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Abstract 

This paper carries a short review of a multimodel/multianalysis superensemble for weather and seasonal climate 
forecasts. This model was first developed by the authors in 1999 at Florida State University. This entails a large number 
of forecasts using these multimodels from past data sets, that is called a training phase of the superensemble. During 
this training phase statistical relation among the model forecasts and the observed fields is obtained using multiple 
regression methods. This training phase requires roughly 4 months of past daily forecasts for numerical weather 
prediction (NWP), approximately 6 years of past seasonal forecast and about 60 past hurricane/typhoon/tropical cyclone 
forecasts from each of the participating member models. The training phase is followed by a forecast phase where the 
member model forecasts (into the future) use the aforementioned statistics to construct multimodel superensemble 
forecasts. Our focus on NWP has been to examine the performance of the multimodel superensemble forecast against 
those of the member models, their ensemble mean and the bias removed ensemble means. We have noted an invariable 
much superior performance of the multimodel superensemble. We have noted that roughly a minimal number of 7 to 8 
models are needed to carry out this exercise. We were also able to improve the database and the statistics of the training 
phase by rejecting poorer forecast days and optimizing the number of training days. The common metrics for forecast 
evaluation include root mean square error, anomaly correlation and equitable threat scores. Great impact on real time 
and experimental forecasts from the superensemble were noted for precipitation, sea level pressure, temperature and 
500 hPa geopotential height fields. The improvements in forecasting heavy rains by the multimodel/multianalysis 
superensemble are found to provide useful guidance in flood events. In hurricane forecasts improvements in track 
position forecasts of the order of 100 to 250 km were noted in one to three day forecasts. Intensity forecast for 
hurricanes shows only a marginal improvement. The seasonal climate forecasts show a lower performance from the 
member models compared to climatology, the multimodel superensemble appears to have skill somewhat above that of 
climatology.  

1. Introduction 
The superensemble approach is a recent contribution to the general area of weather and climate forecasting, 
developed at FSU; this has been discussed in a series of publications, Krishnamurti et al. (1999, 2000a, 
2000b and 2001). The novelty of this approach lies in the methodology, which differs from ensemble 
analysis techniques used elsewhere. This approach yields forecasts with considerable reduction in forecast 
error compared to the errors of the member models, the ‘bias-removed’ ensemble averaged forecasts, and the 
ensemble mean. This technique entails the partition of a time line into two parts. One part is a ‘training’ 
phase, where forecasts by a set of member models are compared to the observed or the analysis fields with 
the objective of developing a statistics on the least squares fit of the forecasts to the observations. 
Specifically, observed anomalies are fit to the member model forecasts according to the classical prescription  
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where is the ith model forecast (out of N total models), ijF ijF is the mean of the ith forecast over the training 

period (train), O´ is the observed anomaly relative to the observed mean over the training period (train), the 
 values represent the regression coefficients and ia ε i  is an error term. The a ’s are determined by requiring 

the summed squared error integrated over the training period 
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this sort is performed for all model variables and at all model grid points for which reanalysis observations 
are available and typically yields close to 7 million regression parameters. This large number arises from the 
number of transform grid points, number of vertical levels, number of basic variables and the number of 
models. Over all such locations we have noted diverse performance characteristics of the member models. 
That arises from differences in: horizontal and vertical descretization, treatment of physics, handling of 
inhomogenity of land surface, orography, lakes, water bodies, surface physics and boundary conditions. All 
such peculiarities tend to leave their signature in the error distributions and hence on these weights. These 
may be thought of as bias correction weights. The second time line part is composed of genuine model 
predictions, i.e. the forecasts of the member models. The superensemble approach combines each of these 
forecasts according to the weights determined during the training period (train) through the formulation 
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where the notation is defined above except the  values, which are the regression coefficients. The 

determination of ai follows the well-known Gauss-Jordan elimination method. The prediction ‘S’ is referred 
to as the “superensemble” forecast. This forecast should be contrasted with the more standard anomaly 
forecasts known as the biased - removed ensemble mean (

ia

E ) or ensemble mean ( ) forecasts  ˆ E 
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The distinction between them comes in the weighting. Assigning all models a weight of 1/N (where N is the 
number of models) in equation (2) illustrates the connection between the forecasts, and also exemplifies how 
the training period attempts to identify and highlight good model performance.  

The skill of the multi-model superensemble method significantly depends on the error covariance matrix, 
since the weights of each model are computed from a designed covariance matrix. The current method for 
the construction of the superensemble utilizes a least square minimization principle within a multiple 
regression of model output against observed ‘analysis’ estimates. This entails a matrix inversion that is 
currently solved by the Gauss Jordan elimination technique. That matrix can be ill conditioned and singular 
depending on the inter relationships of the member models of the superensemble. We have recently designed 
a singular value decomposition (SVD) method that overcomes this problem and removes the ill conditioning 
of the covariance matrix entirely, Yun et al. (2002). Early tests of this method have shown great skills in 
weather and seasonal climate forecasts compared to the Gauss Jordan elimination method. 

In medium range real-time global weather forecasts, the largest skill improvements are seen for precipitation 
forecasts both regionally and globally. The overall skill of the superensemble is 40 to 120% higher than the 
precipitation forecast skills of the best global models. For forecasts of variables other than precipitation, the 
superensemble exhibited major improvements in skill for the divergent part of the wind and the temperature 
distributions. Tropical latitudes show major improvements in daily weather forecasts. For most variables, we 
have used the operational ECMWF analysis at 0.5° latitude/ longitude, as the observed benchmark fields, for 
the training phase. The observed measures of precipitation are derived from the so called 2A12 algorithm of 
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NASA Goddard that is described in some detail in Krishnamurti et al (2000b, 2001) and within the 
references stated there in. 

The area of seasonal climate simulations has only been addressed recently in the context of atmospheric 
climate models where the sea surface temperatures and sea ice are prescribed, such as the AMIP data sets. In 
this context, given a training period of some 8 years and a training data base from the ECMWF, the results 
exhibit improved skill compared to the member models and the ensemble mean.  Preliminary work in this 
area (Krishnamurti et al. 2002) examines the difficulties involved with prediction of seasonal precipitation 
anomalies. Most individual member models perform poorly compared to climatology, whereas the 
superensemble appears to demonstrate precipitation skills slightly above those of climatology. The 
effectiveness of weather and seasonal climate forecasts from superensemble methodology has also been 
assessed from measures of standard skill scores such as correlation against observed fields, root mean square 
(RMS) errors, anomaly correlations and the so-called Brier skill scores (Stefanova and Krishnamurti, 2002) 
for climate forecasts (assessing skills above those of a climatology).  

