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Abstract

In this set of lectures I would like to give a brief overview of the state-of-the-art of ocean wave modelling, ranging from a
derivation of the evolution equation of the wave spectrum from the Navier–Stokes equations to the practice of wave
forecasting. From validation studies using satellite data from Geosat and ERS-1 it appears that present-day wave models are
reliable. In addition, it is known from experience that wave results depend in a sensitive manner on the quality of the driving
surface winds. For these reasons ocean wave forecasting has certain benefits for atmospheric modelling. Two examples of
these benefits are given. The program of these lectures is, therefore, as follows:

1. Derivation of the energy balance equation
1.1 Preliminaries—Dynamical equations, dispersion relation in deep and shallow-water, group velocity, energy density,

Hamiltonian and Lagrangian for potential flow.  The averaged Lagrangian.
1.2 Energy balance equation (adiabatic part)—The need for a statistical description of ocean waves: the wave spectrum.—

From the averaged Lagrangian we show that the adiabatic rate of change of the wave spectrum is determined by advection
(with the group velocity) and refraction.

1.3 Energy balance equation (physics)—From now on we only consider deep water. It is shown that, in addition to
adiabatic effects, the rate of change of the wave spectrum is determined by: (a) energy transfer from wind; (b) non-linear wave-
wave interactions; (c) dissipation by white capping.

2. The WAM model—The WAM model is the first model that solves the energy balance equation, including non-linear wave-
wave interactions.

2.1 Energy balance for wind sea—Distinction between wind sea and swell. Empirical growth curves: fetch and duration
limitation. Energy balance for wind sea according to the WAM model. Evolution of wave spectrum. Comparison with
observations from JONSWAP.

2.2 Wave forecasting—Quality of wind field (SWADE). Validation of wind and wave analysis using ERS-1 altimeter data
and buoy data.—Quality of wave forecast, forecast skill depends on whether sea state is dominated by wind sea or swell.

3. Benefits for atmospheric modelling
3.1 Use as a diagnostic tool—The apparent over-activity of the atmospheric model during the forecast is reflected in too

high forecasted wave height.  This is shown by comparing monthly mean wave forecasts with the verifying analysis.
3.2 Coupled wind-wave modelling—The energy transfer from atmosphere to ocean is sea state dependent. To be consistent

one has to couple wind and waves to take the sea state dependent slowing down of the wind into account. Such a coupled
wind-wave model gives an improved climate in the Northern Hemisphere. Also, the wind field in the tropics is affected, to a
considerable extent, (e.g. in monsoon area and warm pool east of Indonesia).
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1. DERIVATION OF THE ENERGY BALANCE EQUATION

In this chapter we shall try to derive the basic evolution equation of wave modelling, called the energy balance

equation, from first principles. Our starting point is the Navier–Stokes equations for air and water and it is empha-

sised that there are two small parameters in the problem namely the steepness of the waves and the ratio of air to

water density. Because of these two small parameters one may distinguish two scales in the time–space domain,

namely a fast scale related to the period and wave length of the waves and a much longer time and length scale

related to changes due to the small effects of non-linearity and growth of waves by wind.

Figure  1. The problem

Using perturbation methods, an approximate evolution equation for the amplitude and phase of the gravity waves

may be obtained. In lowest-order one then deals with free surface gravity waves while higher-order terms represent

the effects of wind input, non-linear (four) wave interaction and dissipation.

Applying this deterministic evolution equation to a practical application, such as ocean wave prediction, is not very

feasible, however. First of all, we may have some information on the initial condition for the amplitude of the

waves (but it should be stressed that this requires the 2-D wave spectrum), but certainly not on the phases of the

waves. On the other hand, one might ask oneself whether all this detailed information regarding the phase of the

waves is really needed. Perhaps we can content ourselves with knowledge about averaged quantities such as the

wave spectrum , where

(1)

with the complex amplitude of a wave with wave number and is the complex conjugate. A statistical

description seems the most promising way to proceed.

a

F k( )

F k( ) a k( )a* k( )∼

a k a*
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Secondly, a standard approach would be to do a Fourier analysis of the deterministic evolution equations and solve

the resulting ordinary differential equations on the computer. This approach is followed by ECMWF's atmospher-

ic, spectral model. For water waves, this approach is not feasible because too many scales are involved. A typical

ocean wave has length scales between 1 and 250 m, while a typical ocean basis extends over 10 000 km. A way

of circumventing this problem is to employ a multiple-scale approach. We assume that there are two scales, one

related to the free gravity waves and a long scale related to the aforementioned physical processes, such as wind

input, non-linear interactions and dissipation. Since we know the solution for the free gravity waves, we only have

to consider the evolution of the wave field on the long time and space scale, thus making the wave forecasting prob-

lem on a global scale a tractable problem. As a result, it turns out that the wave spectrum is a slowly varying

function of space and time and its evolution equation, called the energy balance equation, will be derived in this

chapter.

1.1  Preliminaries

Referring to Fig. 1 for the geometry, our starting point is the usual evolution equation for an incompressible, two-

layer fluid, consisting of air and water. Introducing for the acceleration of gravity and denoting the interface

between air and water by  we then have

(2)

with

Velocities and forces (pressure and tangential stress) are continuous at the interface. A particle on either side of

the surface will move in time from ( ) to ( ) with

 and .  Thus, in the limit  one obtains the kinematic boundary condition

(3)

Here, is the horizontal velocity at the interface while is its vertical velocity. In order to complete the set of

equations, one has to express the stress tensor in terms of the mean flow. The stress contains the viscous stress

and may or may not contain the additional stress resulting from turbulent fluctuation (the Reynolds stress).

For deep water, one has to specify boundary conditions at : the oscillation should vanish in these limits.

However, for water of finite depth the normal component of the velocity should vanish at the bottom.

In order to study the properties of pure gravity waves, we make the following approximations:

(i) neglect viscosity and stresses. This gives the Euler equations. Continuity of the stress at the

interface is no longer required.  The parallel velocity at the interface may now be discontinuous.

(ii) We disregard the air motion altogether because . In our discussion on wave growth we

retain, of course, effects of finite air-water density ratio.

F

g
η x t,( )

∇ u⋅ 0=

∂
∂t
----- u ∇⋅+ 

  u
1
ρ
---∇P– g ∇ τ⋅+–=

ρ ρa z η>,
ρw z η<,




=

∆t x z, η x t,( )= x ∆x z ∆z+,+ η x ∆x t ∆t+,+( )=

∆x u∆t= ∆z w∆t= ∆t 0→

∂
∂t
-----η u ∇η⋅+ w=

u w
τ

z ∞±→

ρa ρw⁄ 1«
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(iii) We assume that the water velocity is irrotational. This is a reasonable approximation for water

waves. In fact, it can be shown (homework!) that, in the framework of the Euler equations, the

vorticity remains zero when it is zero initially.

We therefore introduce a velocity potential  with the property

(4)

and the flow is then described by Laplace's equation

(5)

with two conditions at the surface

(6)

and a condition at  (a flat bottom is assumed here)

(7)

i.e. no fluid penetrates the bottom.

Eqs. (5)–(7) conserve the total energy of the fluid

(8)

Here, the first term is the potential energy of the fluid while the second term is the kinetic energy.

By choosing appropriate canonical variables, Zakharov (1968), Broer (1974) and Miles (1977) independently

found that  may be used as a Hamiltonian.  The proper canonical variables are

(9)

The boundary conditions at the interface are then equivalent to Hamilton's equations

(10)

where  is the functional derivative of  with respect to .

Homework: Prove that (10) is equivalent to (6).

The formulation (10) has certain advantages.  If one is able to solve the potential problem

φ

u ∇φ=

∆φ ∂2

∂z2
--------φ+ 0 , ∆ ∂2

∂x2
-------- ∂2

∂ y2
---------+= =

z η

∂η
∂t
------ ∇φ ∇η⋅+

∂
∂z
------φ=

∂φ
∂t
------

1
2
--- ∇φ( )2 1

2
--- ∂φ

∂z
------ 

  2

gη+ + + 0 (Bernoulli)=








=

z D–=

z D ,
∂

∂z
------φ– 0= =

E 1
2
---ρg xη2 1

2
---ρ dx z ∇φ( )2 ∂φ

∂z
------ 

  2

+d
D–

η

∫∫+d∫=

E

η and ψ x t,( ) φ x z, η t,=( )=

∂η
∂t
------

δE
δψ
------- ,

∂ψ
∂t
------- δE

δη
-------–= =

δE δψ⁄ E ψ
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with boundary conditions

thereby expressing in terms of the canonical variables and , then the energy can be evaluated in terms

of  and  and the evolution of  and  follows at once from Hamilton's equations (10).

There is also a Lagrangian formulation of the water wave problem. Luke (1967) found that the variational principle

(11)

with ,

gives the Laplace equation as well as the boundary conditions.

Intermezzo

Hamilton's equations are well-known from classical mechanics. Consider a particle with momentum and posi-

tion  in a potential well .  The total energy of the particle is then given by

. (12)

Regard  and  as canonical variables.  Then, Hamilton's equations are ( )

(13a)

. (13b)

Eliminating momentum  we get with

which we recognize as Newton's law where the Force is derived from the potential.

In classical mechanics, the Hamiltonian formulation follows from the principle of "least" action. To see this, con-

sider the Lagrangian

.

∆ϕ ∂2

∂z2
--------φ+ 0=

φ x z, η=( ) ψ and
∂

∂z
------φ x z, D–=( ) 0= =

φ η ψ E
η ψ η ψ

δ xd yd tLd∫ 0=

L ρ z ∂
∂t
-----φ 1

2
--- ∇φ( )2 ∂φ

∂z
------ 

  2

gz+ + +d
D–

η

∫–=

p
q V q( )

E 1
2
--- p2

m
------ V q( )+=

p q q̇ ∂q ∂t⁄=

q̇ ∂E
∂p
------- p

m
-----= =

ṗ ∂E
∂p
-------–

∂
∂q
------V–= =

p v q̇=

mv̇ ∂
∂q
------V– Force,= =

L T V–
1
2
---mq̇2 V q( )– L q q̇,( )= = =



The wave model

6 Meteorological Training Course Lecture Series

 ECMWF, 2003

Newton's law then follows from the condition that the action be extremal, where

(14)

The action is external if  where

As this should hold for arbitrary one finds that the action is extremal if satisfies the Euler–Lagrange equa-

tions

(15)

Defining the momentum  as

and regarding, from now on,  and  as independent variables, the Hamiltonian  is given by

(16)

Differentiating  with respect to  then gives, using (15)

which is just Eq. (13b), whereas differentiating  with respect to  gives

which is  just Eq. (13a).

All this is, however, less straightforward to do for a continuum such as the one we are dealing with. Nevertheless,

Miles (1977) was able to derive from Luke's variational principle for water waves the Hamiltonian equations (10).

Homework:

Derive the governing equations for surface gravity waves (5)–(7) from Luke's variational principle.

