var, 3D-FGAT and 6-hour 4D-Var over a two-week period in March 2000
(courtesy of E. Andersson). Scores are presented in Figures 5 and 6 for the anomaly correlation over the
Northern and Southern Hemispheres, respectively. One can see from Figure 5 that the 4D-Var performance is
slightly better than 3D-Var and 3D-FGAT which behave similarly in the Northern Hemisphere. In Figure 6,
4D-Var has a larger advantage over 3D-FGAT in the Southern Hemisphere, which itself performs better than
3D-Var. It is then confirmed that 4D-Var, even on a 6-hour window performs better than Three-dimensional
algorithms (either 3D-Var or 3D-FGAT). The impact is more marked in the Southern Hemisphere. In this
area, there is a slight benefit of using 3D-FGAT compared with 3D-Var, which comes from comparing the
observations and the model at the observation time.

Concerning other operational developments, one might be interested to read about the extraction of temporal
information through the use of frequent data (Jarvinen et al., 1999), developments in the background error
covariance estimation (Derber and Bouttier, 1999), the implementation of 12-hour 4D-Var (Bouttier, 2001),
the multi-incremental technique (Veersé and Thépaut, 1998), initialisation with the Digital Filter technique
(Gauthier and Thépaut, 2001), or the continuous improvement of linearized physics (Janiskova, this volume).

There has also been some interesting developments in the context of limited-area models (eg Huang, 1999, Zou
and Kuo, 1996, Zupanski, 1993, Gustafsson, this volume).
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Figure 5: RMS of forecast error at various ranges over the Northern Hemisphere for the 3 assimilation schemes.
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Figure 6: RMS of forecast error at various ranges over the Southern Hemisphere for the 3 assimilation schemes.
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5 Limitationsand perspectives

Although these variational techniques are both very powerful and elegant, one cannot deny that there are some
obvious drawbacks. The major drawback is the amount of effort which is needed to implement these methods,
in terms of heavy technical developments (coding of the adjoint operators in particular). Another limitation
comes from the need for an incremental technique, which allows the problem to be used in high-dimension
models but needs careful testing.

In terms of perspectives, there are some very challenging issues arising currently, after the successful imple-
mentation of 4D-Var has been completed. In terms of data assimilation theory, more effort has now to be
devoted to the inclusion of model error terms in 4D-Var, which would alleviate the perfect model assumption
(Trémolet, this volume), and to a combination with more probabilistic approaches to get better estimates of
analysis error uncertainty (Lorenc, this volume). Regarding the data usage, two major perspectives deal with
the need for a higher resolution analysis using high density satellite data, and with the new promising area
of cloud and rain assimilation. Variational techniques certainly seem to be an appropriate framework to go
forward in these various directions, in order to provide a more comprehensive system in the coming years.
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