Training is a major component of this forecast initiative. We have compared training with the best quality 
'observed' past data sets versus training deliberately with poorer data sets. This has shown that forecasts are 
improved when higher quality training data sets are deployed for the evaluation of the multi-model bias 
statistics. It was felt that the skill during the ‘forecast phase’ could be degraded if the training was executed 
with either a poorer analysis or poorer forecasts. This was noted in our recent work on precipitation forecasts 
where we showed that the use of poorer rainfall estimates during the training period affected the 
superensemble forecasts during the ‘forecast phase’ (Krishnamurti et al. 2000b). In addition, issues on 
optimizing the number of training days have been addressed from an examination of training with days of 
high forecast skill versus training with low forecast skill, and training with the best available rain-rate 
datasets versus those from poor representations of rain. We have learned to improve the forecast skill by 
selectively improving the distribution of weights for the training phase.  

Why does the superensemble generally have higher skill compared to all participating multi-models and the 
ensemble mean? At each location and for all variables, the ensemble mean assigns a weight of 1/N to all N 
member models, this includes several poorer-performing models. As a result, assigning the same weight of 
1/N to some poorer models was noted to degrade the skill of the ensemble mean. It is possible to remove the 
bias of models individually (at all locations and for all variables) and to perform an ensemble mean of the 
bias removed models. Here again the bias removed individual models get equal weight of 1/N and the 
ensemble mean thus obtained also has somewhat lower skill compared to the superensemble, which carries 
selective weights distributed in space among all multi-models and for all variables. A poorer model simply 
does not reach the levels of the best models after its bias removal.  

1.1. Experimental Real-time Global Weather Forecasts based on Superensemble 

We have developed an experimental real time NWP capability for the forecast of all basic variables such as 
winds, temperature, surface pressure, geopotential heights and precipitation. These are multianalysis-
multimodel superensemble forecasts where eleven models are currently being used on a daily basis. These 
include the daily operational forecasts from the NCEP, Canadian Weather Service RPN, Australian model 
for the BMRC, U.S. Navy’s NOGAPS, the Japanese model for JMA and different versions of our in house 
FSU global spectral model that are physically initialized using different rain rate algorithms (see section 3). 
In some sense, the construction of the superensemble is a post-processing of multi-model forecasts. The 
superensemble based forecast is still a viable forecast product that is being prepared experimentally in real 
time at FSU and is currently available on a real- time basis on the website http://lexxy.met.fsu.edu/rtnwp.  
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The website http://lexxy.met.fsu.edu/rtnwp has been started with an aim to provide a near real-time 
multimodel superensemble based weather forecasts over the entire globe up to 6 days in advance. Forecasts 
for the Mean Sea Level Pressure, Heights at 500 hPa, Surface Temperature, Winds (isotachs) at surface, 850 
hPa and 200 hPa are displayed for the whole globe as well as 9 different regions of the globe, these forecasts 
can be viewed with ease by clicking on a specific region over the World Map provided in the forecast page. 
Apart from these dynamical variables, 5-day forecasts of the 24-hr total precipitation and a new ‘5-day 
accumulated flood potential forecast” is also shown for the entire globe, which again can be viewed over a 
specific region of interest. Different skill scores computed from these data sets are also shown in the forecast 
page – they are the RMS errors and systematic errors for forecasts of winds, mean sea level pressure and 
winds at 850 hPa and 200 hPa; and equitable threat scores, RMS errors and Correlation Coefficients for the 
precipitation forecasts. The website also features the archives for up to 10 days in the immediate past and 
provides links to recent publications based on the superensemble technique. 

2. The Multimodel Superensemble for Numerical Weather Prediction: 
As many as seven global models are being used (Krishnamurti et al, 2000a) for the prediction of weather on 
a real-time basis. Figure 1 illustrates typical superensemble based weather prediction skills derived from this 
product. Here the mean RMS forecast errors of 850 hPa winds on day-3 of forecast for various regions of the 
globe, for the month of August 1998, is shown. The results for member models, an ensemble mean of these 
member models and that for the superensemble are presented in this figure. Large improvement in reduction 
of wind forecast errors can be seen over the tropical belt from the superensemble. Basically these results 
convey what has been stated above on the performance of the superensemble. These results have been 
confirmed for each month since 1998 to the present time. 
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Figure 1. RMS error (ms-1) of 850 hPa winds over different parts of the globe, day-3 forecast, August 
1998. 

To assess how many models are minimally needed to improve the skill of the multimodel superensemble, we 
examined sequentially the issue using one to seven models. Results for the mean global wind RMS errors at 
850 hPa during August 1998 for day-3 of forecasts are shown in Fig. 2. The models are sequentially added 
with lower and lower skill while proceeding from one model to seven models. The dashed line shows the 
error for the ensemble mean and the solid line indicates that of the superensemble. The superensemble skill 
is higher than that of the ensemble mean for any selection of the number of ensemble members. The skill of 
the superensemble between 4 and 7 models is small, that is around 3.6 ms-1. The ensemble mean error 
increases as we add more ensemble members beyond 3 – this is due to the gradual addition of models with 
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lower skill. That rapid increase is not seen for the superensemble since it automatically assigns low weights 
to the models with low skill. It is also worth noting that half the skill improvement comes from a single 
model for this procedure. Even if forecasts from a single model were available, it is possible to construct the 
superensemble of one model. That does differ from the ensemble mean of one model (which is the same as 
the single model forecast). The training phase of a single model provide linear regression coefficients based 
on past errors of the model, that is described by an equation of the type y = mx + n, and can even improve 
the result of a single model forecast via the superensemble approach by as much as 20 percent as shown in 
Krishnamurti et al (2000a). 
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Figure 2. Global Mean RMS error (ms-1) of total wind at 850 hPa during August 1998 for day-3 forecast. 

Anomaly correlation of geopotential height at 500 hPa is another stringent measure for assessing the 
performance of superensemble in the medium range weather forecasts. Table 1 provides some recent results 
of anomaly correlations at 500 hPa for the global belt obtained from real time superensemble. Here the 
entries for the anomaly correlation skills covering a forecast period from August 20th to September 17th 2000 
are presented. Results for the member models, the ensemble mean and the superensemble are included here. 
Results for days 1 through 6 of forecasts are provided in this table. A consistent high skill for the 
superensemble around 0.75 to 0.8 for day 6 is noted in these experimental runs. Also shown in this table are 
the entrees for the ensemble mean, which lie roughly halfway in between the best model and the 
superensemble. Thus it appears that a substantial improvement in skill is possible from the use of the 
proposed superensemble. The overall improvement of the superensemble over the best (available) model is 
around 10 percent. This improvement of superensemble is a result of the selective weighting of the available 
models during the training phase. We have also noted that that the skills over the Southern Hemisphere reach 
those of the Northern Hemisphere from this procedure (Krishnamurti et al. 2003). 