Hint: regard  and  as the independent variables and consider .

action dtL q q̇,( )
t1

t2

∫=

δ action( ) 0=

δ action( ) dt L q δq q̇ δq̇+,+( ) L q q̇,( )–[ ]∫=

dt δq ∂
∂q
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dt ∂
∂q
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∂
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∂q̇
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δq q
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∂
∂t
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p

p L q̇ q̇→ q̇ p( )= =

p q H H p q,( )=
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m
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∂H
∂q
-------- L q–

∂
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∂
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∂
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Linear theory

We have now paid sufficient attention to the basics and it is now high time to derive the dispersion relation of sur-

face gravity waves in the linear approximation. In linear theory, the evolution equations (5)–(7) for potential flow

become

(17a)

with boundary conditions

(17b)

and

(17c)

In the case of water waves, the wave propagates horizontally so that the elementary sinusoidal solutions take the

form

.

From Laplace's equation this form of  is a solution provided

.

For water of constant depth  the boundary condition on  requires .  Hence

.

Using the second equation of (17b) we thus find

(18)

However, we still have to satisfy the first equation of (17b). This imposes a restriction on the allowable frequency

 of the wave:

(19)

This is the dispersion relation of surface gravity waves.

We remark that the dispersion relation (19) tells us that there are, for given wave number , two oscillations; name-

∆φ ∂2

∂z2
--------φ+ 0=

z 0 ,

∂η
∂t
------ ∂φ

∂z
------=

∂φ
∂t
------ gη+ 0=






=

z D ,
∂φ
∂z
------– 0= =

η a iθ[ ] , φexp Z z( ) iθ[ ] , θexp k x⋅ ω– t= = =

φ

Z″ k2Z– 0 , k k kx
2 ky

2+= = =

D z D–= Z′ g( ) 0=

Z k z D+( )cosh∼

η a iθ[ ]exp=

φ ig
ω
-----a k z D+( )cosh

kD( )cosh
----------------------------------–=

ω

ω2 gk kD( )tanh=

k
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ly, waves propagating to the right and waves propagating to the left. In addition, it is important to distinguish be-

tween deep- and shallow-water waves.

Deep water (2D)

In deep water we have  and, therefore, (19) becomes

.

The phase speed of the waves, , is then given as

.

Therefore the high-frequency waves have the lowest phase speed. The energy of waves is advected by the group

velocity .  For deep water waves the group velocity becomes

hence, the group velocity is exactly half the phase speed. Furthermore, given the solution (18), it is straightforward

to obtain the total energy of the waves.  Using Eq. (8) we find for the energy density

.

Shallow water

In shallow water the depth effects are really important, thus we take the limit of small depth and therefore (19) be-

comes

.

The most extreme example of shallow water waves are Tsunami's which are generated by earthquakes in the Gulf

of Alaska. The resulting depression in the surface elevation has a large extent, thus the relevant wave length may

be of the order to 500–1000 km. These waves are truly shallow water waves as the depth of the North Pacific is of

the order to 5 km.

The phase speed of shallow water waves is given by

,

which is independent of wave number, hence there is no dispersion. As a consequence, the group velocity is equal

to the phase speed,

.

Note that in the above-mentioned example of Tsunami's the phase speed is of the order of 800 km/h!

Comparing deep and shallow water we note that there is an important difference between the two cases. Deep water

D ∞→

ω2 gk=

c ω k⁄=

c g
k
--- g

ω
----= =

∂ω ∂k⁄

vg
∂ω
∂k
-------

1
2
--- g

ω
----= =

ε

ε 2ρgaa*=

ω2 k2 gD ω→ k gD±= =

c ω
k
---- gD= =

vg
∂ω
∂k
------- c gD= = =
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waves are highly dispersive, whereas really shallow water waves are not. Later we will see that this has important

consequences for the non-linear evolution of surface waves. In fact, when waves are interacting with each other

then, because of the dispersion, the interaction time will be finite. If there is no dispersion, however, the interaction

time may become very long with the result that the effect of the non-linear interactions becomes very strong. We

cannot deal with this in the weakly non-linear approach we are discussing here. We therefore consider only dis-

persive waves, so we will not discuss the extreme shallow water limit . Our results will therefore only be

valid up to .

Before we proceed we mention, without proof, that on a current that varies slowly in space and time, the angular

frequency of the waves has a doppler shift.  Hence, for waves on a current  we have

, (20)

where

This result also holds for slowly varying bottom profiles, i.e. .

Figure  2. Waves come in groups.

Wave groups

In the previous section we have discussed a single wave. In practice we know, however, that waves come in groups

(cf Fig. 2 ). Everyone who has done some sunbathing at the beach and has listened to the breaking waves knows

that the seventh wave is the biggest. "Sting" even devoted a song to the subject (Love is the seventh Wave on the

Dream of the blue Turtles).

If the wave groups are sufficiently long, we can give a reasonably accurate description by using a plane wave so-

lution (cf Eq. (18)), however, with slowly varying phase and amplitude. Thus, similar to geometrical optics, wave

groups may be described by,

(21)

where both amplitude and phase are slowly varying functions of space and time. Here, slow has a relative

meaning; it refers to the basic length (and time) scale imposed by the gravity wave, namely its wave length and

period.  Thus, we require

Since the phase also is slowly varying, we may define a local angular frequency and wave number according to

kD 0→
kD O 1( )=

U
U x t,( )

ω k U σ+⋅=

σ gk kD( )tanh±=

D D x t,( )=

η a x t,( ) iθ x t,( )[ ] cc+exp=

a θ

1
a
---∇a<<k ,

1
a
--- ∂

∂t
-----a<<ω etc.
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(22)

Assuming that the phase function is at least twice differentiable (e.g. ), Eq. (22) implies

the following consistency relation, known as the equation of conservation of the number of wave crests:

(23)

This equation tells us that, if the frequency of the wave depends on (because of slowly varying depth and or cur-

rents), the wave number will change in time. Eq. (23), therefore, provides a key element in the energy balance equa-

tion, namely refraction.

The evolution of amplitude and frequency is not arbitrary either. To obtain these evolution equations one

could, in principle, substitute the Ansatz (21), together with a similar Ansatz for the potential , into the basic

equations (5)–(7). Then, by a straightforward but rather boring perturbation analysis the appropriate evolution

equation for amplitude  and the dispersion relation for  may be obtained.

We shall not follow this approach here. In its stead we prefer to give a derivation which starts from the Lagrangian

(11). This approach, introduced by G B Whitham, is much more instructive. It gives a better insight into the un-

derlying structure and it applies to any wave system that has a Lagrangian.

To that end, we simply substitute

into the Lagrangian density (11) and we average the Lagrangian over the rapidly varying phase .

Neglecting wave-induced currents, the average Lagrangian

becomes (dropping the brackets)

(24)

where

In other words, we obtain an average Lagrangian which depends on ,  and

where and . Hence, the appropriate evolution equations follow from the variational prin-

ciple

ω ∂
∂t
-----θ , k– ∇θ= =

θ ∂2θ ∂x∂t⁄ ∂2θ ∂t∂x⁄=

∂
∂t
-----k ∇ω+ 0=

x

a ω
φ

a ω

η a iθ[ ] cc …+ +exp=

θ

L〈 〉 1
2π
------ dθ L∫=

L
1
2
---ε

ω k U0⋅–( )2

gkT
------------------------------- 1–

 
 
  1

2
---k2ε2

ρg
---------- 9T4 10T2– 9+

8T4
--------------------------------------

 
 
 

– O ε3( )+=

ε 2ρg a 2 , T kD( )tanh= =

ω k a

L L ω k a, ,( )=

ω ∂θ ∂t⁄–= k ∇θ=
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(25)

Variation with respect to the amplitude  then gives the dispersion relation

(26a)

while variation with respect to the phase (note that appears in only through derivatives) gives the evolution

equation for the amplitude

(26b)

while a third equation follows from consistency (cf Eq. (23) )

. (26c)

The set of equations describes the evolution of a slowly varying wave group. Note that (26a) is quite general as it

is valid for any wave system that has a Lagrangian!

Before we now return to our problem of surface gravity waves, we finally introduce a transport velocity

(27)

so that (26b) becomes

(28)

This equation describes the evolution of the action density , a term which will become more plausible later.

Subsequently, we apply our results to the Lagrangian (24) in the linear approximation (i.e. disregard non-linear

terms in ).  The Lagrangian (24) may then be written conveniently

(29)

where

The dispersion relation then immediately follows from Eq. (26a), or,

hence, with , we have

δ dx dt L ω k a, ,( )∫ 0=

a

∂
∂a
------L 0=

θ θ L

∂
∂t
-----L ω ∇ L k⋅– 0=

∂
∂t
-----k ∇ω+ 0=

u
L k

L ω
-------–=

∂
∂t
-----L ω ∇ uL ω( )⋅+ 0=

L ω

ε

L
1
2
---εD ω k,( )=

D
ω k U0⋅–( )2

gkT
------------------------------- 1–=

D 0=

σ gkT=
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which is to be compared with Eq. (20). Note that now the current and depth are allowed to be slowly varying

functions of space and time.  Finally, the equation for the action density

(30)

becomes

(31)

where is the group velocity . Here, we remark that, for the (linear) group velocity, we have used the

relation

The importance of the action balance equation cannot be overemphasised. Eq. (31) has the form of a conservation

law in which the local rate of change of a density is determined by a flux of that density. In fact, if one has zero

flux at the boundaries of the ocean basin, one finds that the integral

is conserved. We emphasise that, in case of slowly varying bottom and currents, it is not the wave energy

 which is conserved, but it is the total action !

This conclusion may come as a surprise but it should be pointed out that it is a rather common feature in e.g. clas-

sical mechanics. Consider, for example, the well-know example of a pendulum in which the length is varied slowly.

In that case  and frequency  change when the length is varied but the 'adiabatic' invariant

is constant.

In closing, we stress once more that in slowly varying circumstances the wave energy is not conserved. However,

the total energy of the system which includes contributions due to currents, e.g., is certainly conserved. If waves

are considered in isolation (regarded as "the" system), then the energy is not conserved because of interactions with

currents.

Homework "Adiabatic Invariants" Study this!

Consider once more a particle in a potential well and let us introduce an externally imposed change parametrized

by some parameters .  The variational principle now becomes

and the variational equation is

ω k U0 σ±⋅=

U0 D

N L ω
ε
σ
---= =

∂
∂t
-----N ∇ vgN⋅+ 0=

vg ∂ω ∂k⁄

vg

Dk

Dω
-------–=

N tot dxN∫=

E dxε∫= N tot

E ω

A E
ω
----=

λ t( )

δ dt L q q̇ λ, ,( )∫ 0=
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We first calculate the average Lagrangian for period motion with fixed. If the period is ( here is

the frequency), then

In periodic motion ( = constant) we have conservation of energy (check this). The relation may

then be used to express  as function of ( , , ) and then also the momentum  can be expressed as

.

For (almost) periodic motion the average Lagrangian becomes

,

where  is a loop integrated over one complete period of oscillation.

We now allow slow variations of with consequent changes of and and we use the average variation prin-

ciple

.

Define again  as the derivative  of a phase .  Variation with respect to  and  gives

The first of these corresponds to the dispersion relation (26a) while the second corresponds to the action density

equation (26b).  Thus

which is just the classical results of an adiabatic invariant. As the system is modulated, and vary individually

but

remains constant.  The analogy between  of the oscillator and  of surface waves should be clear now.

1.2  Energy balance equation (adiabatic part)

In the previous section we have seen how free wave packets evolve on varying currents in basins with variable

depth. The geometrical optics approach can, however, also be used in other situations. For example, one may study

d
dt
-----L q̇ L q– 0=

λ τ 2π ν⁄= ν

L〈 〉 ν
2π
------ L dt

0

τ

∫=

λ E q̇L q̇ L–=

q̇ q E λ p L q̇=

p p q E λ, ,( )=

L〈 〉 ν
2π
------ p q E λ, ,( )dq E–∫°=

∫°
λ ν E

δ dt L ν E λ, ,( )∫ 0=

ν θ̇ θ E θ

L E 0 ,
d
dt
-----L ν 0= =

L ν
1

2π
------ pdq∫° constant= =

ν E

N ν E,( ) 1
2π
------ pdq∫°=

L ν L ω
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the coupled problem which takes into account the effect of wind on waves. Or, one may consider nonlinear inter-

actions or dissipation. As long as the perturbations are small they can be added and the action balance equation

becomes

(32)

In the next section we shall give examples of how to derive the rate of change of the action density due to wind and

due to nonlinear interactions. In this section we discuss in some detail the adiabatic part of the action balance equa-

tions.

Before we do this we have to introduce the concept of the wave spectrum. As already pointed out, solving the de-

terministic action balance (32) is not practical because knowledge of the phase of the waves is required as well. In

order to avoid this problem we shall contend ourselves with a statistical description of the ocean surface.

We introduce, therefore, the homogeneous and stationary statistical theory of random waves. In such a theory,

wave components are necessarily independent (random phases). As a consequence, the probability distribution of

the ocean surface is approximately Gaussian. The (near) Gaussian property of the ocean surface follows in prin-

ciple from the Central Limit Theorem which tells us that if the waves have random and independent phases then

the probability distribution is Gaussian. The waves are approximately independent because they have propagated

into a given area of the ocean from different distant regions. And, even if initially one starts with a highly correlated

state then, because of the dispersion, waves become separated, thereby decreasing the correlation (in fact, for dis-

persive waves the loss of correlation is exponentially fast). In practice, therefore, one always finds that for disper-

sive ocean wave the Gaussian property holds.

We therefore contend ourselves with knowledge about average quantities such as the moments

where the brackets denote an ensemble average. In most practical situations it turns out that we then have sufficient

information about the ocean surface. Since we assume that the mean of the surface elevation vanishes, we only

have to consider the two-point correlation function

.

In addition, we assume that the wave field is homogeneous (on the scale of the wave length, at least), i.e. the two-

point correlation only depends on the distance . Introducing the distance we, therefore, have

to study the two-point correlation function,

(33)

The (frozen) wave-number spectrum is now defined as the Fourier transform of the correlation .

(34)

Instead of considering a single wave, as we did in the previous section, we now take a continuum of waves. Real-

izing we have two modes (a positive frequency and a negative frequency mode)  we write

∂
∂t
-----N ∇ vgN⋅+ ∂N

∂t
--------

wind

∂N
∂t

--------
nonlin

∂N
∂t

--------
dissip

+ +=

η x1( )〈 〉 η x1( )η x2( )〈 〉 etc., ,

η x1( )η x2( )〈 〉

x1 x2– x1 x2– ξξ=

R ξξ( ) η x ξξ+( )η x( )〈 〉=

R

F k( ) 1

2π( )2
------------- d ξξ i k ξξ⋅( )[ ]R ξξ( )exp∫=
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(35)

Since  is supposed to be real we have

and, therefore,

(36)

where we have omitted the subscript + on , and where c.c. means complex conjugate. Substituting (36) into (33),

and requiring a homogeneous two-point correlation function we must have

(37)

and the two-point correlation formation becomes

(38)

In view of (34) we, therefore, find that the wave-number spectrum is given as

(39)

Setting  to zero in Eq. (38) and using (39) we have

(40)

then, as expected, the integral over the wave-number spectrum equals the wave variance . Realising that, for

propagating waves, potential and kinetic energy are equal, we find that the ensemble average of the wave energy

 is related to the wave-number spectrum in the following manner

(41)

thus the wave-number spectrum indeed gives the distribution of wave energy over wave numbers.

Homework:

Check using linear wave theory that the ensemble average of (of Eq. (8)) indeed satisfies relation

(41).

We still face a problem of a somewhat technical nature. The spectrum introduced thus far is independent of space

and time. Formally we have taken, namely, a Fourier transform over the whole domain. In order to allow for spatial

dependence of the wave-number spectrum we simply adopt the procedure that we take the Fourier transform over

a domain with such an extent that the two-point correlation function may still be regarded as homogeneous. On

η x t,( ) dkη̂+ k( ) i k x ω+t–⋅( )[ ] dkη̂– k( ) i k x ω–t–⋅( )[ ]exp
∞–

∞

∫+exp
∞–

∞

∫=

η

η̂– k( ) η̂+
* k–( )=

η x t,( ) dkη̂ k( ) i k x ωt–⋅( )[ ]exp
∞–

∞

∫= c.c.+

η̂

η̂ k( )η̂ k′( )〈 〉 0=

η̂ k( )η̂* k′( )〈 〉 η̂ k( ) 2δ k k′–( )=

R ξξ( ) dk η̂ k( ) 2
ik ξξ⋅[ ] c.c.+exp∫=

F k( ) 2 η̂ k( ) 2
=

ξξ

η2〈 〉 R 0( ) dkF k( )∫= =

η2〈 〉

E〈 〉

E〈 〉 ρg η2〈 〉 ρg dkF k( )∫= =

E
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the other hand, the domain should be large enough that it contains a sufficient number of waves. In practice, the

extent of such a domain is of the order of 10–20 km.

We are now finally in the position to derive the action balance equation for a continuous spectrum. By analogy

with the discrete case we can now introduce the action density spectrum  as

(42)

where, as before, . It is now tempting to use the action balance equation (32) for the discrete

case to obtain the action balance equation for the continuous case. There is, however, one pitfall now. The evolu-

tion equation for can only be a partial differential equation involving, for example, partial derivatives in time

with position and wave number fixed. In other words, , and are regarded as independent. In the discrete

case the wave number is a local variable which depends on position and time.

The most convenient way to proceed is, therefore, to establish the following connection between the continuous

action density spectrum and the discrete analog of Eq. (30). We are interested in the action density contained

in modes with  between  and .  Introduce now a function  with the definition

(43)

The appropriate connection between the discrete and continuous spectrum is

(44)

So the sum is over all the modes with wave numbers contained in the above mentioned interval. We emphasise that

the 'local' wave number  may depend on space  and time.

The evolution equation for  is now readily obtained by starting to evaluate

using (44) and the action balance equation (32).  The result is

(45)

Here, the term involving the partial derivative with respect to stems from the spatial and temporal dependence

of the local wave number in the discrete case. It gives rise to the so-called refraction of the waves. Furthermore,

 denotes just the usual dispersion relation

(46)

and the group velocity . Finally, the source term, is just the ensemble mean of the right-hand side

of the Eq. (32).  We shall discuss these terms in more detail in the next section.

N k( )

N k( ) F k( )
σ

------------=

σ gk kDtanh=

N k( )
k t x k

E σ⁄
k k 1 2⁄( )∆k– k 1 2⁄( )∆k+ ε k( )

ε k( )
1 if 1 2⁄( )∆k k 1 2⁄( )∆k< <–

0 otherwise



=

N k( )∆k Nk ′ε k k′–( ) , Nk ′
k ′
∑

2 ak ′
2

σ
----------------= =

k′ x

N k( )

∂N k( )
∂t

-----------------
x k,

∂
∂t
-----N ∇x vgN( )⋅ ∇k ∇xΩN( )⋅–+ S Swind Snonlin Sdissip+ += =

k

Ω

Ω k U σ , σ+⋅ gk kDtanh= =

vg ∂Ω ∂k⁄= S
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We close this section by discussing some properties of the action balance equation in the absence of sources and

sinks (adiabatic effects therefore).

Before we start this discussion we present a slightly more general form of the action balance equation. Let and

 be the spatial coordinates and  the wave coordinates and let

(47)

be their combined four-dimensional vector. Then the most fundamental form of the transport equation for the ac-

tion density spectrum , without the source term, can be written in the flux form

(48)

where denotes the propagation velocity of a wave groups in the four-dimensional phase space of and . This

equation holds for any rectangular coordinate system and for any field , hence also for velocity fields which are

not divergence free in four-dimensional phase space. In the special case when and represent a canonical vec-

tor pair—this is the case, for example, when they are the usual vector pairs—the propagation equations for a wave

group (also known as Hamilton's equations of motion) read:

(49)

where  denotes the dispersion relation (46).

The Hamilton equations have some intriguing consequences. Firstly, the transport equation for the action density

may be expressed in the advection form

(50)

as, because of (49), the field , for a continuous ensemble of wave groups is divergence free in four-dimensional

phase space,

(51)

Thus, along a path in four-dimensional phase space defined by the Hamilton equations (49) the action density is

conserved. This property holds only for canonical coordinates for which the flow divergence vanishes [the so-

called Liouville Theorem].

Secondly, the analogy between Hamilton's formalism of particles with a Hamiltonian and wave groups obeying

the Hamilton equations of motion should be pointed out. Indeed, wave groups may be regarded as particles and

the Hamiltonian and angular frequency play similar roles. Because of this similarity is expected to be

conserved as well (under the restriction that does not depend on time). This can be verified by direct calculation

of the rate of change of  following the path of a wave group in phase space,

x1

x2 k1 k2,

z x1 x2 k1 k2, , ,( )=

N k x t, ,( )

∂
∂t
-----N ∂

∂zi
------- żiN( )+ 0=

ż x k
ż

x k

ẋi
∂

∂ki
--------Ω+=

k̇i
∂

∂xi
--------Ω–=

Ω

∂
∂t
-----N ∂N

∂t
-------- żi

∂
∂zi
-------N+ 0= =

ż

∂
∂zi
------- żi 0=

H

H Ω Ω
Ω

Ω
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(52)

The vanishing of follows at once upon using the Hamilton equations (49). Note that the restriction of no

time dependence of is essential for the validity of (52), just as the Hamiltonian is only conserved when it

does not depend on time . Thus, (52) gives the important message that angular frequency is conserved when fol-

lowing a wave group.