 Day-1 Day-2 Day-3 Day-4 Day-5 Day-6 
Superensemble 0.992 0.979 0.958 0.928 0.881 0.799 
Ensemble Mean 0.983 0.962 0.935 0.891 0.827 0.756 
Model-1 09.84 0.967 0.936 0.889 0.824 0.713 
Model-2 0.981 0.957 0.932 0.880 0.796 0.623 
Model-3 0.963 0.930 0.885 0.815 0.706 0.579 
Model-4 0.962 0.925 0.871 0.786 0.697 0.578 
Model-5 0.956 0.918 0.858 0.767 0.665 0.549 
Model-6 0.941 0.889 0.846 0.739 0.632  

Table 1 500 hPa Global Geopotential Height Anomaly Correlation: 20Aug – 17Sep 2000 

175 



KRISHNAMURTI, T.N. ET AL.: SUPERENSEMBLE FORECASTS FOR WEATHER AND CLIMATE 

3. Precipitation Forecasts from TRMM–SSM/I based 
Multianalysis Superensemble:  

A major improvement in tropical precipitation forecasts has emerged from the use of a TRMM – SSM/I 
based multi-analysis superensemble (Krishnamurti et al. 2000b). “Multi-analysis” refers to different initial 
analyses contributing to forecasts from the same model. In this study, the multi-analysis component is based 
on the FSU GSM initialized with TRMM and SSM/I data sets via a number of rain rate algorithms. Five 
different initial analysis for each day are deployed that defined the multianalysis component. Those are based 
on different versions of rain rate estimated derived from TRMM and the DMSP-SSM/I satellites. These rain 
rate initializations of the different rain rate estimates followed the physical initialization procedures outlined 
in Krishnamurti et al. (1991). The differences in the analyses arise from the use of these rain rates within a 
physical initialization. The resulting initialized fields have distinct differences among their initial divergence, 
heating, moisture, and rain rate descriptions.  

The impact of physical initialization on the improvement of precipitation forecast skills was examined in 
detail by Treadon (1996) where he used the GPI based rain rates for physical initialization. Figure 3 
illustrates the correlation of rainfall (observed versus modeled) plotted against the forecast days. Here a very 
high nowcasting skill of the order of 0.9 is seen, this was a feature of the physical initialization, also noted by 
Krishamurti et al. (1994). But the forecast skill degrades to 0.6 by day 1 of the forecast and it degrades even 
more by days 2 and 3 to values such as 0.5 and 0.45 respectively. Using the proposed superensemble 
approach, it is possible to improve the forecast skills when the TRMM-SSM/I based rain rates are used as a 
benchmark for the definition of the superensemble statistics and forecast verification.  

Tropical (30S-30N) Precipitation Skill
T 62/18L GDAS-MRF        31 May - 4 June 1994
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Figure 3. Skill of precipitation forecasts over global tropics based on point correlation (Treadon, 1996). 

Figure 4 illustrates the TRMM based forecast skills over the global tropics. Here noticeable improvement of 
short-range forecasts of precipitation is noted beyond what was obtained in previous studies. The three lines 
in Fig. 4 show correlations of rainfall (observed versus modeled) as a function of forecast days 0, 1, 2 and 3. 
The top line in this illustration shows the multianalysis superensemble forecast. The next line, adjacent to the 
above line, is the forecast from a single global model that utilizes physical initialization of rain rates based on 
TRMM and SSM/I data sets using the 2A12 and GPROF algorithms respectively. The last (bottom) line with 
lowest skill represents the results from a control experiment that did not make use of any rain rate 
initialization. It is clear from these illustrations that the skills from the multianalysis superensemble are 
higher. These forecast results are based on 5 experiments for each start date during 1-5 August 1998. The 
day-3 forecast skill reaching as high as 0.7 is indeed a very high skill for rainfall forecasts.  
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SE Forecast Skill Global Tropics (30S-30N) at T126
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Figure 4: Skill of precipitation forecasts over global tropics (30oS – 30oN) for control forecast, physical 
initialization using TRMM data only, and superensemble forecasts where the TRMM plus SSM/I rain 
rates are used as a bench mark. 

 
Figure 5. Day-3 rainfall forecast over the global tropical belt, 1200 UTC 15 August 1999: the 
accumulated rainfall (mm day-1) by (a) observation based on TRMM and SSM/I, (b) multianalysis 
superensemble and (c) a best single model. 
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An example of the day-3 forecasts of the precipitation over the global tropical belt is illustrated in Fig. 5 (a, b 
and c). Figure 5a shows the observed TMI and SSM/I based 24-hr rainfall estimate (mm.day-1) between 1200 
UTC 14 August and 1200 UTC 15 August 1999. Figure 5b shows the 3-day forecast form the multianalysis 
superensemble valid for the same period while Fig. 5c shows the corresponding results from a single best 
model. The global tropical correlation between the observed and the multianalysis superensemble is 0.55 
where the correlation of the best model with respect to the observed estimate is 0.30 for these day-3 
forecasts. This reflects a major improvement in rainfall forecasts over the global tropics.  

The next area of our research was multianalysis/multimodel superensemble (Krishnamurti et al., 2001). The 
12 panels of Fig. 6 illustrate the day 3 rainfall forecasts valid on June 6, 2000. Here the observed rain is 
shown on the top left panel. The left panels show the multimodel rainfall distributions and the right panels 
show those from the multianalysis components of the forecasts. The right panel is based on the forecasts 
from the FSU model at a resolution T126, using different rain rate algorithms in their description of the 
initial rain. The FSU model’s rainfall is, in general, larger than the operational models, and its location and 
phase errors are generally smaller. Overall, this is the type of multimodel/multianalysis rainfall distributions 
that we use to construct the superensemble forecasts in our experimental real time forecasts.   

Some important results from the 11-model superensemble are presented here. We calculate three measures of 
skill on a regular basis: i) correlation of model predicted daily rainfall totals and observed estimates; ii) rms 
errors of model predicted daily rainfall totals; iii) Equitable threat scores for different thresholds of observed 
and predicted rain. The root mean square errors (RMSE) in precipitation forecasts over the global belt, 50º S 
to 50º N, covering a forecast period from April 1 to April 15, 2000 are shown in Fig. 7. The training period 
for these forecasts included the preceding 75 days. The thick black lines denote the RMSE for the 
multianalysis/multimodel superensemble. The dotted lines show the skills for the selected individual member 
models, whose skills were high. The thin, solid line shows results for the ensemble mean, with bias removal 
for individual models. Overall, these results over the global belt show a great promise for the 3-day forecasts 
of precipitation. It should be pointed out that these results are fairly robust and we see the same skills in the 
day-to-day real time runs. There is some noticeable improvement in the skill for the superensemble over the 
ensemble mean. That arises from the fact that the poorer models are assigned weights of 1.0 over the entire 
globe, whereas the superensemble is more selective regionally (and vertically, for each variable and for each 
model). Its weights are fractional positive or negative based on the member models’ past performance. 

We can also look at the correlation of the observed rain (24 hourly totals ending on days 0, 1, 2 and 3 of 
forecasts) derived from the TRMM-2A12 plus the SSM/I-GPROF based rainfall against the global gridded 
forecasts of the superensemble-based rains. Those are shown in Fig. 8 for the months September and October 
2000. The global forecast correlation skills for days 0, 1, 2 and 3 lie roughly around 0.9, 0.8, 0.62 and 0.55 
for these months. These are higher skills compared to what were seen for a single model shown in Fig. 3.  
Similar results are noted for all the recent months. 

As was summarized in Krishnamurti et al. (2001), the one to three days forecast skills of the daily 
precipitation totals for the three metrics used here are indeed the highest for the superensemble. Table 2 
illustrates the results of the threat scores for eight participating members of the real time 
multimodel/multianalysis system. The threat scores are evaluated covering the precipitation rate intervals 
greater than 0.2, 10.0, 25.0, 50.0 and 75.0 mm/day. The size of the individual domains is identified within 
the table. The bias for the member models, ensemble mean and superensemble, were found to be comparable 
(not shown). The threat scores for the superensemble for all rainfall intervals are the highest compared to the 
member models and the ensemble mean rainfall. We have also shown the threat scores for the ETA model in 
the last column over North America. The forecasts for the member models and superensemble are all for 
August 2000. This covers a 31-day period. The ETA model’s equitable threat scores for August over   
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Figure 6. The observed rainfall estimate from the TMI-2A12 and SSM/I-GPROF algorithm for 5 June 
2000 is compared with the day-3 forecasts from the 11 member models of the multimodel-multianalysis 
system. 
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Table 2 recipitation Equitable Threat Score for the respective member models over the identical domain are displayed 
for the entire month of August 2000.  The Eta Model’s threat scores for August of several years (with the highest 
scores) are shown in the last column for the North American Region. 
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Figure 7: Skill of rainfall forecasts (RMSE) over the global belt between 50oS and 50oN for days 1, 2, 
and 3 of forecasts. Dotted lines denote multimodel skills. The heavy, dashed line denotes skill of the 
ensemble mean, and the thin, solid line denotes skill of the individual model’s bias removed ensemble 
mean and the thick, black line denotes the superensemble. The first 75 days denote a training period 
whereas the last 15 days are the forecast days. 

different years (shown by the ETA entry) are shown with their highest scores included. Here again, the 
superensemble threat scores are higher than those for the ETA. The superensemble was cast at the resolution 
T126 (i.e. roughly 90km horizontal resolution) whereas the operational ETA model had a resolution of 
32km. Considering those differences in resolution, the performance of the superensemble (for these 
experiments) appears impressive. Although the improvement in the equitable threat scores appear quite large, 
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they should still be regarded as modest. Heavy rain events in excess of 75mm/day are not handled very well 
by any of the models. The superensemble also underestimates the rain by roughly a factor of 2. We have 
examined such cases in some detail and it is clear that much further improvement is needed from the member 
models in order to improve the superensemble based rain. This may require higher resolution modeling for 
the member models with improved physics and initialization of rain. 

 
Figure 8. Forecast skill based on correlation of observed rainfall estimates from TRMM-2A12 and the 
SSM/I-GPROF and the superensemble for day 1, day 2 and day 3 forecasts during September and 
October 2000. 

It is of considerable interest to ask whether the superensemble forecasts of rainfall can provide any useful 
guidance for floods. Mostly the heavy rains that resulted in the recent Mozambique floods during February 
and March of the year 2000 resulted from heavy rains over Mozambique and Zimbabwe. The headwaters of 
the Limpopo River over Zimbabwe experienced the heaviest rainfall that resulted in the cresting of the river 
over southern Mozambique where the flooding was most severe. Forecasts of rain from this study were 
projected on Hovmoller diagrams (longitude versus time) and are shown in Fig. 9. Here we show the daily 
rainfall for the belt 10ºS to 15ºS covering the longitudes 24ºE to 45ºE for the entire month of February (dates 
are here plotted from bottom to up). The three panels show the ‘observed’ estimates, those based on the 
superensemble forecasts (for day 3 of forecasts) valid on the dates of the observed rains of the left panel from 
the multimodel superensemble and also those predicted for day 3 of forecasts from the best operational 
model for this region. The best model is determined from the RMSE of rainfall for each model. The units of 
rainfall are in mm/day. It is clear that the multimodel superensemble carries the 3-day forecasts of heavy 
rains associated with the Mozambique floods very well.  Given the higher rainfall forecast skills from the 
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superensemble, it appears that useful guidance of heavy rain events resulting in floods may be possible from 
this approach. We have examined the performance of superensemble in flood forecasting issues for about 10 
case studies and the results are presented in the real time FSU superensemble NWP website 
(http://lexxy.met.fsu.edu/rtnwp/pubs/Floods_TRMM.ppt). 

 
Figure 9.  A Hovmoller diagram of daily precipitation (mm day-1) on day 3 of forecasts during the 
Mozambique floods. Ordinate shows days (bottom to top); abscissa denotes longitude.  The three panels 
denote (left) observed rain (from TRMM-2A12 plus SSM/I GPROF); (middle) superensemble forecasts; 
(right) best operational model. 