We now turn to the important case of spherical coordinates. Since (48) holds for any rectangular coordinate system,

the transport equation in spherical geometry is easily obtained. To that end let us consider the spectral action den-

sity with respect to angular frequency and direction (measured clockwise relative to true

north) as a function of latitude and longitude . The reason for the choice of frequency as the independent var-

iable (instead of, for example, the wave number ) is that, for a fixed topography and current, the frequency is

conserved when following a wave group, therefore the transport equation simplifies. In general, the conservation

equation for  thus reads

(53)

and, since , the term involving the derivative with respect to drops out in case of time-independent

current and bottom. The action density is related to the normal spectral density with respect to a local car-

tesian frame  through , or

(54)

where  is the radius of the earth.  Substitution of (54) into (53) yields the transport equation

(55)

where, with  the magnitude of the group velocity,

(56)

represents the rates of change of the position and propagation direction of a wave packet. Here, and are

the components of the current in northerly and easterly direction respectively. Eq. (55) is the basic transport equa-

tion which will be used in the numerical wave-prediction model.

We finally mention the following properties:

(a) Great circle propagation on the globe. A wave group propagates along a great circle over the globe.

The proof of this can be given but is rather tedious (cf Komen et al, 1994, pp. 210–211). This

property is related to the presence of refraction on the globe, even in the absence of depth and

current refraction ( ). From (56) we see that there is then a rate of change of direction

according to

d
dt
-----Ω zi

˙ ∂
∂zi
-------Ω ẋi

∂
∂xi
--------Ω k̇i

∂
∂ki
--------Ω+ 0= = =

dΩ dt⁄
Ω H

t

N̂ ω θ φ λ t, , , ,( ) ω θ
φ λ

k Ω

N̂

d
dt
----- N̂ ∂

∂φ
------ φ̇N̂( ) ∂

∂λ
------ λ̇N̂( ) ∂

∂ω
------- ω̇N̂( ) ∂

∂θ
------ θ̇N̂( )+ + + + 0=

ω̇ ∂Ω ∂t⁄= ω
N̂ N

x y,( ) N̂ dω dθ dφ dλ N dω dθ dx d y=

N̂ N R2 φcos=

R

∂
∂t
-----N φcos( ) 1– ∂

∂φ
------ φ̇ φ Ncos( ) ∂

∂λ
------ λ̇N( ) ∂

∂ω
------- ω̇N( ) ∂

∂θ
------ θ̇N( )+ + + + 0=

vg

φ̇ vg θ U0–cos( ) R⁄=

λ̇ vg θ V 0–sin( ) R φcos( )⁄=

θ̇ vg θ φ R k̇ k×( ) k2⁄+⁄tansin=

ω̇ ∂Ω ∂t⁄=

U0 V 0

k̇ 0=
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(57)

This refraction is entirely due to the change in time of the local northward pointing vector and is,

therefore, apparent because it is related only to the choice of coordinate system.

(b) Shoaling. Consider now finite depth effects in the absence of currents. Shoaling of waves already

occurs for wave propagation parallel to the direction of the depth gradient. In this case we ignore

depth refraction, because . In addition, we take the wave direction to be zero

(northerly propagation) so that the longitude is constant ( ) and . In the steady state,

the transport equation becomes

(58)

where in this special case and the group speed only depends on latitude (since the depth

profile depends on ). Hence, we immediately find conservation of the action density flux in the

latitude direction, or,

Now, if the depth decreases for increasing latitude, conservation of flux requires an increase of

action density as the group speed decreases for decreasing depth. This phenomenon, which occurs

in coastal areas, is called shoaling. Its most dramatic consequences may be seen when tidal waves,

generated by earthquakes, approach the coast resulting in tsunamis.

(c) Refraction. We again assume no current and no time dependence. As a general principle one can

then state that wave rays (the path of the wave group in -space) will bend towards shallower water

resulting in, for example, focusing phenomena and caustics. In this way a sea mountain plays a

similar role for gravity waves as a lens for light waves. Furthermore, because of this general

principle, close to the coast waves will always propagate towards the coast, even if far away from

the coast they propagate parallel to it. All these examples of this general principle may be

explained in terms of refraction. The refraction is given by the rate of change of the wave direction,

.  Writing (56) in more explicit form we have

(59)

Consider then again as an example waves propagating north ( ) parallel to the coast. Suppose

now that depth depends only on longitude such that it decreases towards the shore.  Thus

since  (depth decreases), hence the wave ray will bend towards the coast.

(d) Current effects. Currents may give rise to effects similar to (depth) refraction. However, the most

dramatic effects may be found when the waves propagate against the current. For sufficiently large

θ̇ vg θ φ R⁄tansin=

k̇ k× 0= θ
λ̇ 0= θ̇ 0=

1
φcos

------------ ∂
∂φ
------ φ̇ φ Ncos( ) 0=

φ̇ vg R⁄=

φ

vg φcos

R
-----------------N cons ttan=

˙

x

θ̇

θ̇
θ ∂

∂φ
------Ω θcos

φcos
------------ ∂

∂λ
------Ω–sin

kR
-----------------------------------------------------=

θ 0=

θ̇ 1
kR φcos
-------------------- ∂

∂λ
------Ω 0>–=

∂Ω ∂λ⁄ 0<
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current, wave propagation is prohibited and wave reflection occurs. The most prominent example

of this is found in the Agulhas current, east of South Africa. A more detailed explanation of this

effect is given in Komen et al. (1994), p. 214. Here, we just point out that it really follows from the

dispersion relation which, for a simple 1-D case in case of propagation against a current reads

where we took the deep water limit. Then, the group velocity vanishes for

and wave propagation is not possible any more.

1.3  Energy balance equation (physics)

In this section we shall discuss some of the physical effects that are relevant for wave evolution. Only deep water

waves are considered here, although shallow water effects can be incorporated rather straightforwardly.

The physical processes we shall study are the generation of waves by wind and wave-wave interactions. The source

term for dissipation is less easy to study so we will only give its form at the end of this section.

Wind input and non-linear interactions have one important feature in common, namely they are both examples of

a resonant interaction. Consider generation of waves by wind. We have seen that in lowest order we are dealing

with pure surface gravity waves. These waves have a certain phase speed . Above the waves we have a certain

non-uniform airflow and at the height where the airflow always sees the same phase of

the wave. The height is called the critical height and the air around that height may enjoy a resonant interaction

with the gravity wave. This example of wave mean flow interaction was given by Miles (1957). The result is ex-

ponential growth of the gravity wave and therefore this mechanism is called Miles' instability. Non-linear interac-

tions are another example of resonant interaction. Again we start from the pure gravity waves and we realize that

non-linear terms may give contributions of the following type

Now, if the sum of those phases  matches the phase of one of the linear waves (call this phase ), or

then the non-linear terms may drive the linear waves resonantly, giving rise to an energy transfer between wave 1

and waves 2, 3, etc. The resonance conditions on the phases boil down to the following resonance conditions for

wave number  and angular frequency

and Phillips (1958) discovered that for gravity waves, three-wave interactions are not possible. However, four-

wave interactions do exist. Hasselmann (1962) then subsequently derived the rate of change of the action density

for an ensemble of gravity waves.

It should be realised that the descriptions of the physical processes we are going to present now are an idealisation

of reality. Both in water and air we have, in reality, turbulent fluctuations which might upset the delicate resonant

interactions.  Nevertheless, these simplified models of reality give realistic results.

Ω gk kU0–=

∂Ω ∂k⁄ k g 4U0
2( )⁄=

c k( )
U z( ) zc U zc( ) c k( )=

zc

i θ2 θ3+( )[ ] , i θ2 θ3 θ4+ +( )[ ] ,          etc.expexp

θi θ1

θ1 θ2 θ3 , θ1+ θ2 θ3 θ4 ,          etc.+ += =

k ω

ω1 ω2 ω3 , k1+ k2 k3 ,          [3-wave interaction]+= =

ω1 ω2 ω3 ω4 , k1+ + k2 k3 k4 ,          [4-wave interaction]+ += =
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Energy transfer from wind

The problem of wind-wave generation is closely related to the instability of a plane parallel shear flow. We there-

fore study the stability of the equilibrium solution (see Fig. 3 )

(60)

Figure  3. Equilibrium profiles of density and velocity.

Our starting point is slightly more general than equation (2). We take an adiabatic fluid with "infinite" sound speed.

Hence,

(61)

We shall only consider propagation in one direction (the -direction). Using Squire's theorem (Drazin and Reid,

1981) results may be generalised to the 2-dimensional case. Linearisation and taking normal modes of the form

, , one obtains

(62)

where , , and the prime denotes differentiation of an equilibrium quantity

with respect to height . After some algebra one then arrives at the following Sturm–Liouville differential equa-

tion for the displacement  of the streamlines

U0 U0 z( )êx , g gêz–= =

ρ0 ρ0 z( ) , P0 z( ) g dz ρ0 z( )∫= =

z ρa U0(z)

x

Air

Water

ρw

z = 0

∇ u⋅ 0=

d
dt
-----u

1
ρ
---∇p– g+=

d
dt
-----ρ 0=

x

ρ1 iθexp∼ θ kx ωt–=

iku ∂w ∂z⁄+ 0=

ikWu wW′+ ik p1 ρ0⁄–=

ikWw ρ1 p0′ ρ0
2⁄ ∂ p1 ∂z⁄( ) ρ0⁄–=

ikWρ1 wρ0′+ 0=

u1 u 0 w, ,( )= W U0 c–= c ω k⁄=

z
ψ w W⁄∼
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(63)

which is subject to the boundary condition of vanishing displacement at infinite height or depth,

(64)

The boundary value problem (63)–(64) determines, in principle, the real and imaginary parts of the complex phase

speed giving the growth rate of the waves. The next step is now to specify in more detail

the density profile  and the velocity .

In water we assume no current and a constant density. The eigenvalue problem then simplifies considerably. We

have (for )

(65)

which gives, using the boundary condition at minus infinity, the solution

(66)

The boundary condition at the interface between air and water is derived from an integration of Eq. (63) from

to . Note that at the density profile shows a jump so that near , , where

is the Dirac delta-function. Requiring now that the displacement of the streamline be continuous across

the interface, we obtain from (63)

. (67)

Since in the limit only the integral involving gives a contribution we obtain, using (66), the following disper-

sion relation for the phase speed of the waves:

(68)

where, without loss of generality, we have taken the amplitude as we deal with a linear problem. In air we

take a constant density so that the eigenvalue problem (63)–(64) simplifies to

(69)

Note that the air–water density ratio only occurs in the dispersion relation. In the absence of air ( ) we obtain

the usual dispersion relation for deep water gravity waves. The effect of air on the surface waves is small as

.  We, therefore, solve the dispersion relation in an approximate manner with the result

d
dz
------ ρ0W2 d

dz
------ψ 
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(70)

where  and .  As a result, the problem (69) now reduces to

(71)

where is now known. As is known already, the solution of the differential equation is simplified

considerably.  In addition, we now have an explicit expression for the growth rate  of the waves,

(72)

where the Wronskian  is given as

(73)

Finally, before we give some interpretation of the result (72), we remark that it is rather common to use the vertical

component of the wave-induced velocity instead of the displacement of the streamline . The eigenvalue

problem (71) then becomes, in terms of the normalised vertical velocity ,

(74)

and the growth rate of the waves is given by

(75)

where the Wronskian  is now given by .