A walk-through example of a heavy rainfall and associated flooding over Philippines is illustrated in the 
following section. 
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3.1. Walking through a heavy rain computation during a recent flood episode 
over western Philippines 

In Table 3, we present a sequence of computations that highlight the heavy rain forecast over Western 
Philippines during the passage of Typhoon Halong during July 2002. In this table the first column identifies 
9 of the member models. The training coefficient for the superensemble is shown in column 2, these are 
based on the predicted rain by the member model during the proceeding 120 days (roughly). The predicted 
rain for day 3 of forecasts (a 24-hour total); the ensemble mean of forecasts, observed rain, the 
superensemble based rainfall forecast and the bias removed ensemble mean rainfall forecast are also 
provided in column 2. The third column shows the mean precipitation iF  of the member models during the 

training phase. The fourth column shows the value of superensemble function (i i ia F F− ) for each of the 

member models. The sixth column shows the bias corrected forecast for each model. The last column shows 
the forecast error for each member model, it also include the errors for the ensemble mean, for the 
superensemble and for the bias corrected ensemble mean. An examination of this table show that the 
coefficients range from 0.01 to 0.60. All models underestimate the rainfall on day 3. These coefficients do 
not reflect this single case, they show the behavior of the member model during the past 120 days.  

Multimodel Superensemble Precipitation Forecast (mm.day-1) from h48 to h72  
Valid from 20020709/12 UTC thru 20020710/12 UTC 

Valid at 15.43 deg N, 120.00 deg E (western shore of Luzon, Philippines) 
 

Model Coef.  ia Pcp.  iF
Mean Pcp 

iF  ( )iii FFa − O = 26.14 
( )ii FFO −+  

Error (mm) 
- OBS 

iF

BMRC 0.60191 88.38 31.52 34.23 83.00 -22.06 
FSUFER 0.01805 19.38 11.40 0.14 34.12 -91.06 
JMA 0.08609 60.46 12.73 4.11 73.87 -49.98 
NCEP 0.22313 91.68 15.89 16.91 101.92 -18.76 
NRL 0.22343 57.33 10.64 10.43 72.82 -53.11 
RPN 0.08697 78.36 20.21 5.06 84.29 -32.08 
FSUCTL 0.43546 24.98 18.00 3.04 33.12 -85.46 
FSUOLS 0.08800 23.94 11.46 1.10 38.61 -86.50 
FSUTRM 0.06130 20.32 11.23 0.56 35.22 -90.12 
ENSMEAN  51.65    -58.79 
OBS  110.44     
SUPENS  101.71    -8.73 

BIAS-REM 
ENSMEAN  61.89    

 
-48.55 

Table 3:  Walking through a day 3 Superensemble precip. forecast 

The mean rain of the training phase O  was 26.14 mm/day at the location. That added to ( )i i i
i

a F F−∑ , 

shown in column 5 provides the superensemble forecast. The superensemble forecast of rain for day 3 was 
101.71 mm/day. The observed rain 110.44 mm/day. The best model forecast at this location for day 3 of 
forecast came from the NCEP model. That is not true at all locations and at all ranges of forecasts. The 
ensemble mean forecast of rain was 51.65 m/day; the bias correlated ensemble mean was slightly better, i.e., 
61-89 mm/day. If we were to proceed to an adjacent region, away from this typhoon, on the same day of 
forecast, we can still see a superior performance of the superensemble although the best model may not be 
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NCEP. This is shown in Table 4 for comparison purposes. Here the BMRC model exhibited the best forecast 
among the member models. At this location, the relative spread of statistical weights is somewhat different. 
This is located at the South China Sea where the observed rainfall was 85.89 mm/day. The overall 
performance of the superensemble is similar over most regions of the tropics. While the models undergo 
considerable relative spreads in their forecast from one region to another, the superensemble appears to be 
more consistent in its overall performance. It its also of interest to note that the forecast errors of the 
ensemble mean and of the bias removed ensemble mean. It is important to note that no simple relation exists 
between higher value of the weights (from training) and the forecast of rain in a specific case. For instance, 
over the South China Sea, the FSU control experiment (FSUCTL) has the highest weight, however, the 
forecast of rain is poor at this location for this rain event. 

Multimodel Superensemble Precipitation Forecast (mm.day-1) from h48 to h72  
Valid from 20020709/12 UTC thru 20020710/12 UTC 

Valid at 16.36 deg N, 116.25 deg E (South China Sea) 

Model Coef.  ia Pcp.  iF
Mean Pcp 

iF  ( )iii FFa − O = 17.70 
( )ii FFO −+  

Error (mm) 
- OBS 

iF

BMRC 0.49539 96.73 10.75 42.59 103.68 +10.84 
FSUFER 0.16146 17.09 12.71 0.71 22.07 -68.80 
JMA 0.21269 34.56 10.59 5.10 41.67 -51.33 
NCEP 0.27851 57.93 6.02 14.46 69.61 -27.96 
NRL 0.22542 7.01 3.62 0.76 21.09 -78.88 
RPN 0.12789 40.31 13.70 3.40 44.30 -45.59 
FSUCTL 0.60904 23.30 15.31 4.87 25.69 -62.59 
FSUOLS 0.22708 18.64 10.25 1.90 26.08 -67.26 
FSUTRM 0.21834 25.91 11.78 3.09 31.83 -59.98 
ENSMEAN  35.72    -50.17 
OBS  85.89     
SUPENS  94.58    +8.68 
BIAS-REM 
ENSMEAN  42.89    -43.00 

Table 4:  Walking through a day 3 Superensemble precip. forecast 

 

4. Seasonal Climate Forecasts from Multimodel Superensemble: 
In the area of seasonal climate forecasting, several papers have been published on the initial development of 
strategies and application with AMIP (Atmospheric Model Inter-comparison Project) data sets Krishnamurti 
et al., (1999, 2000a and 2000b) and a first effort with four versions of the FSU Coupled Models, 
Krishnamurti et al., (2002). Using some arbitrary selection of 8 models from about 31 different global 
models of AMIP, the superensemble is constructed. All these models had a 10-yr-long integration from 1979 
to 1988. The training period consisted of the last 8 years of the data sets while the first two years (1979 and 
1980) were subjected to the forecast phase of the superensemble. Monthly mean simulations along with the 
monthly mean analysis fields provided by ECMWF were used to generate the anomaly multiregression 
coefficients at each grid point for all vertical levels and all basic variables of the multimodels. Figure 10 
shows the time sequence of the RMS error for the meridional wind over the global tropics. One can observe 
a marked improvement in the skill scores achieved using the superensemble approach.  
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Figure 10.  850 hPa meridional wind RMS error (m.s-1) from AMIP 1 data sets.  Training phase is from 
1981 to 1988 and forecast phase is from 1979 to 1980.  Results from AMIP 1 model forecasts, ensemble 
mean, superensemble and climatology are shown. (after Krishnamurti et al., 2000a) 