Regarding Eq. (74) we remark that the differential equation (known as Rayleigh's equation) has a singularity at

. Since defines the critical height (i.e. the height where the phase speed of the wave

matches the wind speed) it is now clear that the resonance at the critical height plays a special role in the prob-

lem of wind-wave generation.

Furthermore, we remark that the Wronskian is related to a physical quantity, known as the wave induced stress

. The result (75) is a very elegant one as it relates the growth of the waves to the wave-induced

stress. In order to see this we recall that we are dealing with normal modes of the type , so

that
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Using  to eliminate  we thus have

and this indeed corresponds to the Wronskian  of Eq. (75).

The Wronskian plays a special role in the theory of second-order differential equations. (This is therefore an-

other reason why the result (75) is so elegant). Namely, by means of the Rayleigh equations (74) it may be shown

that the Wronskian is independent of height except at the critical height, where it may show a jump (cf Fig. 4

for wave-induced stress).

We can check this by calculating the derivative of  with respect to  and using Rayleigh's equation:

Using Rayleigh this becomes

(76)

Now for we immediately find that , and hence the wave-induced stress, is independent of

height. Since the wave-induced velocity vanishes for large height, we conclude that for , vanishes, but

may have a finite value for . In fact, the jump at may be obtained from (76) by a proper treatment

of the singularity at the critical height.

Figure  4. Wave-induced stress shows a jump at critical height.

To that end we consider the singular function

and we take the limit for positive vanishing .  Then,
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and (76) becomes

(77)

where the subscript c refers to evaluation at the critical height .

Integration of (77), using the boundary condition that  vanishes for , gives

(78)

and therefore the growth rate of the waves (75) becomes

. (79)

This is Miles' classical result for the growth of surface gravity waves due to the shear flow. From Eq. (79) we obtain

the well-known result that only those waves are unstable for which the curvature of the wind profile at the

critical height is negative.  This is, for example, the case for a logarithmic wind profile.

There is, however, an important consequence of the instability of surface waves. While the waves are growing and,

therefore, receiving energy and momentum from the air flow, a slowing down of the air flow by the gravity wave

will result. The waves therefore give rise to a force which is the gradient of the wave-induced stress . Since the

wave-induced stress is proportional to the Wronskian , which has a step function discontinuity at the critical

height, the force is a delta-function. This suggests an important limitation of linear theory because a considerable

wave/mean-flow interaction may therefore occur, giving rise to a modified mean flow. We discuss more details of

the wave-mean-flow interaction in a short while, after we have compared results of the linear theory with observa-

tion.

In order to solve the boundary wave problem (74), we finally have to specify the shape of the wind profile. Here

we only consider the case of neutrally stable conditions (no density stratification by heat and moisture). In those

circumstances the wind profile has a logarithmic height dependence

, (80)

which follows from the condition that the momentum flux in the surface layer is constant for steady conditions.

This profile depends on three parameters. The von Karman constant is supposed to be universal (we take the

value ), the friction velocity is a measure of the momentum flux and , the so-called roughness

length, is a parameter which reflects the loss of momentum to the sea surface. In the past, the roughness length has

been determined empirically.  Over sea a good choice is the one proposed by Charnock (1955)

(81)

with the so-called Charnock parameter. Here, for now we assume that is a constant, we take ,

1
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although there are arguments that  is not a constant but depends on the sea state.

Given the wind profile (80) we can no solve (74) numerically and use the result for at the critical height to eval-

uate the growth rate from Eq. (79). With , the numerical results for the dimensionless growth rate

are plotted as a function of in Fig. 5 (note: the growth rate of the energy of a wave is

as the energy is proportional to the square of the amplitude). For comparison, we have also shown measurements

of wave growth from the field (Snyder et al., 1981) and the laboratory (Plant and Wright, 1977). It is concluded

that there is a fair agreement between Miles' theory and observations.

We may summarise the results for wind–wave generation obtained thus far by noting that we have determined the

rate of change of the amplitude of a gravity wave due to wind. The growth rate, giving in Eq. (79), is proportional

to the air water density ratio and is a sensitive function of the dimensionless frequency . In fact,

the short waves have the largest relative growth rate, as may be inferred from Fig. 5 .

Figure  5. Wave growth versus phase speed; comparison of Miles' theory and observations.

Our results may be immediately generalised to the case of a continuous spectrum. The wind input source term of

the action balance equation (45) therefore becomes

(82)

where the growth rate  is given by Eq. (79).
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Before we proceed to a discussion of the non-linear interaction source term, we would like to return to the issue of

the slowing down of the air flow because of the growing gravity waves. It was mentioned that, for a single wave,

the force imposed by the wave on the air flow would be a delta function in height ( )-space. In reality, one deals,

however, with a continuum of ocean waves. Consequently, one deals with a continuum of critical layers and the

force exerted by a continuum of ocean waves on the mean air flow is therefore a 'nice'-smooth function of height.

Thus, the rate of change of the mean flow due to a spectrum of growing surface gravity waves follows

from

(83)

where the wave-induced stress is defined as

(84)

and and denote the wave-induced horizontal and vertical velocities in the air. These quantities are known,

even for a continuum, when the solution of Rayleigh's equation is known. The result is an equation for the mean

flow  which is of the diffusion type

(85)

where the wave diffusion coefficient  is proportional to the action density spectrum ,

(86)

Here, the wave number has to be expressed as a function of height through the resonance condition .

In passing, we remark that (85)–(86) is only valid for dispersive waves for which . Since the wave diffusion

coefficient is positive, we immediately conclude that ocean waves give rise to a slowing down of the air flow.

This slowing down depends, in a sensitive manner, on the sea state; it depends in particular on the high-wave

number spectrum because these waves grow the fastest. In Fig. 6 we show the equilibrium wind speed profile for

two different sea states, which are termed 'old' and 'young' wind sea. For old wind sea the ocean waves have reached

an equilibrium with the wind and the high wave number part of the spectrum has a small steepness. Young wind

sea, on the other hand, have just been generated by the wind and have a large steepness. As a consequence, we see

that, for young waves, there is a considerable slowing down of the wind. In fact, one may obtain the Charnock

parameter from Fig. 6 by searching for the intercept of the wind profile with the -axis (which is normalised height

). It is then seen that the Charnock parameter for old wind sea is about 0.014 while, for young wind sea, it

is 10 times as large. Consequences of the sea state dependence of the Charnock parameter on, e.g., atmospheric

flow will be discussed in 3.2. This is important as atmospheric models used to assume a constant Charnock param-

eter  (typically ).
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Figure  6. Wind speed as function of height for young and old wind sea.

Non-linear transfer

The study of the effects of non-linearity on deep-water gravity waves already started in the last century with the

great contribution of Stokes (1849). He considered a single wave of permanent shape and was able to find the ef-

fects of finite wave amplitude on the dispersion relation by means of a so-called singular perturbation technique.

A century later, Lighthill (1965) discovered that a non-linear water wave is unstable to modulational perturbations,

giving a transfer of energy from the basic wave to sidebands. This instability is a special case of a four wave in-

teraction process, which nowadays plays a major role in the physics of ocean waves. The instability is now known

as the Benjamin–Feir instability, because Benjamin and Feir were the first to give experimental evidence for its

existence.

These discoveries lead to a lot of excitement in the field of non-linear waves and, in particular, the contributions of

the 'California' school may be mentioned. Yuen and Lake investigated the long term behaviour of the unstable wave

train and they found that the wave train did not disintegrate, but instead it recurred after a finite time to its original

shape (however with slightly lower frequency of the wave train).

All these exciting results were obtained in the context of deterministic evolution equations. In a statistical frame-

work all these phenomena seem to be less relevant. The reason for this is that such non-linear effects depend, in a

sensitive manner, on the phases of the waves involved in the non-linear interaction. In a statistical approach all

these effects are then washed away because of the random independent phases.

We therefore only concentrate on the statistical framework, but we briefly describe how to obtain the deterministic

evolution equation from the Hamiltonian for water waves. These equations are then used as a starting point for the

statistical theory.

In deep water the energy density of the waves is

(87)

and we express the potential in terms of the canonical variables and by solving the po-

tential problem
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(88)

in an iterative fashion by assuming small amplitude waves with small wave steepness. This is most conveniently

done by using Fourier transformation of surface elevation and . A great simplification is then achieved by

introducing the complex action-variable  through

(89)

where  is just the dispersion law for gravity waves

After having obtained the potential to any required order of wave amplitude, one may determine the energy of

the wave system, thus

(90)

where we introduced the shorthand notation , etc and is a known function of wave number. Fur-

thermore, LOT is an abbreviation for lots of other terms. We recognise the first term as being the energy for a single

wave, while the cubic term represents the lowest-order non-linear effect on the energy.

The introduction of the complex action variable has the additional advantage that Hamilton's equations (10),

i.e.

become the single equation

. (91)

Evaluating the functional derivative of with respect to then gives the deterministic evolution equation for

(92)

where  and  are known functions of wave number.

The non-linear evolution equations (92) contain the effects of three and four wave interactions. To see this, we

recall that (92) was obtained under the assumption of small wave steepness so that, in lowest order, we are dealing
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with a linear oscillation and the right hand side (RHS) gives small (but important) corrections to this linear oscil-

lation. Now consider the quadratic terms on the RHS of (92). I have not shown all of them, but the one given ex-

plicitly, oscillates with frequency , while the others that are not shown oscillate as and

. If they match the oscillation frequency of the linear system, a resonant energy transfer between the

modes with wave numbers , and is possible. Likewise, the cubic terms oscillate with frequency

and, if this frequency equals of the linear system, a resonant interaction between four modes

occurs [note, however, that the quadratic terms also contribute to four wave interaction].

To summarise, the evolution equation (92) allows both three- and four-wave interactions, where for three-wave

processes the resonance conditions

(93)

should be satisfied simultaneously, and for four wave processes the resonance conditions

(94)

should be satisfied. Whether these resonance conditions can actually be satisfied depends on the type of dispersion

relation, . Now, gravity waves have the dispersion relation and, from a graphical construc-

tion, one immediately concludes that three-wave processes are impossible.

Figure  7. Three wave interaction is impossible for gravity waves.

Phillips (1960) has shown, however, that four-wave interactions are permitted by the deep-water dispersion rela-

tion.  The possible solutions are sketched in Fig. 8 , which has become known as Phillips figure of eight.

Let us finally try to determine from Eq. (92) the statistical evolution of the action density due to four-wave proc-

esses. Since the mean of the surface elevation vanishes, , our aim now is to derive an evolution equation

for the second moment . Here the brackets denote, as before, an ensemble average. Owing to non-linearity,

the development of the second moment is determined by the third and the fourth moment, and so on. As a result

we find an infinite hierarchy of equations, and the question is how to truncate this hierarchy. A meaningful trun-

cation is now obtained by making two assumptions, namely we assume that, on the scale of the wavelength, the

ensemble of waves is spatially homogeneous and that the probability distribution for  is close to a Gaussian.
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Figure  8. Phillips' figure of 8.