Further to this study, several types of model-generated data sets are examined to address the question of 
seasonal prediction of precipitation over the Asian and the North American monsoon systems (Krishnamurti 
et al., 2002). The main question we asked is if there is any useful skill in predicting seasonal anomalies 
(beyond those of climatology). The superensemble methodology is applied here to the anomalies of the 
predicted multimodel data sets and the observed (analysis) fields. We noted that the superensemble based 
anomaly forecasts have somewhat higher skill compared to the ensemble mean of member models, 
individually bias removed ensemble mean of the member models, the climatology and the member models 
that are being used in this exercise. The illustration for the seasonal correlations (of model rainfall 
anomalies) with respect to the observed anomalies is presented in Figs. 11a and 11b for Asian Monsoon 
domain and North American Monsoon domain respectively . The highest anomaly correlations for the 
seasonal precipitation forecast are generally seen for the multimodel superensemble (heavy line). The other 
heavy line shows the results for the ensemble mean, the remaining thinner lines show the skill of the member 
models of AMIP1 and AMIP2. The calculations carried out here used the cross-validation technique, i.e. all 
years (except the one being forecasted) were used to develop the training data statistics. The skill of forecasts 
from the superensemble come partly from the forecast performance of multimodels and partly from the 
training component built into this system that is based on past collective performance of these multimodels. 
We have separated these components to assess the improvements of the superensemble. Though skill of the 
forecasts from the superensemble is found to be higher than that of the ensemble mean and has shown some 
usefulness over the climatology, the issue of forecasting a season in advance in quantitative terms still 
remains a challenge and demands further advancement in climate modeling studies.  
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AMIP1&2 precip anomaly correlation, Indian monsoon, JJA
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Figure 11. (a) Correlation of seasonal forecasts of precipitation anomalies with respect to observed anomaly estimates 
based on Xie and Arkin (1996) from the mix of AMIP I and AMIP II data sets.  Heavy line at top: Superensemble.  
Other heavy lone: Bias removed ensemble mean.  Thin lines:  Member multimodels.  Ten years of summer monsoon 
results are shown here.  
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Figure 11 (b) – Same as 11 (a) but for North American Monsoon Domain. 
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5. Hurricane Forecasts from Multimodel Superensemble: 
Real time hurricane forecast is another major component of the superensemble modeling at Florida State 
University. This approach of training followed by multimodel real time forecasts for tracks and intensity (up 
to 5 days) provides a superior forecast from the superensemble. Improvements in track forecasts are 25% to 
35% better compared to the participating operational forecast models; this has been noted over the Atlantic 
Ocean basin. The intensity forecasts for hurricanes are only marginally better than those of the best models. 
Recent real-time tests, during 1999 to 2001, showed marked skills in the forecasts of difficult storms such as 
Floyd and Lenny where the performance of the superensemble was considerably better than those of the 
member models (Williford et al., 2002). An example of superensemble track forecasts for Hurricane Lenny 
is shown in Fig. 12. Here the observed best track for Hurricane Lenny is compared to those of a few member 
models and the superensemble. In these track forecasts, we note improvements for days 1, 2 and 3 of 
forecasts for the storm positions, which were of the order of 125, 200 and 350 km. This is an example 
showing a marked improvement for position forecasts. The illustrations in Fig. 13 show the forecast 
performance during the year 2001 for the Atlantic hurricane track and intensity. The least error for the 
superensemble in both categories is a consistent feature compared to all the participating models. This is an 
area where the use of multimodels (from diverse global modeling units and from FSU) has shown the most 
promise for forecasts on imminent landfall, tracks and intensity. A superensemble forecast constructed with a 
suite of some of the finest global models, that are currently available, holds a great promise for the 
improvements in shore range predictions for the landfall and tracks of hurricanes. 

 
Figure 12.  Superensemble track forecast of Lenny.   Here the predicted tracks of some member models, 
ensemble mean and superensemble are shown. 

Similar studies on superensemble based track and intensity forecasts for the Pacific region (Vijaya Kumar et 
al., 2002) have also revealed the usefulness of this methodology displaying considerable improvement of the 
forecast skills. A summary of the Pacific typhoon track and intensity errors for the years 1998-2000 is 
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provided in Fig. 14 (a and b). Here the position and intensity errors at 12-hour intervals are shown where the 
skill from the superensemble is consistently high compared to the member models and the ensemble mean. 
In all of the aforementioned work, preservation of the member model features is an essential requirement 
during the training and the forecast phases. If drastic changes occur in the member models then the proposed 
statistical component of the superensemble is invalidated. It is apparent that if no major model changes are 
invoked during the training and the forecast phases of these forecasts, then we can obtain skill improvements 
of the order of 61, 138, 159 and 198 km for the typhoon position errors over the best models for forecasts at 
the end of days 1, 2, 3 and 4 respectively. The corresponding intensity forecast skills (rms errors) at days 1, 
2, 3 and 4 of forecasts from the superensemble exceed those of the best models by 5, 10, 13 and 20 knots.  
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Figure 13. A seasonal summary on the performance of hurricane forecast skill during the year 2001 from 
various models including the FSU superensemble (SENS).  Here the errors for the intensity (mph) and track 
(km) are displayed for 3-day forecasts. 
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It is desirable to look at the entire process of making the superensemble forecasts for hurricanes and 
typhoons. A typical walk-through example of superensemble forecast for Hurricane Lenny and another 
example of a land-falling typhoon Olga are illustrated in the following section. 

Mean Pacific Typhoon Track Errors, West Pacific, 1998-2000
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Mean Pacific Typhoon Intensity Errors for West Pacific, 1998-2000
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Figure 14:   (a) Mean typhoon track errors for the West Pacific (km), 1998-2000. (b) Mean typhoon 
intensity errors for the West Pacific (km), 1998-2000. 

5.1. Walking through a Pacific typhoon superensemble forecast 

The proposed methodology described in section 1 is not very complex. It is simple to comprehend but why it 
works so well has perplexed many. Evidently it is not sufficient to simply state that the training coefficient, 
derived from a least square minimization principle, removes a bias. Because the classical bias removed 
defined by forecast mean minus an observational mean is not what this is doing. It is looking at all the 
member models at the same time and removing a collective bias. Since the least square minimization is a 
nonlinear computation this is not a simple addictive process. Because this method can easily place a 
hurricane position nearly a 100 km or more closer to the observed position compared to a best model it does 
have a huge practical relevance. For this reason we shall show an entire sequence of computation at a day 3 
forecast for a typhoon (arbitrarily selected) from our forecast files. Table 5 shows the sequence of 
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computations. This table carries the following entries: Name of participating model (i); superensemble 
coefficient; predicted latitude (Fi) of Typhoon Olga by the respective model on day 3 of forecasts; latitudinal 
mean ( F ) of all forecasts made by the member model prior to Olga; the value of ( FFii − )a ; the value of 

(∑ −+ FFaO ii ) where Ō is an observed mean that is defined as the observed mean of the latitudes of all 

storms prior to Olga during 1999. The models included here are the European model (ECMWF), U.S. model 
(MRF), U.S. Navy’s model (NOGAPS), Japanese global model (JMAGSM) and the Japanese regional 
typhoon model (JMATYM). The other rows on this table include entries for the ensemble mean (EWS 
MEAN), the observed latitudinal position (OBS) of Typhoon Olga on day 3, the superensemble forecasts 
(SUPENS) obtained from the equation presented at the top of this table, the bias removed ensemble mean  
  

Day-3 (72-hr) Multimodel Superensemble Forecast of Typhoon Olga (11W) 
Valid 1999080212 

Position (Latitude) 
Model Coef. a  i

Latitude 
 iF

Lat. Mean 

iF  
( )iii FFa −

 
( )ii FFO −+  Error (lat.) (in 

degrees) 

ECMWF 0.16706 22.5 31.05 -1.42836 21.485 -3.9 
MRF -0.23966 21.5 29.44 1.9029 22.095 -4.9 
NOGAPS 0.03840 22.5 26.68 -0.16052 25.855 -3.9 
JMAGSM -0.06988 22.7 27.71 0.350075 25.025 -3.7 
JMATYM 0.08487 24.6 30.28 -0.48204 24.355 -1.8 
        

ENSMEAN  22.76 O    -3.64 

OBS  26.4 25.703    
SUPENS  25.8851    -0.515 
BIAS-REM 
ENSMEAN  23.763    -2.637 

Position (Longitude) 
Model Coef. 

ia  

Longitude 

iF  

Lon. mean 

iF  
( )iii FFa −  ( )ii FFO −+  

 

Error (lon.) 
(in degrees) 

ECMWF 0.14756 129.3 135.34 -0.89126 126.63 1.1 
MRF 0.79791 129.4 133.71 -3.43899 128.36 1.2 
NOGAPS -0.42747 129.1 130.02 0.393273 131.75 0.9 
JMAGSM -0.88486 131.3 130.55 -0.66364 133.42 3.1 
JMATYM 0.46562 129.1 131.24 -0.99643 130.53 0.9 
              

ENSMEAN   129.64 O      1.44 
OBS   128.2  132.67       
SUPENS   127.0729       -1.127 
BIAS-REM 
ENSMEAN  129.46       1.268 

Table 5:  Walking through one typhoon forecast from the Superensemble 
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latitudinal forecasts of Typhoon Olga on day 3. The lower half of the Table contains the compounding 
entries for the longitude forecasting of Typhoon Olga. There is a considerable spread of the regression 
coefficients for the latitudinal as well as the longitudinal position. These coefficients are not based on any 
data sets from Typhoon Olga; they are based on the past performance, prior to Olga, of the respective 
models. These coefficients range in values that are finite positive, finite negative to near zero. That is how 
the past behavior of the models placed them. What is extremely unique about the superensemble is that past 
behavior does carry over for the present storm Olga. The superensemble forecasts for both the latitude and 
longitude places this forecast position closest to the observed position. We clearly see an improvement over 
the best model by almost 250 km on the day 3 forecast of Olga. All the member model forecasts were 
moving the storm somewhat too slowly; the “collective bias removal” by the superensemble corrects this 
deficiency. The ensemble mean is not a good forecast compared to half of these member models. A bias 
removed ensemble mean is also displayed here that too is not as accurate as the best model. Bias removed 
ensemble mean assigns equal weights to all member models (after bias removal) that assure that a poor 
model is equivalent to the best model, which does not seem to hold true. When we look at Fig. 14 where we 
have displayed the summary of typhoon forecasts for the year 1999 we see the superior performance of the 
superensemble. That comes about in the same manner as is displayed here in Table 5. We have walked 
through each of the storm forecasts in this same manner and gotten a better feeling as to why the 
superensemble is a better product. As stated in Krishnamurti et al (1999) we note temporal resilience of 
weights (after a reasonable length of the training phase). It is this feature that conveys the high skill of the 
training phase to the forecast phase. 

5.2. Walking through the superensemble forecasts of Hurricane Lenny of 1999 

Unlike most Atlantic hurricanes that traverse from east to west, a late season hurricane Lenny of November 
1999 encountered steering from westerly flows and moved in an opposite direction. Lenny was located at a 
rather low latitude around 15oN where this unusual westerly steering was found. A suite of models 
operational at this time provided their real time forecasts to the National Hurricane Center at Miami. The 
superensemble tracks, on real time, were constructed using these forecasts based on the predicted increments 
of latitude and longitude positions at 12 hourly intervals. This was one of the several storms of the year 1999 
where the superensemble forecasts were consistently much superior to those of the member models. A 
purpose of the following display exercise is to provide some insight to the reader on the mechanism of this 
simple superensemble procedure. 

Table 6 (a, b and c) carries sequential entries on the forecasts of Hurricane Lenny’s track for hours 36, 72 
and 120 of forecasts. In these tables the first column identifies a model number, the second column shows 
the weights of the superensemble, based on increments, for these respective models from their training phase 

performance. The next column shows values of the superensemble algorithm function ( i iF F′− )′ , i.e., the 

difference between the model forecast increment and its average from the training phase. The next column 

prepares the individual entries for the superensemble function ( )i i iFa F ′ ′− . The fifth column carries the total 

superensemble forecast for the position increment that now includes the observed mean increment O  from 
the training phase. The forecast latitudes or longitudes (adding all increments to the initial position of the 
storm) are shown in column 7 and the forecast errors are displayed in column 8. We also show in the rows 
below the member model forecasts the observed, superensemble forecast and the ensemble mean forecasts in 
column 7 for the different forecast hours. The various tables display a large similarity in the procedure. 
Although the member model’s training weights do vary from one forecast hour to the next, the overall 
strength of the superensemble appears to hold steadily. These computations are revealing on the nature of the 
track forecasts displayed in Fig. 12. It should be noted that this is a one-dimensional superensemble along the 

′
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tracks of the storms, unlike those of NWP where the grid points along latitude and longitude carry a two-
dimensional display of superensemble skills. The number of models for the different forecast hours and even 
for latitude versus longitude is different. This has to do with the availability of data sets and on the criteria 
for rejection of training data forecasts where some poorer skills were encountered. It should also be noted 
that separate training coefficients were derived for each forecast hour. Thus we don’t see a uniformity in the 
number of models in these tables. 