We shall not give the details of how to obtain the rate of change of the action density due to non-linear interactions.

We merely point out that, by means of the above assumptions, this is indeed possible. Details of its derivation may

be found in Hasselmann (1962), Davidson (1972) and Komen et al. (1994).  The eventual result is

(95)

Here, depends on and . For gravity waves this evolution equation was first obtained by Hasselmann

(1962).

In the remaining part of the section we shall discuss some general properties of Eq. (95) (I personally call it the

Hasselmann equation).

(a)  never becomes negative

The Hasselmann equation has the property that it can never give rise to negative action densities.

Before a density becomes negative, it must first become zero. But for zero the second factor

between curly brackets vanishes while the first factor is positive. Thus, is positive, and

will become positive rather than negative.

(b) Conservation laws

The Hasselmann equation admits conservation of

• action:

• momentum:

and

• energy: .

This means that a wave field cannot gain or lose energy through the four-wave interaction. Growth

or dissipation of wave action, momentum or energy must, therefore, take place through other

processes, such as wind input or white capping.

∂N1

∂t
-----------

nonlin

4π dk2dk3dk4T1 2 3 4, , ,
2 δ k2 k3 k4– k1–+( )δ ω2 ω3 ω4– ω1–+( )∫=

N2N3 N1 N4+( ) N1N4 N2 N3+( )–{ }×

T V W

N

N
∂N ∂t⁄ N

dk N k( )∫
dk kN k( )∫

dk ωN k( )∫



The wave model

32 Meteorological Training Course Lecture Series

 ECMWF, 2003

(c) Implications for energy transfer

The conservation of two scalar quantities, energy and action, implies an important general property

of the energy transfer. A similar relation holds for the energy transfer in a two-dimensional

turbulence spectrum in the atmosphere, which also conserves two scalar quantities, namely energy

and enstrophy.

The one-dimensional energy transfer must have at least three lobes of different sign (cf

Fig. 9 ).

It cannot have a two-lobe structure representing, for example, an energy cascade from low to high

frequencies, as in three-dimensional turbulence. The ratio increases

monotonically with frequency. Thus, if the net action lost in the negative low-frequency lobe

balances the action gained in the high-frequency lobe, the energy loss in the low-frequency lobe

must necessarily be smaller than the energy gained in the high-frequency lobe, so that energy is not

conserved. Numerical computations of the non-linear energy transfer indeed give the three-lobe

structure. In particular, it should be pointed out that the positive lobe at low frequencies has

important consequences for the evolution of the wave spectrum as it gives rise to the shift of

spectrum towards lower frequencies.

Figure  9. One-dimensional energy transfer caused by 4-wave interaction.

Dissipation due to wave breaking

The least understood aspect of the physics of wave evolution is the dissipation source function. Waves may lose

energy continuously by viscous dissipation and by the highly intermittent process of wave breaking. The continu-

ous slow drain of wave energy by viscosity is well understood and easily calculated. While it is an important sink

for gravity–capillary waves, with wavelengths of the order of 1 cm, it is insignificant for the longer waves.

Understanding and modelling the wave breaking process is thus of critical importance in achieving an accurate rep-

resentation of the principle sink function in the action balance equation. Unfortunately, there has not been much

progress in obtaining a convincing model of dissipation caused by wave breaking. Nevertheless, one could hope

that this goal may be achieved in the future because, although wave breaking is a truly non-linear phenomenon, it

occurs only relatively rarely (say at best 5% of the waves are involved breaking). In the context of a statistical the-

ory of wave evolution, dissipation due to wave breaking, therefore, should have a relatively small effect. Following

this line of approach, Hasselmann (1974) obtained some general constraints on the form of the dissipation source

function.  Introducing the mean frequency  and mean wave number ,

dN ω( ) dt⁄

energy/action ω=

ω〈 〉 k〈 〉
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and a similar relation for , Hasselmann (1974) proposed the following dissipation source term

(96)

where ,  is the wave variance, and  and  are constants.

It is emphasized that this dissipation source term has a quasi-linear shape. It is linear in the action density, but the

proportionality constant depends on integrals over the wave spectrum. We finally remark that (96) is in agreement

with one's intuition that the dissipation is larger for steeper waves since is proportional to the integral steep-

ness parameter . Furthermore, the constant's and are unknown and will be used as tuning constants

(cf next section).

2. THE WAM MODEL

The WAM model is the first model that solves the complete action density equation, including non-linear wave–

wave interactions. A group of European waves modellers, who called themselves the WAM group, realised in the

middle of the 1980's that it should be feasible to develop a wave model on first principles. First of all, there was a

clear need for improving existing wave models at that time. Although these models performed reasonably well in

many cases, it turned out that, in rapidly varying circumstances, these models simply failed to give a proper de-

scription of the sea state. This followed from a comparison exercise where about 10 different models were run with

the same hurricane wind field, resulting in widely varying maximum wave height (ranging from 8 to 25 m). Sec-

ondly, the solution of the energy balance equation requires considerable computing power which has become avail-

able in recent years. Thirdly, this coincided with the development of remote sensing techniques for measurements

of the sea surface by means of microwave instruments (altimeter, scatterometer and synthetic aperture radar

(SAR)). The relationship between wave-model development and satellite remote sensing is much closer than one

might expect at first sight. Satellite observations can be used to validate the model and the model also gives a first

check on the accuracy of the observations. Furthermore, a detailed description of the dynamics of the sea surface

is important for a correct interpretation of the radar signals.

At present, the WAM model is used operationally in global and regional applications to make forecasts of the sea

state, which can be used for many applications such as ship routing and offshore activities, and for the validation

and interpretation of satellite observations. Finally, much progress has been made on the assimilation of satellite

observations into wave models. Deviations between predicted and observed waves are normally indicators of er-

rors in the driving wind fields so that effective wave data assimilation procedures correct both wind and wave fields.

In the next sections we will present results of the WAM model in simple situations, such as growth of waves under

fetch limited circumstances, and compare results with in-situ campaigns. Subsequently, we discuss the quality of

the wave analysis and wave forecast for the global area.

2.1  Energy balance for wind sea

Since the Second World War one has attempted to summarise knowledge of the growth of ocean waves by wind in

terms of empirical growth curves. In principle, a large number of variables may control wave growth. For example,

in the idealised situation of duration-limited waves (when a uniform and steady wind has been blown over an un-

limited ocean for time after a sudden onset) the following variables should be considered: frequency , wind-
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speed or friction velocity , acceleration of gravity , viscosity , surface tension, air and water density and

coriolis parameter . In principle, is supposed to represent the wind at infinite height (the geostrophic wind).

In practice,  is the speed at 10 m height and may not always be appropriate as speed scale.

Under assumptions of the nature of the wave motion and the mechanism of the wave growth, the energy containing

part of the spectrum is mainly determined by the variables , (or ), , . We remark that, according to

theory, the friction velocity is probably the most appropriate parameter to use in scaling wave growth. How-

ever, since this parameter is so difficult to measure in practice, one normally uses the wind at 10 m height.

Conditions of duration-limited growth are difficult to fulfil in practice and, from the point of view of the analysis

of experimental data, two other idealized cases are more important. One is the case of fully developed waves, when

a uniform and steady wind has blown over an unlimited ocean long enough for the wave field to become independ-

ent of time. This may occur in the Trade Winds. The other, more frequently occurring, situation is the fetch-limited

case, when a uniform steady wind has blown from a straight shoreline long enough for the wave field at distance

(fetch)  from the upwind shore to become independent of time.

Let us now make the connection between what we have developed in the previous section and the experimental

practice. We have obtained the evolution equation for the action density which is related to the wave number

spectrum through

.

Here, the wave-number spectrum is normalised with the variance , where  is the surface elevation,

.

Obviously, the integral over the wave spectrum has dimension of a length square and it is then common to introduce

the significant wave height  according to

(97)

The reason for this definition is historical. In the early days one could not measure the wave spectrum and therefore

the wave height was observed visually. The measure is defined as the average height of the highest

1/3 of the waves, and it can be shown that approximately . For a narrow spectrum and are

exactly equal.

In situ observations of the two-dimensional wavenumber spectrum are rare; it requires rather sophisticated instru-

mentation to observe the spatial correlation function. Therefore, in routine operations one normally observes the

frequency spectrum which just requires the analysis of time series.  The frequency spectrum is defined as

thus

(98)

Even the directional properties of waves require expensive buoys and, for this reason, one also has introduced the

one-dimensional frequency spectrum,
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(99)

As long as there is no confusion we shall use the same symbol for the various forms of the wave spectrum, namely

; the distinction should be clear from their arguments, ,  and .

Let us now return to the analysis of wave evolution. For fully developed waves one would therefore expect that the

following relations hold

(100)

Here, is the total wave variance and denotes the peak of the frequency spectrum. On the other hand, in

fetch-limited conditions one would expect the relation

(101)

In cases where measurements of the friction velocity have been performed it seems appropriate to replace

by .  The above similarity laws are due to Kitaigorodskii (1962).

Figs. 10 and 11 give a brief summary of results obtained by a number of field campaigns in the past. Fig. 10 shows

the evolution of dimensionless wave variance and peak frequency as function of dimensionless fetch, while Fig. 11

shows the evolution of the wave spectrum with fetch according to JONSWAP (1973).

Before we discuss results obtained with the WAM model we have to point out the important distinction between

wind sea and swell. Thus far we only considered wind sea. Loosely speaking one may define as wind sea that part

of the wave spectrum that is under direct influence of the wind. All the ideal cases discussed so far are examples

of wind sea. However, a storm has only a finite extent. Although ocean waves suffer from dissipation due to wave

breaking, when their steepness is small enough there is hardly any dissipation. Therefore, ocean waves may prop-

agate freely over large distances. A well-known example is that of Snodgrass et al. (1966) who observed waves

generated in the Gulf of Alaska to propagate all the way to the Indian Ocean. Those waves that are not under the

direct influence of the wind are called swell. Wind sea is usually found in the areas of large wind, such as the storm

tracks. When these wind waves leave the storm track they become swell and, in practice, the sea state in the tropical

oceans is dominated by swell.

Let us now discuss the performance of the WAM model. To that end we first of all compare results of fetch-limited

runs with the JONSWAP data.  Next, some interesting results of duration-limited cases are shown.

Figs. 12 and 13 show results of the fetch-limited cases and the comparison with the JONSWAP fetch-laws. In

order to show the sensitivity of wave model results to differences in wind speed, in the figure for the dimensionless

growth curve we display two cases, namely and . The JONSWAP experiment was

performed for an average wind speed of 8–9 m/s and, therefore, there is a fair agreement with the JONSWAP ob-

servation.  The same holds for the dimensionless peak frequency.

We remark that, according to the WAM model, there is no universal scaling when wave results are scaled in terms

of the wind speed at 10 m height. The reason for this is easily understood. From the previous section we have seen
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that the wind-input term scales with the friction velocity and not with the wind speed at 10 m height. For air flow

over the ocean, the ratio of friction velocity to wind speed at a certain height depends on that very wind speed and,

thus, it makes a difference when one uses friction velocity or wind speed. In order to show this last point, we take

the opportunity to introduce the drag coefficient , defined as

(102)

and, by using the logarithmic wind profile (Eq. (80)), one finds

(103)

where is the roughness given by the Charnock relation. It is important to note that depends on the friction

velocity and, therefore, (and ) depends on wind speed. The important consequence is, therefore, that,

when scaling in terms of is performed, a family of growth curves is found as we have seen in Fig. 12 . It

should be realised by now that it is not appropriate to scale wave results with because the 10 m height is really

arbitrary and bears no relation to any length scale in the physical system. On the other hand, it should be pointed

out that in the past there was no other choice because the friction velocity  was too difficult to measure.

Figure  10. Examples of fetch-limited growth curves for energy and peak frequency.
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.

Figure  11. Evolution of wave spectra with fetch for offshore winds (11-12 h, 15 Sept 1968).  The spectra are

labelled with the fetch in kilometres.  (From Hasselmann et al., 1973).

Figure 12. Fetch dependence of dimensionless energy and peak frequency for a wind speed of 8 m/s. JONSWAP

fetch laws are shown as well.
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Fig. 13 shows the comparison of modelled and observed evolution of the so-called Phillips 'constant' . As may

be noted, this parameter is not really a constant. Here it is defined as the average of over the frequen-

cy range between 1.3 and 2.5 times the peak frequency. The Phillips constant has played a role in discussions on

wave evolution because it was thought at the time that in this frequency range the frequency spectrum has a

power law. Nowadays, opinions differ on this matter, but in the high-frequency range with this certainly

gives a useful description of the wave spectrum. In any event, this quantity may be regarded as a measure of steep-

ness of the high-frequency waves and the agreement between the observed and modelled Phillips constants seems

fair. Note that for short fetches (young wind sea) the steepness of the waves is much larger than for long fetches

(old wind sea).

In order to conclude this section we would like to discuss results of duration-limited cases. Thus, we consider an

infinite ocean and consider the evolution in time of the waves. These results can easily be obtained by taking a

single grid-point model and switching off the advection.  It is feasible to run this model on a PC.

According to our results regarding the wind-input source term, the surface stress depends on the sea state, giving

a much rougher flow for young wind sea than for old wind sea. For young wind waves one would, therefore, expect

a slowing down of the air flow. A proper description of this deceleration of the flow may, however, only be accom-

plished in a coupled atmosphere/ocean-wave model. Such tests cannot be regarded as straightforward and, since

we would like to concentrate here on aspects of the wave physics, we shall make the simplifying assumption that

the wind speed is constant. The wind speed was chosen to be 18 m/s, corresponding, in the absence of waves,

to a friction velocity of 0.85 m/s (with Charnock parameter ). Results with a coupled atmosphere,

ocean-wave model are discussed in section 3.2.

The first experiment which we performed was a reference run with the wave model without any coupling between

wind and waves. This was achieved by simply disregarding the effect of waves on the roughness (called ‘uncou-

pled’ in the following figures). Next, we coupled the waves and the air flow as is done in the WAM model. The

effect of the waves on the air flow was modelled by allowing the Charnock parameter to depend on the wave-in-

duced stress . Details of this model are given in Komen et al. (1994). The results for the coupled run are labelled

by ‘coupled’.

We infer from Figs. 14 –17 that the coupling between wind and waves has a small impact on wave height, a some-

what bigger impact on the wave-induced stress and a dramatic impact on the evolution of the drag coefficient

(of course, for the control run is a constant). This shows that the drag coefficient depends on the sea state,

which is caused by the sea-state dependence of the wave-induced stress. This latter feature is in turn caused by the

time dependence of the Phillips' constant .

Furthermore, we show the evolution in time of the frequency spectrum in Fig. 18 . In the course of time the wave

spectrum shows a typical shift of the peak of the spectrum towards lower frequencies, while a considerable en-

hancement of the peak of the spectrum is also noticed in the early stages of wave growth. In hindsight it may be

noted that it was the peak enhancement which assured that the non-linear interactions were found to be relevant (a

factor of 2 in the peak of the spectrum already gives a factor of 8 in the rate of change of the non-linear transfer).

In Figs. 19 –20 we show the energy balance of young ( ) and old ( ) wind sea. Wind input and

dissipation behave as expected. The non-linear transfer has a typical three-lobe structure and the first lobe causes

the shift in the peak of the spectrum. We have also given the total source term, which is the sum of wind input,

non-linear transfer and dissipation. While for young wind sea there are clear signs that the sea state is not in equi-

librium with the wind, for old wind sea (after 96 h) the steady state is almost reached.

Finally, in order to show how the two-dimensional wave spectrum evolves in time, in Fig. 21 we have shown results

with the single grid point version of the WAM model for a turning wind field case. Wind speed was again 18 m/s.

The arrow shows the wind direction.
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Figure  13. Fetch dependence of Phillips' parameter .  The JONSWAP fetch law is plotted as well.

Figure  14. Time dependence of wave height for coupled and control run.
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Figure  15. Time dependence of Phillips' parameter  for a reference run and a coupled run.

Figure  16. Time dependence of wave-induced stress for a reference run and a coupled run.
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Figure  17. Time dependence of drag coefficient  for a reference run and a coupled run.

Figure  18. Evolution in time of the one-dimensional frequency spectrum for the coupled run.
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Figure  19. The energy balance for young duration-limited wind sea.

2.2  Wave forecasting

I would like to start this section with a brief discussion of the sensitivity of wave results to errors in the driving

wind field by means of a single illustrative example. Next, I would like to discuss how the quality of the wave

analysis is monitored by comparing the wave height field with observations from the ERS-1 altimeter and with

buoy data. Of course, the surface winds are validated in a similar fashion. Finally, I will describe how we attempt

to investigate the quality of the wave forecast and the forecast skill.

Presently, we have two operational implementations of the WAM model here at ECMWF. One is a global model

with resolution, the other is a limited-area version covering the North Atlantic and the European seas with a

resolution. The spectrum is discretized in 30 frequency bins and 24 directions. The integration time step is

typically 15 min. The WAM model is a fully vectorised code, which can be run in parallel mode.

Figure  20. The energy balance for old wind sea.

Sensitivity to wind field errors

A well-known rule of thumb in wave modelling is that a considerable part of errors in the wave field is caused by

errors in the wind field. It is by no means claimed that there are no errors in the wave models themselves, far from

it, but the quality of the wind field is dominating the quality of the wave analysis and forecast. This is easily un-

0.5°
0.25°



The wave model

Meteorological Training Course Lecture Series

 ECMWF, 2003 43

derstood referring to the similarity analyses of the previous section. There we found that for old wind sea the di-

mensionless wave variance becomes constant.  In terms of the significant wave height we find

and therefore a 10% error in wind speed gives a 20% error in wave height. This sensitive dependence on wind

speed may be used in a positive sense. If one has reliable wave data, and if the wave model gives reasonable results,

then observed wave heights could be utilised to provide useful information on the state of the atmosphere.

Figure  21. Evolution of two-dimensional spectrum for a turning wind field.  Wind is turned after 6 h by .

However, assuming that we have reliable wave data, this all relies on the quality of the wave model. Although the

discussion in the previous section may have increased the confidence in the performance of the wave model, it is

good to have another example, now from real life. The case in question occurred during the Surface Wave Dynam-

ics Experiment (SWADE). This was an extensive experiment carried out from October 1990 until March 1991 off

the east coast of the United States. The primary objectives were to understand the dynamics of the evolution of the

surface wave field and to determine the effect of waves on the air/sea transfer of momentum. In order to achieve

these objectives, concerted efforts were made to measure the surface meteorology with sufficient accuracy and spa-

tial coverage so that the surface wind field was known sufficiently accurately. In addition, a dense array of wave

buoys was employed.
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The main event occurred on 26 October 1990 with extreme wave heights of 8 m. This case is shown in Fig. 22 .

The reason why I show this case is the following. Dotted lines show the wind speeds according to the then opera-

tional ECMWF model and, in the plots for wave height, the dotted line refers to the WAM model as driven by the

ECMWF winds. It is clear that, compared with the observed winds and waves, the modelled ECMWF winds and

WAM wave heights are too low, especially during the extreme events. On the other hand, the full lines give a much

better agreement with observations. These winds were obtained by Ocean Weather/Atmospheric Environment

Service (OW/AES) and are the result of a man–machine mix procedure that takes maximum advantage of all the

available tools and information: numerical modelling, the know-how of the experienced meteorologist and the

measured sea state. The manual analysis makes use of all available pressure, temperature, ship and buoy data. Data

are screened for inconsistencies and measured winds are adjusted for height. Anyway, in this way, high-quality

wind fields were obtained and, as a result, the WAM model shows very good agreement when comparing modelled

and observed wave height. The wave model is, therefore, a useful tool for quality control of the atmospheric state

over the oceans.

Validation of wind and wave analysis using ERS-1 and buoy data

Fortunately, the quality of the ECMWF wind field is usually better than in the last example, although it should be

emphasised that the wave results are usually the worst at the east coast of the USA.

The quality of wind and wave forecast is monitored daily by the analysts here at ECMWF. In addition, wind and

wave quality is checked daily by comparing modelled results with altimeter data from ERS-1. An example is pro-

vided in Figs. 23 –24 . Every month collocations of observed and modelled wave height and wind speed are col-

lected and used to produce scatter plots displayed in Figs. 25 –26 . It is emphasised that, regarding the wave height,

we compare the six-hour first-guess wave height with altimeter wave height because nowadays in the wave analysis

we use altimeter data to obtain an optimal analysis. Comparison with the six-hour first-guess is a fair comparison,

since the satellite then probes a completely different part of the globe. Anyway, the comparison between altimeter

and modelled data shows a very good agreement. The standard deviation of error for wind speed is below 2 m/s

while that for wave height is about 40 cm. By comparison, it should be noted that during the Seasat period (Sep-

tember, 1978) the standard deviation of error for wave height was about 1 m (Janssen et al, 1989) thus considerable

progress has been achieved over the years.

It must be pointed out in this context that altimeter data are not free of error. When compared with buoy data, the

altimeter underestimates the wave height, especially in extreme cases. This may amount to an underestimation by

as much as 10%. However, it is only fair to point out that buoys also have their problems under extreme conditions.

Try to imagine how a buoy with a mast of 5 m height would behave in a 10 m wave field. In any event, it is of

interest to compare wave model results with buoy data. A few examples, for March 1995, may be found in Figs.

27 –28 . These examples show that, in general, the modelled wave heights underestimate the observed wave height,

despite the reasonably good agreement between observed and modelled analysed winds. This may come as a sur-

prise because the altimeter data comparison gave a somewhat different picture. The confusion is most likely caused

by the fact that the observed buoy winds are assimilated in the ECMWF atmospheric model (for this reason there

is good agreement in wind speed) but the observed winds have not been corrected for standard height. Since buoys

observed the wind typically at a height of 4–5 m, this may result in a slowing down of the air flow by some 10–

15%. This may explain the underprediction of wave height. On the other hand, one cannot fully exclude the pos-

sibility that the altimeter underestimates the wave height.
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Figure 22. Comparison between the significant wave height recorded at the two positions and the corresponding

values obtained using the ECMWF and OW/AES wind.
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Figure  23. Collocation of altimeter and modelled wave height.

Figure  24. Collocation of altimeter and modelled wind speed.
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Figure  25. Scatter plot of altimeter versus modelled wave height.

Figure  26. Scatter plot of altimeter versus modelled wind speeds.
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Figure  27. Comparison of European Centre ocean wave heights with buoy observations.

Figure  28. Comparison of European Centre surface winds with buoy observations.

Nevertheless, it should be evident that, when considering the standard deviation of error, there is better agreement

with the altimeter data than with the buoy data. A probable reason that explains this discrepancy is related to the

representativeness of the observation. In the case of the altimeter data we have an observation along the satellite

track every 7 km. We obtain a superobservation from these data by averaging 30 observations. The superobserva-
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tion thus obtained represents the state of the wave field over a line of about 200 km length and is therefore a quantity

which may be compared with the modelled wave height which represents an average over a box of .

Buoy observations are less useful in this context because they usually refer to a 20 min average ( )

and, therefore, represent scales which are not present in the wave model.

Quality of wave forecast

The quality of the forecast is usually judged by a comparison with the verifying analysis. This, of course, requires

some confidence in the quality of the analysis. In the previous section we have seen that, compared with the altim-

eter data, the standard deviation of error is of the order of 50 cm and is, therefore, quite small.

In Figs. 29 –31 show forecast verification scores for the Northern Hemisphere, Tropics and the Southern Hemi-

sphere. The left upper panel shows the mean error of forecast, the right upper panel shows the standard deviation

of error of the forecast, the left lower panel shows the mean of the analysis, while the right lower panel gives the

persistence error (persistence assumes that the state does not change in time and is given by the analysis at the time

the forecast was started). These quantities are plotted as a function of forecast day, and we have taken the average

over the three-month period from January until March 1995. Here, we concentrate on the standard deviation of er-

ror and, by comparing the error of the forecast with the one for persistence, we conclude that in the Northern Hem-

isphere, Tropics and Southern Hemisphere we have a useful forecast up to day 10, because the forecast error is

always smaller than the persistence error. Nevertheless, it appears that the error growth is different in the storm

tracks of the Southern and Northern Hemisphere (mainly wind waves!) than in the Tropics. In order to quantify

this I have determined the relative rate of change of forecast error , defined as

where is the average wave height over the area in question. Approximating the time derivative by the differ-

ence between day 3 and analysis error for the Northern and Southern Hemisphere, I get a relative increase of 0.08

per day, while for the Tropics I get 0.05 per day. The tropical area is, therefore, more predictable in this sense. A

possible reason for the better predictability in the Tropics may be given by noting that the sea state in the tropics is

dominated by swell that has been generated by winds from a few days before. These winds are of a better quality

because they are from a shorter forecast range, or even from an analysis. This simply depends on the travel time

of the swell from the generation area towards the area of interest. On the other hand, in the storm tracks the pre-

dictability of the waves depends, to a larger extent, on the predictability of the surface winds because the sea state

is more dominated by wind sea.

Finally, it is also of interest to study the daily variations in forecast error and standard deviation of forecast error.

I have displayed these in Fig. 32 for the Northern Hemisphere for the period July until September 1994. Note the

start of a new season in the Northern Hemisphere in September!
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Figure  29. Forecast verification against analysis for Northern Hemisphere.

Figure  30. Same as Fig. 29  but now for Tropics.
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Figure  31. Same as Fig. 29  but now for Southern Hemisphere.

3. BENEFITS FOR ATMOSPHERIC MODELLING

In the final section I would briefly like to point out certain benefits of wave forecasting for atmospheric modelling.

First of all, a wave model may be used as a diagnostic tool to search for problems in an atmospheric model. As an

example we mention our analysis of the apparent over-activity of the atmospheric model during the forecast. Sec-

ondly, there are some suggestions that momentum and energy transfer from atmosphere to ocean is sea state de-

pendent. In order to obtain a consistent momentum and energy balance, one has to couple wind and waves. Such

a coupled wind–wave model gives an improved climate in the Northern Hemisphere.

3.1  Use as a diagnostic tool

Nowadays there are several examples known that show the benefits of ocean wave forecasting for atmospheric

modelling. For example, by running the WAM model on surface stresses and surface winds from the ECMWF

model, Zambresky (1986) found an inconsistency between the two. Typically, forcing with surface winds gave

higher wave height in extreme events. This inconsistency was resolved by Janssen et al. (1992), who noted that

the atmospheric model's time-split scheme, which treated physics and dynamics separately, had a time-step de-

pendent equilibrium. An implicit treatment of both physics and dynamics removes this deficiency. When the semi-

Lagrangian advection scheme is used, longer time steps are allowed and the use of the time-split scheme would

have further enhanced the inconsistency between surface wind and stress. The new implicit integration scheme

(applied to velocity, temperature and moisture) was therefore introduced with the semi-Lagrangian T213 version

of the ECMWF model (Ritchie et al., 1994).

Another example is the apparent over-activity of the atmospheric model during the forecast. This is very evident

from a plot of the mean forecast error in wave height as function of time. Figs. 33 –34 show this for the Northern
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and Southern Hemisphere for the year 1994. The corresponding plots of the year 1993 showed a less severe prob-

lem. In this context it is also of interest to study the mean of the forecast wave field and the comparison with the

analysed wave field. Figs. 35 –39 therefore show the mean of analysis, day 1, day 3, day 5 and day 7 forecast for

the month of May 1994. We point out that, in the Southern Hemisphere, there is an increase in wave height during

the forecast reaching 1.5 m in certain small areas, while in the Tropics there is also a considerable increase over

wide areas of about 0.5 m. Following the 2.5 m contour line during the forecast it seems that the increase in the

Tropics is caused by too active a Southern Hemisphere storm track during the forecast.

Finally, we remark that this problem is fortunately less severe with subsequent model changes introduced on and

after 4 April 1995.

Figure  32. Daily error of forecast for days 1, 3 and 7.  Period is July-September 1994.  Area is Northern

Hemisphere.
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Figure  33. Mean forecast error for 1993 and 1994 in Northern Hemisphere.



The wave model

54 Meteorological Training Course Lecture Series

 ECMWF, 2003

Figure  34. Mean forecast error for 1993 and 1994 in Southern Hemisphere
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Figure  35. Monthly mean of analysis.

Figure  36. Monthly mean of day 1 forecast.
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Figure  37. Monthly mean of day 3 forecast.

Figure  38. Monthly mean of day 5 forecast.
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Figure  39. Monthly mean of day 7 forecast.

3.2  Coupled wind-wave modelling

We have already pointed out, on several occasions, that ocean waves may play a role in the momentum and energy

transfer at the ocean surface. We have seen that young wind sea, which has steeper waves, will result in an en-

hancement of the drag coefficient by some 50%. The question now is to what extent this may have consequences

for the large-scale atmospheric circulation.

In order to investigate this, Pedro Viterbo and I developed a coupled atmosphere, ocean-wave model (Janssen and

Viterbo, 1995). In essence, the atmospheric model runs for one time step, then the ocean wave model is run next

for one time step forced by the winds provided by the atmospheric model. Because one has explicit knowledge of

the wind input term of the wave model, one may determine the wave-induced stress . This then gives informa-

tion on the amount of slowing down of the air flow. We parametrized this slowing down by allowing the Charnock

parameter to be a function of the wave-induced stress. We took (for more details on this cf Komen et al., 1994) as

Charnock parameter

and a considerable enhancement of the Charnock parameter is found when . Note that, in a "steady" state,

we always have . The final step is then that the Charnock parameter is passed on to the atmospheric model

which then performs a run with the updated  for one time step and so on.

Before I briefly discuss our results with climate runs it is instructive to study the impact of sea-state dependent mo-

mentum transfer on a single depression. This study was performed by Doyle (1994) who performed a sensitivity

experiment by studying the evolution of a single depression with and without a sea state dependent Charnock pa-

rameter (called coupled and control). His results are displayed in Figs. 40 –41 and they show that the relatively

young wind sea will result in a rougher surface which apparently fills up the pressure low by about 6 mb on a times-

cale of 2.5 days. We remark that these results were obtained with a mesoscale model with horizontal resolution of

30 km.
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Figure 40. Simulated sea-level pressure for b) control and c) coupled simulations for the 60th time. The isopleth

interval is 4 mb.  Regions of lowest model layer wind speed in excess of 25 m/s are denoted by shading.  Tick

marks are plotted along the borders every third grid point or 90 km.  (From Doyle, 1994, with permission.)

Figure  41. The corresponding central pressure trace of the cyclone.

Finally, I would like to present results Viterbo and myself obtained from extended-range runs. We performed

15 runs of 120 days long with the T63 version of the coupled model and we compared the mean over the last 90

days with results from the model in uncoupled mode (Charnock parameter ). We took the winter sea-

son of 1990.

α 0.0185=
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Fig. 42 shows the impact of waves on the atmospheric circulation in the Northern Hemisphere and the comparison

with the analysed climate. We note a considerable improvement in 500 mb height field over Europe and Siberia in

the coupled runs when comparing with the analysis.

A large-scale impact of waves on the atmospheric circulation is also noted in the Southern Hemisphere. There is,

however, no improvement when results are compared with the analysis. In this context it should be pointed out that

the Southern Hemisphere analysis is biased to a large extent towards the first-guess of the atmospheric model be-

cause of the lack of data. Therefore, the Southern Hemisphere analysis is more likely to resemble the climate sim-

ulation of the uncoupled model.

We close by remarking that we are still at the beginning of understanding the coupled ocean-wave/atmosphere

model. It is expected, however, that ocean waves will play a role in future simulations of the earth climate by means

of coupled atmosphere, ocean-circulation models. For one thing, waves have impact in the storm areas but, more

importantly perhaps, ocean waves also affect the stress and wind field in the Tropics to a considerable extent. This

is shown in the very last figure Fig. 43 where we have plotted the difference in wind field between coupled and

control during the summer of 1989. As is evident, there are considerable differences in the monsoon area and in

the warm pool area east of Indonesia. This will affect the temperature distribution of the ocean which, in its turn

..., etc.

Figure  42. Comparison of coupled and control 500 mb fields with analysis period winter 1990.
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Figure  43. Difference in surface wind for summer 1989.
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