6. Prospects for future research and applications: 
Currently a number of regional mesoscale models (such as: regional spectral models of FSU, NCEP; ETA; 
various versions of MM5; ARPS, WRF; RAMS and others) are available that carry out real time forecasts 
over regional domains. In principle the superensemble methodology can be extended to this class of models 
and we expect much progress towards more accurate forecasts of severe weather events. The current 
multimodel superensemble methodology for hurricane tracks and intensity forecasts is also being extended to 
the tropical cyclone forecasts over the North Indian Ocean and the preliminary results look promising. In the 
seasonal climate forecasts issue, coupled model based regional models are being run for the North American 
Monsoon region and Indian Monsoon region using the FSUCGSM with an aim to provide reliable regional 
climate forecasts and the work is in progress. We are currently running a large number of seasonal forecasts 
mode with the global and high-resolution regional models at FSU. In order to construct the (8 member) 
superensemble for regional climate over the North American as well as Indian summer Monsoon regions, 
numbers of global and regional model runs are going on using FSU coupled and embedded regional spectral 
Model with different physics at these two monsoon regions. The basic aim of this research is to real time 
seasonal climate prediction over both the North American and Indian summer monsoon regions. 

 

Acknowledgements: The research work on multimodel/multianlaysis superensemble forecasts for weather, 
seasonal climate and hurricanes/tropical cyclones is supported by the NOAA Grant numbers NA96GPO400, 
NA06GPO512, NA16GP1365, FSU Research Foundation Center of Excellence Award, NASA Grant 
numbers NAG5-9662, NAG8-1537 and NSF Grant numbers ATM-0108741, ATM-9910526. We 
acknowledge the data support from the European Centre for Medium Range Weather Forecasts especially 
through the help of Dr. Tony Hollingsworth. 

7. References: 
Krishnamurti, T.N., J. Xue, H.S. Bedi, K. Ingles, and D. Oosterhof, 1991: Physical initialization for 
numerical weather prediction over the tropics. Tellus, 43AB, 53-81.  

Krishnamurti, T.N., G.D. Rohaly and H.S. Bedi, 1994: On the improvement of precipitation forecast skill 
from physical initialization. Tellus, 46A, 598-614. 

Krishnamurti, T.N., C.M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C.E. Williford, S. Gadgil and S. 
Surendran, 1999: Improved skills for weather and seasonal climate forecasts from multimodel 
superensemble. Science, 285 (5433), 1548-1550. 

Krishnamurti, T.N., C.M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C.E. Williford, S. Gadgil and S. 
Surendran, 2000a. Multi-model superensemble forecasts for weather and seasonal climate. J. Climate, 13, 
4196-4216. 

Krishnamurti, T.N., C.M. Kishtawal, D.W. Shin and C.E. Williford, 2000b: Improving Tropical Precipitation 
Forecasts from a Multianalysis Superensemble. J. Climate, 13, 4217-4227. 

193 



KRISHNAMURTI, T.N. ET AL.: SUPERENSEMBLE FORECASTS FOR WEATHER AND CLIMATE 

194 

Krishnamurti, T.N., S. Surendran, D.W. Shin, R. Correa-Torres, T.S.V. Vijaya Kumar, C.E. Williford, C. 
Kummerow, R.F. Adler, J. Simpson, R. Kakar, W. Olson and F.J. Turk, 2001. Real Time 
Multianalysis/Multimodel Superensemble Forecasts of Precipitation using TRMM and SSM/I Products. 
Mon. Wea. Rev., 129, 2861-2883. 

Krishnamurti, T.N., L. Stefanova, Arun Chakraborty, T.S.V. Vijaya Kumar, Steve Cocke, David Bachiochi 
and Brian Mackey, 2002: Seasonal Forecasts of precipitation anomalies for North American and Asian 
Monsoons. Accepted for publication, Journal of Met. Society of Japan. 

Krishnamurti, T.N., K. Rajendran, T.S.V. Vijaya Kumar, Stephen Lord, Zoltan Toth, Xiaolei Zou, Jon 
Ahlquist and I. Michael Navon, 2003: Improved Skills for the Anomaly Correlation of Geopotential Heights 
at 500 hPa. Accepted for publication, Monthly Weather Review. 

Stefanova, L. and T.N. Krishnamurti, 2002. Interpretation of Seasonal Climate Forecasts Using Brier Skill 
Score, FSU Superensemble and the AMIP-1 Dataset. J. Climate, 15, 537-544. 

Treadon, R.E., 1996: Physical initialization in the NMC global data assimilation system. Meteorol. Atmos. 
Phys., 60 (1-3), 57-86. 

Vijaya Kumar, T.S.V., T.N. Krishnamurti, Michael Fiorino and M. Nagata, 2002: Multimodel 
Superensemble Forecasting of Tropical Cyclones in the Pacific. In press, Monthly Weather Review. 

Williford, C.E., T.N. Krishnamurti, Ricardo J. Correa-Torres, Steven Cocke, Zaphiris Christidis and T.S.V. 
Vijaya Kumar, 2002: Real-Time Multimodel Superensemble Forecasts of Atlantic Tropical Systems of 1999. 
In press, Monthly Weather Review. 

Yun, W.T., L. Stefanova and T.N. Krishnamurti, 2002: Improvement of seasonal and long-term forecasts 
using multimodel superensemble technique. Accepted for publication, Journal of Climate. 

 


	Introduction
	Experimental Real-time Global Weather Forecasts based on Superensemble

	The Multimodel Superensemble for Numerical Weather Prediction:
	Precipitation Forecasts from TRMM–SSM/I based Mul
	Walking through a heavy rain computation during a recent flood episode over western Philippines

	Seasonal Climate Forecasts from Multimodel Superensemble:
	Hurricane Forecasts from Multimodel Superensemble:
	Walking through a Pacific typhoon superensemble forecast
	Walking through the superensemble forecasts of Hurricane Lenny of 1999

	Prospects for future research and applications:
	References:

