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Data assimilation concepts and methods
March 1999

By F. Bouttier and P. Courtier

Abstract

Thesetraining courselecturenotesare an advancedand comprehensi presentatiorof mostdataassimilationmethodsthat
areconsideredusefulin appliedmeteorologyand oceanographtoday Someare consideredld-fashionedout they are still
valuablefor low costapplications Othershave never beenimplementedyet in realisticapplicationsput they areregardedas
thefuture of dataassimilation A mathematicabpproacthasbeenchosenwhich allows a compactandrigorouspresentation
of the algorithms, though only some basic mathematical competence is required from the reader

This document has been put together with the help efqure lecture notes, which aremsuperseded:

. Variational analysis: use of obsations, &ample of clear radiances, Jeaailleux, 1989.

. Inversion methods for satellite sounding data, J. Eyre, 1991. (part 2 only)

. Methods of data assimilation: optimum interpolatiariJRdén, 1993. ¢&ept section 5)

. Data assimilation methods: introduction to statistical estimation, J. Eyre Gudiffier 1994.
. Variational methods,. Eourtier 1995. (&cept sections 3.2-3.6, 4.5, 4.6)

. Kalman filtering, FBouttier 1997. (ecept the predictability parts)

Traditionallythelecturenoteshave beenreferringalot to theassimilationrandforecassystemat ECMWE, ratherthanto more
generaklgorithms.Sometimesdeasthathadnot evenbeentestedfoundtheir way into the training courselecturenotes New
notes had to be writtervery couple of years, with inconsistent notation.

In this new presentatiofit hasbeendecidedo stick to adescriptionof the mainassimilatiormethodsusedworldwide, without

ary referencao ECMWF specificfeaturesandclearcomparisondetweerthedifferentalgorithms.This shouldmale it easier
to adaptthe method<to problemsoutsidethe globalweatherforecastingramevork of ECMWEF, e.g.oceandataassimilation,
land surfaceanalysisor inversionof remote-sensingdata.lt is hopedthatthe reademwill manageo seethe physical natureof

the algorithms bgond the mathematical equations.

A first edition of theselecturenoteswasreleasedn March 1998.In this secondedition, somefigureswereadded.anda few
errors were corrected.

Thanksaredueto J. Pailleux, J. Eyre,P. UndénandA. Hollingsworth for their contritution to the previouslecturenotes to A.
Lorenc,R. Daley, M. Ghil and O. Talagrandfor teachingthe variousforms of the statisticalinterpolationtechniqueto the
meteorologicalvorld, to D. Richardsorfor proof-readingthe documentandto the attendee®f training coursewho kindly
provided constructie comments.
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1. BASIC CONCEPTS OF DATA ASSIMILA TION

Analysis. An analysisis the productionof anaccuratédmageof thetrue stateof the atmospherat a giventime,
representeth amodelasa collectionof numbersAn analysiscanbe usefulin itself asa comprehensie andself-
consistentliagnosticof theatmospherdt canalsobeusedasinputdatato anothemoperationnotablyastheinitial
statefor a numericalweatherforecast,or asa dataretrieval to be usedasa pseudo-obseation. It canprovide a
reference aginst which to check the quality of obsations.

Thebasicobjective informationthatcanbeusedto produceheanalysids a collectionof obseredvaluesprovided
by obsenrationsof thetruestate If themodelstateis overdeterminedby the obsenations thentheanalysigeduces
to aninterpolationproblem.In mostcaseghe analysisproblemis underdetermined becauselatais sparseand
only indirectly relatedto the modelvariablesIn orderto make it a well-posedproblemit is necessaryo rely on
somebadkgroundinformationin the form of ana priori estimateof the modelstate.Physical constrainton the
analysisproblemcanalsohelp. The backgroundnformationcanbe a climatologyor aftrivial state;it canalsobe
generatedrom theoutputof apreviousanalysisusingsomeassumptionsf consisteng in time of themodelstate,
lik e stationarity(hypothesisof persistencedr the evolution predictedby aforecastmodel.ln awell-behaedsys-
tem,oneexpectsthatthis allows theinformationto be accumulatedhn time into the modelstate andto propagte
to all variables of the model. This is the concept of data assimilation.

1. although it can beverdetermined locally in data-dense areas
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Figure 1. Representation of four basic sge for data assimilation, as a function of time. Thg the time
distribution of obsenrations(“obs”) is processetb produceatime sequencef assimilatedstategthelowercurve
in each panel) can be sequential and/or continuous.

Assimilation. Dataassimilatioris ananalysigechniquen whichtheobsenredinformationis accumulatedhto the
model state by taking adatage of consistepconstraints with ks of time golution and plsical properties.

Therearetwo basicapproacheto dataassimilationsequentiabssimilationthatonly considerobsenationmade
in the pastuntil thetime of analysiswhich is the caseof real-timeassimilationsystemsandnon-sequentialor

retrospectivassimilationwhereobsenationfrom thefuturecanbeusedfor instancen areanalysigxercise An-

otherdistinctioncanmadebetweermethodghatareintermittert or continuousn time. In anintermittentmethod,
obsenationscanbe processedh smallbatcheswhich is usuallytechnicallycorvenient.In a continuousmethod,
obsenationbatchesver longerperiodsareconsideredandthe correctionto the analysedstateis smoothin time,
whichis physically morerealistic. Thefour basictypesof assimilationaredepictedschematicallyn Fig. 1. Com-
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promises between these approaches are possible.

A non-linear methods
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complexity

Optimal Interpolation (OI}

Cressman Successive Corrections
nudging

Interpolation of observations

Figure 2. A summarizedistoryof themaindataassimilatioralgorithmsusedin meteorologyandoceanograph
roughlyclassifiedaccordingto their compleity (andcost)of implementationandtheir applicabilityto real-time
problems. Currentlythe most commonly used for operational applications are Ol,882N\d 4D-¥r.

Marny assimilationtechniqueshave beendevelopedfor meteorologyand oceanograph (Fig. 2 ). They differ in
their numericalcost,their optimality, andin their suitability for real-timedataassimilation Most of themareex-
plained in this vlume.

ref: Daley 1991;Lorenc1986;Ghil 1989

1.1 On the choice of model

Theconceptsievelopedhereareillustratedby examplesn the ECMWF globalmeteorologicamodel,but they can
be (andthey have been)appliedequallywell to limited areamodels,mesoscalenodels,ocearcirculationmodels,
wave models two-dimensionamodelsof seasurfacetemperaturer land surfacepropertiesor one-dimensional
verticalcolumnmodelsof theatmospheréor satellitedataretrieval, for example.This presentatiowouldbemade
in the generafframework of aninfinite-dimensionamodel(i.e. without discretization)ith a continuoudime di-
mension.This would involve somesophisticatednathematicatools. For the sale of simplicity, only the discrete,
finite-dimensional problem will be addressed here.

In meteorologythereareoften severalequivalentwaysof representinghe modelstate.Thefieldsthemselescan
berepresentedsgrid-pointvalues(i.e. average®f thefieldsinsidegrid boxes),spectracomponents=OFvalues,
finite-elementdecompositionfor instancewhich canbe projectionson differentbasisvectorsof the samestate.
Thewind canberepresentedscomponentgu, v) , vorticity anddivergence({, n) , or streamfunctiorandveloc-
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ity potential(y, X) , with asuitabledefinitionof theintegrationconstantsThehumidity canberepresentedsspe-
cific or relatve humidity or dew-point temperatureaslong astemperaturas known. In the vertical, underthe
assumptiorof hydrostatichalancethicknessesr geopotentiaheightscanberegardedasequialentto theknowl-
edgeof temperatur@ndsurfacepressureAll thesetransformsdo not changeheanalysigoroblem,only its repre-
sentatioR. This may sound trivial, but it is importantto realize that the analysiscan be carried out in a
representatiothatis notthesameastheforecasmodel,aslongasthetransformsareinvertible. Thepracticalprob-
lemsof findingtheanalysisge.g.themodellingof errorstatisticscanbegreatlysimplifiedif theright representation
is chosen.

Sincethe modelhasa lower resolutionthanreality, eventhe bestpossibleanalysiswill never be completelyreal-

istic. In the presentatiorof analysisalgorithmswe will sometimegeferto the true stateof the model. Thisis a

phraseto referto the bestpossiblestaterepresentedby the model,which is whatwe aretrying to approximate.
Henceit is clearthat,evenif the obsenationsdo not have ary instrumentakerror, andthe analysisis equalto the

true state therewill be someunavoidablediscrepanciebetweerthe obsenedvaluesandtheir equivalentsin the

analysispbecausef representativenessrors. Althoughwewill oftentreattheseerrorsasapartof theobservation
errorsin themathematicakquationdelow, oneshouldkeepin mindthatthey depencdnthemodeldiscretization,
not on instrumental problems.

1.2 Cressman analysis and related methods

Onemaylik eto designtheanalysigprocedureasanalgorithmin which themodelstateis setequalto the obsered
valuesin thevicinity of availableobsenations,andto anarbitrarystate(say climatologyor a previous forecast)
otherwise Thisformedthebasisof theold Cressmarmnalysisschemg(Fig. 3) whichis still widely usedfor simple
assimilation systems.

The modelstateis assumedo be univariateandrepresente@dsgrid-pointvalues.If we denoteby x,, a previous
estimateof themodelstate(badkground providedby climatology persistencer apreviousforecastandby y (i),
asetofi = 1...... n obsenationsof the sameparametera simplekind of Cressmaranalysisis provided by
the model state, defined at each grid pointiccording to the follwing updateequation:

S aw(i, A YE) = %)}

Xa(J) = Xp(J) + p —
>i-w( )
. 0 R*-d? O
w(i, j) = max[o, ———0
U R°+d;; 0

whered; ; is a measureof the distancebetweenpointsi andj. x,(i) is the backgroundstateinterpolatedto
point i . The weight function w(i, j) equalsoneif the grid point j is collocatedwith obseration:. It is a
decreasindunction of distancewhich is zeroif d; ;> R, whereR is a userdefinedconstant(the “influence

radius”) bgond which the obseations hae no weight.

2. At ECMWE the analysis problem is currently formulated in terms of the spectral componeortSaityydivergence, temperature, grid-
point values of specific humidityn surfices defined by theybrid coordinate, and l@githm of surlce pressure, just Bkin the forecast
model. In winter 1998 the model state dimensias about 6.10
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Figure 3. An exampleof Cressmarmanalysisof aone-dimensiondield. Thebackgroundield x,, is representeds
thebluefunction,andthe obsenationsin green.Theanalysigblackcurwe)is producedy interpolatingbetween
the background (gyecurwe) and the obseed \alue, in the vicinity of each obseation; the closer the
obsenation, the lager its weight.

Therearemary variantsof the Cressmamethod Onecanredefingheweightfunction,e.g.as exp(—dlz, i/ 2R2) .
A moregeneraklgorithmis the successiveorrectionmethod(SCMF. Oneof its featuress thatthe weightscan
belessthanonefor i = j, whichmeanghataweightedaveragebetweerthe backgroundandthe obsenationis
performed Anotheroneis thatthe updatesanbe performedseveraltimes, eitherasseveraliterationsat a single
time in orderto enhancahe smoothnessf correctionspr asseveral correctiondistributedin time. With enough
sophisticatiorthe successie correctionmethodcanbeasgoodasary otherassimilatiormethod howeverthereis
no direct method for specifying the optimal weights.

ref: Daley 1991

1.3 The need for a statistical approach

The Cressman method is not satitbry in practice for the folleing reasons:

. if we have apreliminaryestimateof theanalysiswith agoodquality, we do notwantto replaceit by
values preided from poor quality obseations.

. whengoing away from anobsenation, it is not clearhow to relaxthe analysistowardthe arbitrary
state, i.e. he to decide on the shape of the function

. ananalysisshouldrespecsomebasicknown propertiesof the true system Jike smoothnessf the

fields, or relationshipbetweenthe variables(e.g. hydrostaticbalance,or saturationconstraints).
This is not guaranteedby the Cressmanmethod: random obsenration errors could generate
unplysical features in the analysis.

Becausef its simplicity, the Cressmammethodcanbe a usefulstartingtool. But it is impossibleto getrid of the
above problemsandto produceagood-qualityanalysiswithoutabettermethod Theingredientof agoodanalysis
are actually well knn by aryone who has»perience with manual analysis:

1) oneshouldstartfrom a good-qualityfirst guess,.e. a previous analysisor forecastthat givesan
overview of the situation,

3. Inthe recent literature this name is often replacezbbgrvation nudgingvhich is more or less the same thing. Tiedel nudginds a
model forcing technique in which the model state is exlaiavard another predefined state.
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2) if obsenationsaredensethenoneassumeshatthetruth probablylies neartheir average Onemust
make a compromiseébetweerthefirst guessandthe obseredvalues.Theanalysisshouldbe closest
to the data we trust most, whereas suspicious data will/ba tiitle weight.

3) the analysisshouldbe smooth,becauseave know thatthe true field is. Whengoing away from an
obsenation,the analysiswill relaxsmoothlyto thefirst guesson scalesknown to betypical of the
usual plysical phenomena.

4) the analysisshouldalsotry to respectthe known physical featuresof the system.Of course,it is
possiblein exceptionalcaseghat unusualscalesandimbalancesappenanda goodanalystmust
be able to recognize this, becauseeptional cases are usually important too.

Looselyspeakingthe datathatcango into the analysissystemcompriseghe obsenations,thefirst guessandthe
known physical propertieof the system Oneseeghatthe mostimportantfeatureto represenin theanalysissys-
temis thefactthatall piecesof dataareimportantsourcef information,but atthe sametime we do not trustary
of themcompletely sowe mustmake compromisesvhennecessaryT hereareerrorsin the modelandin the ob-
senations,sowe cannever be surewhich oneto trust. However we canlook for a stratgy thatminimizeson av-
erage the diérence between the analysis and the truth.

To designanalgorithmthatdoesthis automaticallyit is necessaryo representnathematicallythe uncertaintyof
thedata.Thisuncertaintycanbemeasuredby calibrating(or by assumingjheirerrorstatisticsandmodelledusing
probabilisticconceptsThentheanalysisalgorithmcanbedesignedn aformal requirementhatin theaveragethe
analysiserrorsmustbeminimalin asensehatis meaningfulto theuser Thiswill allow usto write theanalysisas
an optimization problem.

ref: Lorenc1986

2. THE STATE VECTOR, CONTROL SPACE AND OBSERVATIONS

2.1 State vector

Thefirst stepin themathematicaformalisationof theanalysisproblemis the definition of thework spaceAs in
aforecastmodel,the collectionof numbersneededo representhe atmospheristateof the modelis collectedas
a columnmatrix calledthe statevectorx. How the vectorcomponentselateto thereal statedependon thechoice
of discretization, which is mathematically egplent to a choice of basis.

As explainedearlier onemustdistinguishbetweerreality itself (which is morecomplex thanwhatcanberepre-
sentedasa statevector)andthe bestpossiblerepresentationf reality asa statevector which we shalldenotex; ,
thetrue stateatthetime of theanalysisAnotherimportantvalueof thestatevectoris x,, , theapriori or badground
estimateof thetrue statebeforethe analysiss carriedout, valid atthe sametime®. Finally, theanalysisis denoted
X,, Which is what we are looking for

2.2 Control variable

In practiceit is oftencorvenientnot to solve the analysisproblemfor all component®f the modelstate.Perhaps
we do notknow how to performa consisteneinalysisof all component'% or we have to reducethe resolutionor

4. Itis sometimes called tliiest guesshut the recommendedasd isbadkground for reasonsxplained later
5. This is often the case with sacé or cloud-relatedaviables, or the boundary conditions in limited-area models.
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domainof analysisbecaus®f insuficient computempower. Thisis difficult to avoid astheresolutionandsophis-
tication of forecastmodelstendto be ashigh asthe computingpower allows, i.e. too high for the analysiswhich
is moreexpensve becaus¢heobsenationshaveto beprocessedntop of themanagemerdf themodelstateitself.
In thesecaseshework spaceof theanalysids notthemodelspacebut the spaceallowedfor thecorrectiondo the
backgroundcalledcontmol variable space Thentheanalysigproblemis to find acorrectiondx (or analysisincre-
menj such that

Xa = Xp+ OX

is ascloseaspossibleto x; . Formally theanalysisproblemcanbe presentedxactly lik e beforeby asimpletrans-
lation: instead of looking fox, , we look for(x,—x,,) in a suitable subspa?:e

2.3 Observations

For agivenanalysiswe usea numberof obseredvalues.They aregatherednto anobservatiorvectory . To use
themin theanalysisproceduret is necessaryo be ableto comparehemwith the statevector It would beniceif
eachdegreeof freedomwereobseneddirectly, soy couldberegardedasa particularvalueof the statevector In
practicetherearefewer obsenationsthanvariablesn the modelandthey areirregularly disposedsothattheonly
correctway to compareobsenationswith the statevectoris throughthe useof a functionfrom modelstatespace
to obsenationspacecalledan observatiompetator7 thatwe will denoteby H . Thisoperatoigeneratethevalues
H(x) thattheobsenationswould take if boththey andthe statevectorwereperfect,in theabsencef any mod-
elling erroff. In practiceH is acollectionof interpolationoperatordrom the modeldiscretizatiorto the obsena-
tion points,andcorversionsrom modelvariablesto the obsered parameterd-or eachscalarobsenationthereis
acorrespondindine of H . Thenumberof obsenations,i.e. the dimensionof vectory andthenumberof linesin
H , is varyingif the observingnetwork is not exactly periodicin time. Thereareusuallymary fewer obsenations
than \ariables in the model.

2.4 Departures

The key to dataanalysisis the useof the discrepanciebetweenobsenationsandstatevector Accordingto the
previous paragraph, this isvgin by the ector of departures at the obsaren points:

y—H(x)

When calculatedwith the backgroundx,, it is calledinnovations andwith the analysisx,, analysisresiduals
Their study preides important information about the quality of the assimilation procedure.

3. THE MODELLING OF ERRORS

To representhefactthatthereis someuncertaintyin the backgroundthe obsenationsandin the analysiswe will

assumesomemodelof the errorsbetweerthesevectorsandtheir true counterpartsThe correctway to do thisis
to assumesomeprobability densityfunction or pdf, for eachkind of error. Thereis a sophisticatecandrigorous
mathematicalheoryof probabilitiesto which thereademayrefer For themorepracticalmindswe presenga sim-

6. Mathematically speaking, we constraiy to belong to the &ihe manifold spanned by, plus the control ariable \ector subspace.
7. also calledorward opentor
8. the aluesH (x) are also callethodel equivalents of the observations
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plified (andmathematicalljjoose)explanationof pdfsin the paragraptbelow, usingthe exampleof background
errors.

3.1 Using pdfs to represent uncertainty

Givenabackgroundield x,, justbeforedoingananalysisthereis oneandonly onevectorof errorsthatseparates
it from the true state:

& = Xp—Xq

If we wereableto repeatachanalysisexperimentalarge numberof times,underexactly the sameconditions but

with differentrealizationof errorsgeneratedby unknavn causesg,, would bedifferenteachtime. We cancalcu-
late statisticssuchasaveragesyariancesandhistogramsf frequencie®f €, . In thelimit of averylargenumber
of realizationswe expectthe statisticsto corvergeto valueswhich depencbnly onthe physical processesespon-
siblefor theerrors,noton ary particularrealizationof theseerrors.Whenwe do anotheranalysisunderthe same
conditions,we do not expectto know whatwill betheerror g, but at leastwe will know its statistics.The best
informationaboutthedistribution of g, is givenby thelimit of thehistogramwhentheclassesreinfinitely small,

which is a scalarfunction of integral 1 calledthe probability densityfunctionof €, . Fromthisfunctiononecan
derive all statisticsjncludingthe average(or expectation)g, andthevariance. A popularmodelof scalampdf is

the Gaussian function, which can be generalized to avawidtie pdf.

3.2 Error variables

The errors in the background and in the oketéons® are modelled as folves:
. background errors: g, = x,—X;, of averageg, andcovariancesB = (sb—éb)(sb—éb)T. They
arethe estimationerrorsof the backgroundstate,i.e. the differencebetweenthe backgroundstate
vector and its truealue. Thg do not include discretization errors.
. observation errors: g, = y—H(x,), of average&, and covariancesR = (so—éo)(so—éo)T.
They containerrorsin the obsenation procesginstrumentalerrors,becausehe reportedvalueis
not a perfectimageof reality), errorsin thedesignof the operatorH , andrepresentatienessrrors
i.e. discretization errors which mentx, from being a perfect image of the true stte
. analysiserrors: €, = X,—X,, of averageg,. A measurqm of theseerrorsis given by the
trace of the analysis errorn@riance matrixA ,

Tr(A) = |le.—&]°-

They are the estimation errors of the analysis state, which is whatwetevminimize.

The averageof errorsarecalledbiasesandthey arethe signof a systematigroblemin the assimilatingsystem:
a model drift, or a bias in the obsations, or a systematic error in thaywthey are used.

9. Mathematically speaking, a pdf may noténan aerage or griances, bt in the usual geoplical problems all pdfs do, and we will
assume this throughout this presentation.

10. Onecouldmodelforecasterrorsandbalancepropertiesn asimilar way, althoughthis is outsidethe scopeof this discussionSeethe sec-
tion on the Kalman filter

11. An exampleis sharptemperaturénversionsn thevertical. They canbefairly well obseredusingaradiosondebut it is impossibleto rep-
resenthempreciselywith the currentverticalresolutionof atmospherienodels.On the otherhand temperaturesoundingobtainedrom sat-
ellite cannot themseds obsere sharp inersions.
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It is importantto understandhe algebraicnatureof the statistics Biasesarevectorsof the samekind asthe model
stateor obsenationvectors sotheir interpretationis straightforvard. Lineartransformghatareappliedto model
state or obseation \ectors (such as spectral transforms) can be applied toduts s,

3.3 Using error covariances

Error covariancesaremoresubtleandwe will illustratethis with the backgrounderrors(all remarksapplyto ob-
senationerrorstoo).In ascalarsystemthebackgrouncerrorcovariancds simplythevariancej.e. theroot-mean-
square (or.m.s, orquadtic) average of departures from the mean:

B = var(g,) = var(sb—éb)2

In a multidimensionalsystem,the covariancesare a squaresymmetricmatrix. If the model statevector has
dimensionn , thenthe covariancesarean n x n matrix. The diagonalof the matrix containvariance$?, for each
variableof the model;the off-diagonaltermsare cross-cwariancesetweeneachpair of variablesof the model.
Thematrixis positivelg. Unlesssomevariancesarezero,which happen®nly in theratherspecialcasewhereone
believessomefeaturesareperfectin the backgroundthe error covariancematrix is positive definite.For instance
if the modelstateis tri-dimensional,andthe backgrounderrors(minustheir average)are denoted(e,, e,, e5) ,
then

var(e;) cov(es, e,) cov(ey,es)
B = |cov(e; e,) var(ey) cov(e,, e3)
cov(e, ez) cov(eyeg) var(es)

The of-diagonal terms can be transformed into error correlations (if the correspoadiagees are non zero):

cov(e; e;)

[var(e;)var(e;)

Finally, linear transformation®f the modelstatevectorcanonly be appliedto covariancesasfull matrix trans-
forms.In particular it is not possibleto directly transformthefields of varianceor standardleviations.If onede-
finesalineartransformatiorby amatrix P (i.e. amatrix whoselinesarethe coordinate®f the new basisvectors
in termsof theold ones sothatthe new coordinate®f thetransformof x are Px), thenthe covariancematrixin

terms of the ne variables isPBP" .

ple; e;) =

3.4 Estimating statistics in practice

The error statistics(biasesandcovariancesarefunctionsof the physical processegoverningthe meteorological
situationandthe observingnetwork. They alsodependon our a priori knowled@ of the errors.Error variancesn

particularreflectour uncertaintyin featuresof the backgroundr the obsenrations.In generalthe only way to es-
timatestatisticss to assumehatthey arestationaryover a periodof time anduniform over adomairt* sothatone

12. The square roots ofinances are callestandad deviations or standad errors.

13. This does not mean that all the matrix elements areveosite definition of a posite definite matrix is gen inAppendix A The posi-
tivenes<anbe provenby remarkingthatthe eigervaluesof the matrix arethe variancesn thedirectionof the eigervectors,andthusareposi-
tive.
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cantake a numberof error realizationsand make empirical statistics.This is in a sensea climatology of errors.
Anotherempiricalway to specifyerror statisticsis to take themto be a fraction of the climatologicalstatisticsof
the fields themseés.

Whensettingupanassimilatiorsystemn practice suchapproximationsreunavoidablebecausé is verydifficult

to gatheraccuratedatato calibratestatistics:estimationerrorscannotbe obsenreddirectly. Someusefulinforma-
tion ontheaveragevaluesof thestatisticsccanbe gatheredrom diagnostic®of anexisting dataassimilatiorsystem
usingthe observationaimethod(seeits descriptionbelow) andthe NMC method(useof forecastdifferencesas
surrogatesto short-rangdorecasterrors).More detailed flow-dependentorecaserrorcovariancexanbeestimat-
eddirectly from a Kalmanfilter (describedelow), althoughthis algorithmraisesotherproblemsFinally, meteor-
ologicalcommonsenseanbe usedto specifyerrorstatisticsto the extentthatthey reflectoura priori knowledge
of the plysical processes responsible for the efrors

ref: Hollingsworthet al. 1986;Parrishand Derber 1992

4. STATISTICAL INTERPOLATION WITH LEAST-SQUARES ESTIMATION

In thissectiorwe presenthefundamentakquatiorfor linearanalysisn agenerablgebraidorm: theleastsquaes
estimation alsocalledBestLinear UnbiasedEstimator(BLUE). Thefollowing sectionswill provide moreexpla-
nationsandillustrations,andwe shallseehow theleast-squaresstimatiorcanbesimplifiedto yield themostcom-
mon algorithms used m@days in meteorology and oceanogsaph

4.1 Notation and hypotheses

The dimension of the model statenisand the dimension of the obsation \ector isp . We will denote:
X; true model state (dimension)
X, background model state (dimension
X, analysis model state (dimensiar)
y vector of obserations (dimensiom )
H obseration operator (from dimensian to p )
B covariance matrix of the background errg¢xg —X;) (dimensionn xn)
R covariance matrix of obseation errors(y — H[x,]) (dimensionp x p)
A covariance matrix of the analysis errdps,—x,) (dimensionz x n)

The following hypotheses are assumed:

. Linearized observation operator: the variationsof the obsenation operatorin the vicinity of the
backgroundstatearelinear:for ary x closeenoughto x,,, H(x) —H(x,) = H(x—-x,) whereH
is a linear operator

. Non-trivial errors : B andR are positre definite matrices.

14. ltis called an assumptionafodicity.

15. Itis olvious that e.g. forecast errors in a tropical meteorological assimilation shall be increased in the vicinity of reported tropical
cyclones, for instance, or that obsatien operators for satellite radiancesénenore errors in cloudy areas.
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. Unbiased errors: the expectation of the backgroundand obseration errors is zero i.e.
Xp—X = Y—H(x) =0

. Uncorrelated errors: obseration and background errors are mutually uncorrelated i.e.

T

(X, —x)(y—H[y]) =0

. Linear analysis we look for an analysisdefinedby correctionsto the backgroundvhich depend
linearly on background obsextion departures.

. Optimal analysis we look for ananalysisstatewhich is ascloseaspossibleto the true statein an

r.m.s. sense (i.e. it is a minimurariance estimate).

ref: Daley 1991;Lorenc1986;Ghil 1989

4.2 Theorem: least-squares analysis equations

(@) The optimal least-squaes estimatoy or BLUE analysis is defined by the
following interpolation equations:

Xa = Xp+ K(y —H[xp]) (A5)

a

K = BHT(HBHT+R)™ (AB)

where the linear operatdt is called thegain, orweight matrix of the analysis.

(@) Theanalysis eror covariance matrixs, for ary K :

A = (1-KH)B(I —=KH)" +KRK" (A7)
If K is the optimal least-squareaig, the &pression becomes
A = (I-KH)B (A8)

(@ The BLUE analysisis equivalently obtainedas a solution to the variational
optimization poblem

X, = Arg minJ
J(X) = (X=Xp) B (x=Xp) + (y —H[x]) R™(y - H[x]) (A9)
= Jp(x) +Jo(X)

wheredJ is calledthe costfunctionof the analysis(or misfit, or penaltyfunction),
J, is thebadkground term J, is theobservation term

(a8  The analysis, isoptimal it is closest in anm.s. sense to the true state

(b) If the backgroundand obseration error pdfs are Gaussianthen x, is alsothe
maximum liklihood estimatoof X, .

Proof:

With atranslationof X by X}, , we canassumehat H = H sotheobsenation operatoris linearfor our purposesThe
equation(A5) is simply amathematicaéxpressiorof thefactthatwe wanttheanalysiso dependinearly onthe obsenation
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departuresTheexpressiorof K in (A6) is well-definedbecauseR is a positive definitematrix,and H BH Tis positive.
Theminimizationproblem(A9) is WeII-definedbec:;\useJ0 is a corvex functionand Jb is astrictly corvex function (it is
a quadratic form).

The equivalencebetweeritems (a) and(c) of the theoremstemsfrom the requirementhatthe gradientof ¢/ is zeroatthe
optimum X :

N — -1 Tpo-1
D'J(xa) =0=2B (Xa_xb) —-2H R (y _H[Xa])
_p-1 To-1 H To-1
0 =B (Xa=Xp) —H R (y—H[Xp]) —H R "H(x;—Xp)

(Xa=X) = (B +HR™H) HTR™(y - H[x,])

The identity with(A6) is straightforvard to pree (all inverse matrices considered are pusitiefinite):

H'RYHBHT+R) = B +H'RH)BH"
=H +H'RHBH'

hence

(B +H'R™) H'R™ = BHT(HBH +R) "

The expressiongA7) and (A8) for A are obtainedby rewriting the analysisequation(A5) in termsof the background,
analysis and obseation errors:

€y = Xp— X

€ = Xg = X4

Eo = y_H[Xt]

€, —& = K(g,—Hgp)

g, = (I =KH)g, +Kgg

a

-
By developingthe expressionof €,€, andtaking its expectation,by linearity of the expectationoperatorone finds the
generalexpression(A7) (remembethat €, and €, beinguncorrelatedtheir cross-coarianceis zero). The simplerform
(A8) is easy to devie by substituting thexpression for the optimdK and simplifying the terms that cancel.

Finally to prove (A6) itself we tz?ke the analysisFrrorcwariancematrix given by (A7) andwe minimize its trace,i.e. the
total error ariance: (note thadB = B andR = R)

Tr(A) = Tr(B)+ Tr(KHBH'K ") —2Tr(BH'K") + Tr(KRK )

Thisis a continuoudifferentiablescalarfunction of the coeficientsof K , sowe canexpressits derivative d ¢ asthefirst-
order terms inK  of the diferenceTr(A)(K + L) —Tr(A)(K), L being an arbitrary test matrix:

d[Tr(A)IL = 2Tr(KHBH'LT)=2Tr(BH'LT) + 2Tr(KRL")
= 2Tr(KHBH'LT=BH'LT+KRL")
= 2Tr{[K(HBH  +R)-BH"IL"}

Thelastline shavs thatthe derivative is zerofor ary choiceof L if andonlyif (H BH' + R) K'-HB =0 , which
is equvalent to

K = BH'(HBH"+R)™

14
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becauseH BH' + R) is assumed to bevertible.

In thecaseof Gaussiampdfs,onecanmodelthebackgroundpbsenationandanalysigpdfsasfollows, respectiely:
(b, 0 anda are normalizationdctors.)

25() = b exp| 5(x =) B (x=xy)]

74() = 0 x| 5(y-HIX) R y-Hx]) |

Po(X) = Pp(X)Po(X)

whichyieldstheright averagesandcovariancedor the backgroundandobsenationserrors,andthe analysiserror
pdf is simply definedasthe Bayesianproductof the two known sourcesf information,the backgroundandthe
obsenation pdfs (this canbe derivedrigorouslyby usingBayes’'theoremto write 7, asa conditionalprobability
of x giventheobsenationsandtheapriori pdf of thebackground)Then,by takingminusthelogarithmof 2,(x),
onefindsthatthe modelstatewith the maximumprobability (or likelihood is the onethatminimizesthecostfunc-
tion J(x) expressed in the theorem.

9.3 Comments

Thehypothese®f non-triviality canalwaysbeenmadein well-posedanalysigproblemsif B is non-positve,one
canrestrictthe control spaceto the orthogonalof the kernelof B (the analysiswill not make ary correctionto
backgroundrariableghatareperfectlyknown). If H is notasurjectionthensomeobsenationsareredundanand
theobservingnetwork shallberestrictedto theimageof H . If R is non-positve, the expression(A6) for K still
holds(thenthe analysiswill be equalto the obseredvalueat the obserationpoints H(x,) ), but the variational
versionof the least-squareanalysiscannotbe used.lt is evenpossible(with somealgebraicprecautionsjo have
someinfinite eigervaluesin R, i.e.anon-positve R, whichmeanghatsomeobsenationsarenotusedbecause
their errors are infinite.

Thehypothesiof unbiasecerrorsis adifficult onein practicebecausé¢hereoftenaresignificantbiasesn theback-
groundfields (causedy biasedn theforecastmodel)andin the obsenations(or in the obsenrationoperators)If
thebiasesareknown, they canbe subtractedrom the backgroundandobsenationvalues,andthe above algebra
appliesto thedebiasedjuantitiesIf thebiasesareleft in, theanalysiswill notbeoptimal,eventhoughit will seem
toreducehebiasedyy interpolatingbetweerthebackground&ndobsenations.It isimportantto monitorthebiases
in anassimilatiorsystemg.g.by looking ataveragef backgroundiepartureshut it is nottrivial to decidewhich
partof thesearemodelor obsenationbiasesTheproblemof biasmonitoringandremoval is thesubjeciof ongoing
research.

Thehypothesiof uncorrelatederrorsis usuallyjustifiedbecaus¢he cause®f errorsin thebackgroundandin the
obsenationsaresupposedo becompletelyindependentdowever, onemustbe carefulaboutobserationpreproc-
essingpracticegsuchassatelliteretrieval procedures)hatusethebackgroundield in awaythatbiasegheobser-
vationstowardthe backgroundlt might reducethe apparenbackgroundiepartureshut it will causethe analysis
to be suboptimal (too close to the background, a condition nicknamediasesiepoblen).

Thetangent linear hypothesis not trivial and it is commented in thextesection.

It is possibleo rewrite theleast-squaresnalysisequationsn termsof theinversesof theerrorcovariancematrices,
calledinformationmatrices It makesthe algebraa bit morecomplicatedhut it allows oneto seeclearlythatthe

informationcontainedn theanalysids thesum,in asimplesenseof theobsenationsprovidedby thebackground
and by the obseations. This is illustrated in the section on the estimation of analysis quality. belo
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It will be shawvn in the sectionon dual algorithms(PSASanalysis)thatthe equationsandin particularthe cost
function J , canbe rewritten in the spaceof the obsenationsy . Also, it is easyto thatleast-squareanalysisis
closely related to a lineargeession between model state and otz@mns.

9.4 On the tangent linear hypothesis

The hypothesiof linearizedobservatioroperator is neededn orderto derive arigorousalgebraicexpressiorfor
theoptimal K . In practice,H maynotbelinear, but it usuallymakesphysicalsensdo linearizeit in thevicinity
of the background state:

H(x) = H(xp) = H(x=xp)

Then,K beinga continuousunctionof H , the least-squaresquationgor the analysisshouldintuitively yield a
nearly optimalx, .

More generallythetangentlinear hypothesion H canbewritten asthefirst-orderTaylor—Youngformulain the
vicinity of an arbitrary state and for a perturbatioh :

H(x+h) = H(x)+Hh +O(|h]?,

with lim,, _ O(|2|?)R™* = 0. This hypothesiscalled the tangent linear hypothesiss only acceptabléf the
higherorder variations of H can be neglected (in particular there should be no discontinuities)for all
perturbation®f the modelstatewhich have the sameorderof magnitudeasthe backgrouncerrors. Theoperator
H is calledthedifferential, or firstderivative or tangentlinear (TL)16 functionof H atpoint x . Althoughthisis
a desirable mathematical propertyHf, it is not enough for practical purposes, because the approximation

H(x+h)-H(x)=Hh

mustbe satishctory in userdefinedterms for finite valuesof 4 thatdependontheapplicationconsideredin the
least-squares analysis problem, we need

y—H(x)=y—-H(X=Xp) + H(Xy,)

for all valuesof x thatwill be encounteredh the analysisprocedurenotablyx = x,, X = X, andalsoall trial

valuesusedin the minimizationof J(x) if avariationalanalysisis performed’. Thustheimportantrequirement
is thatthedifferencebetweenH (x) — H(x,) andH(x —x,) shouldbemuchsmallerthanthetypical obseration

errors (definedby R), for all model state perturbationsx —x,, of size and structureconsistentwith typical

background errors, and also with the amplitude of the analysis increrjents .

Thusthe problemof linearizing H is notjustrelatedto the obsenationerrorsthemseles.It mustbe appreciated
in termsof theerrorsin thebackgroundx, too,whichin asequentiadssimilatiorsystemarethe previousforecast
errors,which dependon the forecastrangeandthe quality of the model.Ultimately the correctnessf thelineari-
zationmustbe appreciatedn the context of thefully integratedassimilationsystemlt will be easierto applythe

16. Both qualifierstangentandlinear areneededohviously H couldbeIinearwitzhoutsatiszfyingtheTaonrformula.A functioncanalsobe
tangento anothewithoutbeinglinear, if thedifferencebetweerthemis an O(||2[|”) ,e.g.x~ andx™ aretangento eachotherfor x = 0 .

17. Qualitatively speakinghey all belongto aneighbourhooaf x,) having ashapeandsizewhichis consistentvith the B andR errorcov-
ariances.
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linearizationto a goodsystembecause¢hedepartures< —x,, will besmaller Cornversely thelinearizationmaybe
inapplicableo difficult dataassimilatiorproblemsThisis oftenthecasewith ocearmodelsor satellitedata,which
meanghatit canbewrongto usesophisticateénalysisalgorithmsthatrely too muchonthelinearity of the prob-
lem.

Thelinearizationproblemcanbe evenmoreacutefor thelinearizationof the modelforecasioperatorM whichis
neededn 4D-Var andin the Kalmanfilter describecbelon. As with thelinearizationof H , it mayor maynotbe
licit dependingon the quality of all component®f the assimilationsystem:datacoverage,obsenation quality,
modelresolutionandphysics,andforecastrange.Theuserrequirementsndthe physical propertieof thesystem
must be considered.

The non-linear analysis problem

Theassumptiorf linearanalysids astrongone.Linearalgebras neededo derive theoptimalanalysissquations.
Onecanrely on thelinearizationof a weakly non-linearobsenation operatoy at the expenseof optimality. The
incrementaimethod(describedelawv for the variationalanalysis)performsthis procedureateratively in anempir-
ical attemptto make the analysismoreoptimal. For stronglynon-linearproblemsthereis no generalandsimple
wayto calculateheoptimalanalysisThesimulatedannealingmethodcanbeuseful;specificmethodssuchasthe
simple, dealwith variableswith boundediefinitiondomainsFinally, it is sometimegpossibleto make a problem
morelinearsimply by aclever definitionof modelandobsenationvariableqseethesectiononminimizationmeth-
ods).

9.5 The point of view of conditional probabilities

It is interestingto formalizethe analysisproblemusingthe conditional,or Bayesianprobabilities.Let usdenote
P(x) theapriori pdf (probabilitydensityfunction) of the modelstatebeforethe obserationsareconsideredi.e.
thebackgroungdf. LetusdenoteP(y) thepdfoftheobsenations.Theaimof theanalysigsto find themaximum
of P(x|y),theconditionalprobabilityof themodelstategiventheobserations.Thejoint pdfof x andy (i.e.the
probability thatx andy occur together) is

P(xOy) = P(x|y)P(y) = P(y|x)P(x)

i.e.it is the probabilitythatx occurswheny occursandvice versa.Theabove expressions the Bayestheorem.
In the analysisprocedurene know thata measuremertasbeenmadeandwe know its valuey , so P(y) = 1
and we obtain

P(x|y) = P(y|x)P(x)

which meansthat the analysispdf is equalto the backgroundodf timesthe obseration pdf P(y|x) . The latter
peaks aty = H(x) but it is not a Dirac distrilition because the obsations are not errdree.

Thevirtue of the probabilisticderivation of the analysisproblemis thatit canbe extendedto non-Gaussiaprob-
abilities (althoughthis spoilsthe equivalencewith the (A6) equatiorfor K ). A practicalapplicationis donein the
framework of variationalquality control,whereit is assumedhatobsenationerrorsarenot Gaussiarbut they con-
tain someamountof “grosserrors”,i.e. thereis a probability thatthe erroris not generatedby the usualGaussian
physical processebut by somemoreseriousproblem,like codingor instrumentafailure. The grosserrorsmight
be modelledusinga uniform pdf over a predefinednterval of admissiblegrosserrors,leadingto a non-Gaussian
obsenation pdf. Whenthe oppositeof thelogarithm of this pdf is taken,the resultingobsenation costfunctionis
notquadraticput giveslessweightto theobsenation(i.e. thereis lessslope)for modelstateghatdisagreestrongly
with the obsergd \alue.
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ref: Lorenc1986

9.6 Numerical cost of least-squares analysis

In currentoperationameteorologicamodels the dimensionof the modelstate(or, moreprecisely of the control
variablespace)x is of theorderof n = 10", andthedimensiorof theobsenationvector(thenumberof obsered
scalars)s of theorderof p = 10° peranalysiég. Thereforethe analysisproblemis mathematicallyunderdeter-
mined(althoughin someregionsit might be overdeterminedf the densityof the obsenrationsis largerthanthe
resolutionof themodel).In ary practicalapplicationit is essentiato keepin mind the sizeof thematrix operators
involvedin computingtheanalysigFig. 4 ). Theleast-squareanalysismethodrequiresin principlethe specifica-
tion of covariancematricesB andR (or theirinversesn thevariationalform of thealgorithm)which respectrely
containof the orderof n°/2 and p2/ 2 distinctcoeficients,which arestatisticsto estimate(the estimationof a
varianceor covariancestatisticcorvergeslik e the squareroot of the numberof realizations) The explicit determi-
nationof K requiresheinversionof amatrix of size p x p , which hasanasymptoticcompleity of the orderof
pzlog(n) . The exact minimization of the costfunction J requires,in principle, n + 1 evaluationsof the cost
functionandits gradientassuming/ is quadraticandtherearenonumericalerrors(e.g.usingaconjugategradient
method).

ISl R e

.{a: x,+K(y-Hx )

- (D+|:|]'l

K=BHYHBH4R)™

|
1]

oD = —— | + [S— i

B T- . N I .
J(x)= (x—xb)TB L(x—}cb) + (y—Hx)TR (yv-Hx)

Figure 4. Sktches of the shapes of the matrices audor dimensions wolved in an usual analysis problem

where there are mgriewer obserations than dgrees of freedom in the model: from top to bottom, in the

equations of the linear analysis, the computatiol ¢bf theH BH' term, and the computation of the cost
function/ .

It is obviousthat, exceptin analysisproblemsof very smalldimension(lik e one-dimensionaletrievals), it is im-
possibleto computeexactly theleast-squareanalysis Someapproximationsrenecessarythey arethe subjectof
the following sections.

18. At ECMWFin winter 1998the controlvariabledimensionwas512000 the numberof active obsenations(per6-hourintenval) wasabout
150000
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9.7 Conclusion

We have seen that there aredwnain vays of defining the statistical analysis problem:

. either assumethat the backgroundand error covariancesare known, and derive the analysis
equations by requiring that the total analysis erasiances are minimum,
. or assumethat the backgroundand obsenation error pdfs are Gaussianand derive the analysis

equations by looking for the state with the maximum probability
Both approaches lead todwnathematically equalent algorithms:
. the direct determination of the analys@rgmatrixK ,
. the minimization of a quadratic cost function.

Thesealgorithmshave very differentnumericalpropertiesandtheir equivalencestopsassoonassomeunderlying
hypotheses are notxified, like the linearization of the obsation operatqrfor instance.

10. A SIMPLE SCALAR ILLUSTRA TION OF LEAST-SQUARES ESTIMATION

Let us assume that we need to estimate the tempefBtuwka room.

We have athermometenf known accuray o, (thestandardieviation of measuremersgrror)andwe obsere T',,
whichis consideredo have expectationT, (i.e. we assumehatthe obsenrationis unbiased)andvariancecg .In
theabsencef ary otherinformationthebestestimateve canprovide of thetemperaturés T',, with accurag o, .

However we may have someadditionalinformationaboutthe temperaturef the room. We may have a reading
from anotherindependenthermometerperhapswith a differentaccurag. We may notice that everyonein the

roomis wearinga jumper—anothetimely pieceof informationfrom which we canderive an estimatealthough
with aratherlargeassociateérror We mayhave anaccurat@bsenationfrom anearlierdate which canbetreated
asanestimatefor thecurrenttime, with anerrorsuitablyinflatedto accounfor theseparatiorin time. Any of these
obsenrationscould be treatedasa priori or badkgroundinformation,to be usedwith T', in estimatingthe room

temperaturel et our backgroundestimatebe T', , of expectationT', (i.e.it is unbiasedpndof accurag o, . Intu-

itively T, and T, canbecombinedo provide a betterestimatgor analysig of T', thanary of thesetakenalone.
We are going to look for a linear weightedeage of the form:

T, = kT, +(1-k)T,

whichcanberewrittenasT, = T, + k(T ,—T,) , i.e.welook for acorrectionto thebackgroundvhichis alinear
function of the diference between the obsation and the background.

The error ariance of the estimate is:
o2 = (1-k)’c} + k°a,

wherewe have assumedhattheobsenationandbackgrounderrorsareuncorrelatedWe choosehe optimalvalue
of £ that minimizes the analysis erranance:

which is eqwalent to minimizing Fig. 5)
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J(x)=Jb(x)+Jo(x)
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Figure 5. Schematiaepresentationf thevariationalform of theleast-squareanalysisjn ascalarsystemwhere
the obserationy is in the same space as the modethe cost-function termd,, and./, are both covex and
tend to “pull” the analysis wards the background, and the obseationy , respectiely.

The minimum of their sum is somvhere betweer, andy, and is the optimal least-squares analysis.

. In thelimiting caseof avery low quality measuremer{to,>>0, ), £ = 0 andtheanalysisemains
equal to the background.

. Ontheotherhand,if the obserationhasa very high quality (c,>>0,,), £ = 1 andtheanalysisis
equal to the obseation.

. If bothhave thesameaccuray, o, = o,, £ = 1/2 andtheanalysisis simply the averageof T',

and T',, which reflectsthe fact that we trust as much the obsenation as the backgroundso we
make a compromise.
. In all casesQ < % < 1, which meanghatthe analysisis a weightedaverageof the backgroundand
the obseration.
These situations areedfiched inFig. 6.
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Figure 6. Schematicepresentationf the variationsof the estimatiorerror o, andof the optimalweightz that
determines the analysig,, for various relatre amplitudes of the background and obaton standard errors
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It is interesting to look at theaviance of analysis error for the optinial
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which shaws that the analysiserror varianceis always smallerthan both the backgroundand obsenation error
variancesandit is smallesif bothareequal,in which casetheanalysiserrorvarianceis half thebackgrouncerror
variance.

11. MODELS OF ERROR COVARIANCES

A correctspecificationof obsenation andbackgrounderror covariancess crucial to the quality of the analysis,
becausghey determineto whatextentthe backgroundieldswill be correctedo matchthe obserations.Thees-
sentialparameterarethevariancesbut the correlationsarealsovery importantbecausehey specifyhow the ob-
senedinformationwill besmoothedn modelspacef thereis amismatchbetweertheresolutionof themodeland
the densityof the obsenations.In the framevork of Kalmanfiltering and4D assimilationwith modelasa weak
constraintathird kind of covariancego specifyis Q , themodelerrorcovariancegseetherelevantsectionbelaw).
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11.1 Observation error variances

They aremainly specifiecaccordingo theknowledgeof instrumentatharacteristicsiyhich canbeestimatedising
collocatedobsenations,for instanceAs explainedbefore they shouldalsoincludethevarianceof representatie-

nesserrorswhich is not negligible whenanalysingohenomenavhich cannotbe well representeth modelspace.
It is wrongto leave obsenationbiasesasa contritution to the obsenationerrorvariancedecausét will produce
biasedn theanalysisncrementswheneer obserationbiasesanbeidentified,they shouldberemoredfrom the

obseredvalueor from thebackgroundields,dependingnwhetheronethinksthey arecausedy problemsn the

model or in the obseation procedure (unfortunately we do natays knev what to decide).

11.2 Observation error correlations

They areoftenassumedo bezero,i.e. onebelievesthatdistinctmeasurementreaffectedby physicallyindepend-
enterrors.This soundsreasonabldor pairsof obsenationscarriedout by distinctinstrumentsThis may not be
true for setsof obsenationsperformedby the sameplatform, like radiosondeaircraft or satellitemeasurements,
or whenseveral successie reportsfrom the samestationareusedin 4D-Var. Intuitively therewill bea significant
obsenationerrorcorrelationfor reportscloseto oneanotherlf thereis a biasit will shav up asa permanenbb-
senation error correlation.The obsenation preprocessingangenerateartificial correlationsbetweerthe trans-
formedobsenationse.g.whentemperaturerofilesare convertedto geopotentialpr whenthereis a corversion
betweerrelative andspecifichumidity (correlationwith temperature)or whena retrieval procedurds appliedto
satellitedata.lf the backgrounds usedin the obseration preprocessinghis will introduceartificial correlations
betweernobsenationsandbackgrouncderrorswhich aredifficult to accountfor: moving the obsenation closerto
thebackgroundnaymake theobsenrationandbackgrouncerrorslook smaller butit will unrealisticallyreducethe
weightof the originally obseredinformation.Finally, representatenessrrorsarecorrelatedoy nature:interpo-
lation errorsarecorrelatedvheneer obserationsaredensecomparedo theresolutionof themodel.Errorsin the
designof the obsenation operatorlik e forecastmodelerrorsin 4D-Var, arecorrelatedon the samescalesasthe
modelling problems.

Thepresencef (positve) obserationerrorcorrelationscanbeshowvn to reduceheweightgivento the averageof

theobsenations,andthusgive morerelative importanceo differencedbetweerobsenedvalues lik e gradientsor

tendenciesUnfortunatelyobsenationerrorcorrelationsaredifficult to estimateandcancreateproblemsn thenu-

mericsof the analysisandquality controlalgorithms.In practiceit oftenmakessensdo try to minimizethemby

working on a biascorrectionschemeby avoiding unnecessargbsenation preprocessindyy thinningdensedata
andby improving thedesignof the modelandobsenationoperatorsMost modelsof R covariancesisedin prac-
tice are diagonal or almost.

11.3 Background error variances

They areusuallyestimatef the errorvariancesn theforecastusedto producex,, . In the Kalmanfilter they are
estimatedautomaticallyusingthe tangent-lineamodel,so they do not needto be specified(althoughthis means
thattheproblemis movedto thespecificatiorof themodelerror Q andthetuningof approximatealgorithmsthat

arelesscostlythanthe completeKalmanfilter). A crudeestimatecanbe obtainedby taking an arbitraryfraction

of climatologicalvarianceof thefieldsthemseles.If theanalysiss of goodquality (i.e. if therearealot of obser-
vations)abetteraverageestimates providedby thevarianceof thedifferencedetweertheforecasandaverifying

analysisIf theobsenationscanbe assumedo be uncorrelatedmuchbetteraveragedackgrouncerrorvariances
canbeobtainedby usingtheobservationamethodexplainedbelon. However, in asystemlik e theatmospher¢éhe

actualbackgrouncerrorsareexpectedto dependa lot on the weathersituation,andideally the backgrouncerrors
shouldbe flow-dependentT his canbe achievzed by the Kalmanfilter, by 4D-Var to someextent,or by someem-

pirical laws of error gronth basedon physical groundsIf backgrouncerrorvariancesarebadly specified it will
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leadto toolarge or too smallanalysisncrementsln least-squareanalysisalgorithms only therelative magnitude
of thebackgroundandobsenationerrorvariancess important.However, the absolutevaluesmaybeimportantif
they areusedto make quality-controldecisionson the obsenrations(it is usuallydesirableto acceptmoreeasily
the obserations with a lage background departure if the background error @ito be lage).

11.4 Background error correlations

They are essential for geral reasons:

Information spreading In data-sparsareas.the shapeof the analysisincrementis completely
determinedby the covariancestructuregfor a single obsenrationit is given by BH' ). Hencethe
correlationsin B will performthe spatialspreadingof information from the obsenation points
(real obserations are usually local) to a finite domain surrounding it.

Information smoothing In data-denseareas,one can shawv that in the presenceof discrete
obsenations(which is the usualcase)the amountof smoothing}9 of the obsered informationis
governedby thecorrelationsn B, which canbe understoody remarkingthatthe leftmosttermin
K is B . Thesmoothingof theincrementss importantin ensuringthatthe analysiscontainsscales
which are statistically compatible with the smoothnesgropertiesof the physical fields. For
instance,when analysingstratosphericmr antigyclonic air massesit is desirableto smooththe
incrementsa lot in the horizontalin orderto averageand spreadefficiently the measurements.
When doing a low-level analysisin frontal, coastalor mountainousareas,or neartemperature
inversionsijt is desirableonthe contraryto limit theextentof theincrementsoasnotto producean
unptysically smoothanalysis.This hasto be reflectedin the specificationof backgrounderror
correlations.

Balance properties. There are often more degreesof freedomin a model thanin reality. For
instancethelarge-scaleatmospherés usuallyhydrostatic It is almostgeostrophicat leastthereis
always a large amountof geostroply in the extratropics. These balance propertiescould be
regardedas annging constraintson the analysisproblem,and enforcedbrutally e.g. usingan a
posteriorinormal-modaénitialization. On the otherhand,they arestatisticalpropertieghatlink the
differentmodel variables.In otherwords,they shav up ascorrelationsin the backgrounderrors
becausehe existenceof a balancein the reality andin the modelstatewill imply thatthereis a
(linearized)version of the balancethat exists in the backgrounderror covariancestoo. This is
interestingfor the useof obsered information: observingone modelvariableyields information
aboutall variablesthatarebalancedwith it, e.g.alow-level wind obsenationallows oneto correct
thesurfacepressurdield by assumingsomeamountof geostropil. Whencombinedwith thespatial
smoothingof incrementghis canleadto a considerablémpacton the quality of theanalysise.g.a
temperatureobsenation at one point can be smoothedto producea correctionto geopotential
heightaroundit, andthenproducea completethree-dimensionatorrectionof the geostrophiavind
field (Fig. 7 ). Therelatve amplitudeof the incrementsn termsof the variousmodelfields will
dependdirectly on the specifiedamountof correlationaswell ason the assumedrror variancein
all the concerned parameters.

19. There is an eqalence between statistical analysis and the theory of interpolation by splines.
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Figure 7. Example of horizontal structure functions commonly used in meteorology: the horizontal

autocorrelatiorof height(or pressurehasanisotropic,gaussian-like shapeasa functionof distancgright panel).

Inturn
corre

,geostroply impliesthatwind will becross-correlatedith heightatdistancesvherethegradientof height
lation is maximum. Hence, an isolated height olasiervwill generate an isotropic heightfiiop” with a
rotating wind increment in the shape of a ring.

lll-conditioning of the assimilation. It is possibleto include into the control variablessome
additional parameterswhich are not directly obsered, like model tuning parametersor bias
estimatesThis can be an efficient indirect parameterestimationtechniqueif thereis a realistic
couplingwith the obsered data,usually throughthe designof the obseration operatoror of the
model(in a4-D assimilation)lt maynotbe possibleor sensibleo specifyexplicit correlationswith
the restof the modelstatein B . However, one mustbe carefulto specify a sensiblebackground
error for all parametersf the control variable, unlessit is certain that the problemis over
determinecy the obsenrations.A too smallerrorvariancewill obviously preventary correctionto
the additional parametersA too large variance may on the other hand make the additional
parametersactlik e asink of noise,exhibiting variationswheneer it improvesthefit of theanalysis
to obsenations,evenif no suchcorrectionof the additionalparameterss physically justified. This
can creategenuineproblemsbecausesomeimplicit analysiscouplingis often createdby variable
dependenciem the obsenation operatorsor in the model(in 4D-Var). Then,the specificationof
backgrouncerrorsfor additionalparametersvill have animpacton the analysisof the mainmodel
state. The should reflect the acceptable amplitude of the analysis corrections.

Flow-dependentstructure functions. If enoughis known aboutthe dynamicsof the problem,one
canmake B dependon the uncertaintyof the previous analysisandforecast,not only in termsof
backgrouncerrorvariancesbut alsoin the correlationsin geoplysicalfluids thereis notjustaloss
of predictabilityduringtheforecasttherearewavesthatfollow specificpatternsandthesepatterns
areexpectedto be foundin the backgrouncerrors.For instancejn anareaproneto cyclogenesis,
oneexpectsthe mostlik ely backgrounderrorsto have the shapeg(or structuie functior) of the most
unstablestructuresperhapsawith a baroclinicwave tilt, andanticorrelationdetweenthe errorsin
the warm and in the cold air massesThis is equivalentto a balanceproperty and again if the

24
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relevantinformationcanbeembeddedhto thecorrelationf B, thenthe obsenedinformationcan
be more accuratelyspreadspatially and distributed amongall model parametersnvolved. Such
information can be praded in the framwork of a Kalman filter or 4D-af.

ref: Courtieret al. 1998

11.5 Estimation of error covariances

It is adifficult problem because¢hey arenever obsereddirectly, they canonly be estimatedn a statisticalsense,
sothatoneis forcedto make someassumption®f homogeneityThe bestsourceof informationaboutthe errors
in anassimilationsystemis the studyof the backgroundieparturegy — H[X,] ) andthey canbeusedin avariety
of ways.Otherindicationscanbe obtainedrom theanalysideparturespr from thevaluesof the costfunctionsin
3D/4D-Var. Therearesomemoreempiricalmethodsasedn thestudyof forecaststartedrom theanalyseslike
the NMC methodor the adjoint sensitvity studiesbut their theoreticalfoundationis ratherunclearfor the time
being.A comprehensie andrigorousmethodologyis beingdevelopedunderthe framework of adaptivefiltering
whichis too comple to explainin this volume.Probablythemostsimpleyetreliableestimatiormethodis the ob-
senational methodxplained belav.

background =rror

( covarliances

separation

Figure 8. Schematic representation the olzgemal method. The (obsemion — background) eariance
statistics for a gien assimilation system are stratifieciagt distance, and the intercept at the origin of the
histogram preides an estimate of th@erage background and obsaien error ariances for these particular
assimilation and obseation systems.

The observational(or Hollingworth—Lonnberg) method. This method® relieson theuseof backgroundiepar-
turesin anobservingnetwork thatis denseandlarge enoughto provide informationon mary scalesandthatcan
beassumedo consistof uncorrelatecnddiscreteobsenations.Theprinciple (illustratedin Fig. 8) is to calculate
an histogram(or variogram) of backgrounddeparturecovariancesstratifiedagainstseparatior(for instance) At

zeroseparatiorthe histogranprovidesaveragednformationaboutthe backgroundandobsenationerrors,atnon-
zeroseparatiorit givestheaveragedackgrouncerrorcorrelationif ; andj aretwo obsenationpoints,theback-
ground departure gariancec(i, j) can be calculated empirically and it is equal to

20. namedaftertheauthorghatpopularizedt in meteorologyalthoughit wasknown andusedbeforein geoplysics.Thewidespreadriging
methodis closely related.
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c(i, j) = (y;=Hxp)(y; —H %)
= [(y; = Hyx) + (Hx = Hxp) 10y = H X)) + (H % —H xp)]"

= (yi_HiXt)(yj_Hth)T + Hi(xt_xb)(xt_xb)TH} *

£y = Hx) (X = Xp) HT + H (x = Xp) (v~ H %)
=R, +H;BH+0+0

If oneassumeshatthereis no correlationbetweenobsenation andbackgrouncerrors,the lasttwo termson the
secondline vanish.The first term is the obsenration error covariancebetween: andj, the secondtermis the
backgrouncerror covarianceinterpolatedat thesepoints,assumingotharehomogeneousver the dataseused.
In summary

c(i, j) = Ry +H;BH]

. ifi=7j,c(i,j) = cg(i) + oﬁ(i) , the sum of the obseation and the background erra@riances,

. if 2 j andthe obseration errors are assumedo be uncorrelated,c(z, j) = covy(i, j), the
backgrounderror covariancebetween: and ;. (If thereare obseration error correlationsiit is
impossible to disentangle the information abBuaindB without additional data)

. Underthe sameassumptionjf i andj arevery closeto eachotherwithout being equal,then
lim; _ c(i,Jj) = of,(i), so that by determiningthe interceptfor zero separatiorof c(i, j), one
can determin@ﬁ(i) .

. Then, one gets og(i) = c(i, J) —cf,(i) and the backgrounderror correlationsare given by

(c(i, j))/ oﬁ(i) (we have assumedhatthe backgrouncderror variancesarehomogeneousver the
considered dataset).

In mostsystemghe backgrounderror covariancesshouldgo to zerofor very large separationslf thisis not the
case,|it is usuallythe sign of biasesin the backgroundand/orin the obsenationsandthe methodmay not work
correctly Hollingsworthand Lonnberg 1988.

11.6 Modelling of background correlations

As explainedabove thefull B matrix is usuallytoo big to be specifiedexplicitly. The variancesarejustthe n di-
agonaltermsof B, which areusuallyspecifiedcompletely The off-diagonaltermsare moredifficult to specify
They mustgeneratea symmetricpositive definite matrix, soone mustbe carefulaboutthe assumptionsnadeto
specifythem.Additionally B is oftenrequiredto have somephysical propertiesvhich arerequiredto bereflected
in the analysis:

. the correlations must be smooth irypical space, on sensible scales,

. thecorrelationsshouldgoto zerofor very large separation§ it is believedthatobsenationsshould
only have a local d&ct on the increments,

. the correlationsshould not exhibit physically unjustifiable variationsaccordingto direction or
location,

. the most fundamental balance propertieg tjkostropjy must be reasonably well enforced.

. the correlationsshould not lead to unreasonablesffective backgrounderror variancesfor ary

parametetthat is obsened, usedin the subsequenmodel forecast,or outputto the usersas an
analysis product.
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The complity andsubtletyof theserequirementsneanthatthe specificatiorof backgrounderror covariancess
aproblemsimilar to physical parametrizationPhysically soundhypothesesieedto be madeandtestedcarefully.
Some of the more popular techniques are listedhélat more sophisticated ones remain to veimed.

. Correlationmodelscanbespecifiedndependentlyrom variancefields,underthe conditionthatthe
scalesof variationof the variancesaaremuchlargerthanthe correlationscalesptherwisethe shape
of the covariancesvould differ alot from the correlationswith unpredictableonsequencesn the
balance properties.

. Vertical autocorrelationmatricesfor each parameterare usually small enoughto be specified
explicitly.
. Horizontal autocorrelationscannot be specified explicitly, but they can be reducedto sparse

matricesby assuminghatthey arehomogeneouandisotropicto someextent. It impliesthatthey
arediagonalin spectralspacél. In grid-pointspacesomelow-passdigital filters canbe appliedto
achieve a similar result.

. Three-dimensionalmultivariate correlation models can be built by carefully combining
sepanbility, homaeneityand independencyypothesedike: zero correlationsin the vertical for
distinct spectralwavenumbershomogeneityof the vertical correlationsin the horizontaland/or
horizontalcorrelationsn the vertical, propertyof the correlationseingproductsof horizontaland
verticalcorrelationsNumericallythey imply thatthe correlationmatrix is sparséecausét is made
of block matrices which are themseévblock-diagonaf

. Balanceconstraintscan be enforcedby transformingthe model variablesinto suitably defined
complementaryspacesof balancedand unbalancedvariables.The latter are supposedo have
smallerbackgrouncerror varianceghanthe former, meaningthat they will contritute lessto the
increment structures.

. The geostrophidalanceconstraintcanbe enforcedusingthe classicalf -planeor (3 -planebalance
equations, or projections onto subspaces spanned by so-called Rossbyw#gch@raal modes.
. More generalkinds of balancepropertiescan be expressedusing linear regressionoperators

calibrated on actual background error fields, if no analytical formulatiomitable.

Two lastrequirementsvhich canbeimportantfor the numericalimplementatiorof theanalysisalgorithmarethe
availability of thesymmetricsquarerootof B (amatrix L suchthatLL" = B) andof its inverse.They cancon-
strain notably the design & .

ref: Courtieret al. 1998

12. OPTIMAL INTERPOLATION (Ol) ANALYSIS

TheOl is analgebraicsimplificationof the computatiorof theweight K in theanalysisequationgA5) and(A6).

Xa = X+ K(y —H[X,]) (A1)

K = BHT(HBHT+R)™ (A2)

The equation(Al) canberegardedasallist of scalaranalysisequationspneper modelvariablein the vector x .

21. This is the Khinchine-Bochner theorem. The spectral coefficients are proportional to the spectral variance of the correlations for each
total wavenumber. This is detailed on the sphere in Co@ti@l. (1996).

22. It corresponds to the mathematical concepetredor poduct
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For eachmodelvariablethe analysisincrements givenby the correspondindine of K timesthe vectorof back-
grounddeparturegy — H[x,]) . Thefundamentahypothesisn Ol is: For eadh modelvariable, only a few obser-
vations ae important in determining the analysis iaorent It is implemented as foles:

1) For eachmodelvariablex(z) , selecta smallnumberp; of obsenationsusingempiricalselection
criteria.

2) Form the correspondingist of p; backgrounddepartureqy — H[xy]),, the p; backgrouncerror
covariancesbetweenthe model variable x(i) and the model state interpolated at the p,
obsenration points (i.e. the relevant p; coeficients of the i -th line of BHT), andthe p; X p;
backgroundandobsenrationerrorcovariancesubmatrice$ormedby therestrictionsof H BH' and
R to the selected obsextions.

3) Invertthe p; x p, positive definitematrix formedby therestrictionof (H BH' + R) totheselected
obsenations (e.g. by ahU or Choleski method),

4) Multiply it by the i -th line of BH' to get the necessary line Kf.

It is possibleto sare somecomputertime on the matrix inversionby solving directly a symmetricpositive linear
systemgsincewe know in advancethevectorof departureso which theinversematrix will beapplied.Also, if the
samesetof obsenationsis usedto analyseseveralmodelvariablesthenthe samematrix inverse(or factorization)
can be reused.

In the Ol algorithmit is necessaryo have the backgrounderror covariancesB asa modelwhich caneasilybe
appliedto pairsof modelandobsenedvariablesandto pairsof obsenedvariables.This canbedifficult to imple-
mentif the obsenationoperatorarecomple. Ontheotherhand,the B matrix needsot be specifiedglobally; it

canbespecifiedn anadhocway for eachmodelvariable,aslong asit remaindocally positive definite. Thespec-
ificationof B usuallyreliesonthedesignof empiricalautocorrelatiorfiunctions(e.g.Gaussiaror Bessefunctions
and their dewiatives), and on assumed amounts of balance constramtydkostatic balance or geostrgph

The selectionof obserationsshouldin principle provide all the obserationswhich would have a significant
weightin theoptimalanalysisj.e. thosewhich have significantbackgrounderror covariancesBH T with thevar-

iable consideredIn practice,backgrounderror covariancesareassumedo be smallfor large separationso that
only theobsenationsin alimited geometricadomainaroundthe modelvariableneedto be selectedFor compu-
tationalreasonst maybedesirableo ensurghatonly alimited numberof obsenationsareselecteceachtime, in

orderto keepthematrixinversionscheap Two commonstratejiesfor obsenationselectiorarepointwiseselection
(Fig. 9) and box selectiorHg. 10)
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Figure 9. One Ol data selection stggtés to assume that each analysis point is only seasitiobserations
locatedin asmallvicinity. Thereforetheobsenrationsusedto performtheanalysisattwo neighbouringpointsx,
or x, maybedifferent,sothattheanalysidield will generallynotbecontinuousn spaceThecostof theanalysis

increases with the size of the selection domains.
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Figure 10. A slightly more sophisticated and mogeemsve Ol data selection is to use, for all the points in an
analysisbox (full rectangle)all obsenationslocatedin abiggerselectiorbox (dashedectangle)sothatmostof
the obserations selected in wvneighbouring analysis beg are identical.

Theadwantageof Ol is its simplicity of implementatiorandits relatively smallcostif theright assumptionsanbe
made on the obseation selection.

A drawbackof Ol is that spuriousnoiseis producedn the analysisfields becausalifferentsetsof obsenations

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 29



(20 Data assimilation concepts and methods

(andpossiblydifferentbackgrounderrormodels)areusedon differentpartsof the modelstate Also, it is impos-
sible to guarantee the coherence between small ayeldaales of the analyslsofenc 1981)

13 THREE-DIMENSION AL VARIATIONAL ANALYSIS (3D-VAR)

Theprincipleof 3D-Varis to avoid the computationA6) of thegain K completelyby looking for theanalysisas
anapproximatesolutionto the equivalentminimizationproblemdefinedby thecostfunctiond in (A9). Thesolu-
tion is sought iterately by performing seeral evaluations of the cost function

J(x) = (x=xp) B7(x=xy) + (y —H[x])'R™(y - H[x])

and of its gradient

OJ(x) = 2B™(x—x,) —2H R (y —H[X])

in orderto approachthe minimumusinga suitabledescentlgorithm.The approximatiories in thefactthatonly
a smallnumberof iterationsare performed.The minimizationcanbe stoppedby limiting artificially the number
of iterations,or by requiringthatthe normof the gradient|CJ (x)| decreaseby a predefinecamountduringthe
minimization, which is anintrinsic measureof how muchthe analysisis closerto the optimumthanthe initial
point of the minimization. The geometry of the minimization is suggesteidiri1.
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J(x)

Figure 11. Schematigepresentationf the variationalcost-functionminimization(herein a two-variablemodel
space): the quadratic cost-function has the shape of a paraboloigl owhtib the minimum at the optimal

analysisx, . Theminimizationworksby performingseveralline-searchet move thecontrolvariablex to areas
where the cost-function is smalleisually by looking at the local slope (the gradient) of the cost-function.

In practice theinitial point of the minimization,or first guessis taken equalto the backgroundx,, . This is not
compulsoryhowever, soit is importantto distinguishclearly betweerthetermsbadground(whichis usedin the
definition of the costfunction) andfirst guesgwhich is usedto initiate the minimizationprocedure)lf the mini-
mizationis satisfctory theanalysiswill notdependsignificantlyonthe choiceof first guesshut it will alwaysbe
sensitve to the background.

A significantdifficulty with 3D-Var is the needto designa modelfor B that properly definesbackgrounderror
covariancedor all pairsof modelvariables.In particular it hasto be symmetricpositive definite,andthe back-
grounderrorvariancesnustbe realisticwhenexpressedn termsof obsenation parameterdyecausehis is what
will determine the weight of the obseations in the analysis.

Thepopularityof 3D-Var stemsfrom its conceptuasimplicity andfrom the easewith which complex obsenration
operatorganbeusedsinceonly theoperatorandtheadjointsof theirtangentinearneedto be prwided23. Weak-
ly non-linearobsenation operatorcanbe used with a smalllossin the optimality of theresult.As longasdJ is
strictly corvex, there is still one and only one analysis.

In mostcaseghe obsenation error covariancematrix R is block-diagonalpr evendiagonal becausehereis no
reasorto assumebsenationerrorcorrelationdetweerindependenbbservingnetworks, observingplatformsor
stations andinstrumentsexceptin somespecialcaseslt is easyto seethata block-diagonalR impliesthat./

23. whereas Ol requires a background errgadance model between each obsenariable and each modednable.
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isasumof N scalarcost-functions/,, ; , eachonedefinedby a submatrixR; andthecorrespondingubsetsH,
andy; of the obseration operators andalues:

<
1

N
) > Jo.i(X)
i=1

Y
1

o1 = (Vi—H[XI)'R, ™ (y; — H,[x])

ThegradientO.JJ , canbesimilarly decomposedlhebreakdaevn of ./, is ausefuldiagnostidool of thebehaiour
of 3D-Varin termsof eachobsenationtype: the magnitudeof eachterm measureshe misfit betweerthe statex
andthe correspondingubsebf obsenations.It canalsosimplify the codingof the computationf o/, andits
gradient”.

Anotheradvantageis the ability to enforceexternalweak(or penalty constraintssuchasbalancepropertiesby
putting additionaltermsinto the costfunction (usuallydenoted-/ . ). However, this canmale the preconditioning
of the minimization problem ditult.

ref: Parrishand Derber 199Zourtieret al. 1998.

14. 1D-VAR AND OTHER VARIATIONAL ANALYSIS SYSTEMS

The essencef the 3D-Var algorithmis to rewrite aleast-squaregroblemasthe minimizationof a cost-function.
The methodwasintroducedin orderto remove thelocal dataselectionin the Ol algorithm,therebyperforminga
globalanalysisof the3-D meteorologicafields,henceghename Of coursethetechniquenasheenappliedequally
well to otherproblemsin whichthecontrolvariableis muchsmaller A very successfuéxampleis thesatellitedata
retrieval problem,in which the 1D-Var algorithmperformsalocal analysisof oneatmosphericolumn(themodel
state)atthelocationof eachsatellitesoundingsuchasTOVS radiance®r microvave measurement&imilar var-

iationaltechniquedave beenappliedto theretrieval of surfacewind fieldsfrom a collectionof scatterometeam-
biguouswind measurementsr to the analysisof land surfacepropertiesn anumericalweathempredictionmodel
(in this casethe control variableis moreor lessa columnof the 3-D model,but the time dimensionis takeninto

account as in 4D-&f). Except 1D-¥r, these methods ta no established name yet.

ref: Eyre 1987.

15. FOUR-DIMENSION AL VARIATIONAL ASSIMILA TION (4D-VAR)

4D-Var is a simple generalizatiorof 3D-Var for obsenationsthat aredistributedin time. The equationsarethe
same providedtheobsenationoperatoraregeneralizedo includea forecastmodelthatwill allow acomparison
between the model state and the olm@ns at the appropriate time.

Over a giventime interval, the analysisbeingat the initial time, andthe obsenationsbeingdistributedamongn
timesin theinterval, we denoteby the subscripti the quantitiesat ary givenobserationtime i . Hence,y;, X;

andx;; aretheobsenrations,themodelandthetruestatesattime i, andR; is theerrorcovariancematrix for the
obsenrationerrorsy; — H,(x;) . TheobserationoperatorH; attime: islinearizedasH; . Thebackgrounderror

24. Actually the wholeJ ; can be decomposed into as mafementary cost functions as there are oleseparameters, by redefining the
obsenation space to be the eigectors ofR .
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covariance matrixXB is only defined at initial time, the time of the backgrougadand of the analysix, .

15.1 The four-dimensional analysis problem

In its general form, it is defined as the minimization of the Walg cost function:

J(X) = (x=x) B (x=xp) + T (v; = H,D1) R (y; — Hix;])
i=0

which can be proven, like in the three-dimensionatasedetailed previously, to be equivalent to finding the
maximum likelihood estimate of the analysis subject to Yygothesis of Gaussian errors.

The 4D-Var analysis or four-dimensional variational assimilation problem, is by corventiondefinedasthe
abore minimizationproblemsubjecto thestrongconstrainthatthesequencef modelstatesx; mustbeasolution
of the model equations:

0, x; =M, _;(x)

where M, ; is a predefinedmodel forecastoperatorfrom the initial time to ;. 4D-Var is thus a nonlinear
constrainedptimizationproblemwhich is very difficult to solve in the generakase Fortunatelyit canbegreatly
simplified with two hypotheses:

Causality. Theforecasimodelcanbe expresseastheproductof intermediatdorecasistepswhich
reflectsthe causalityof nature.Usuallyit is theintegrationof a numericalpredictionmodelstarting
with x astheinitial condition.If thetimesi aresorted,with X, = x sothat M is theidentity,
then by denoting; the forecast step from—1 to: we hae x; = M;x;_,; and by recurrence

X; = M;M,_,...M;x

Tangent linear hypothesis The costfunction canbe madequadraticby assumingpn top of the
linearization ofH, , that theM operator can be linearized, i.e.

yi—H; M, _ (X)=y,—H,M, , (x,) —H;Mq _;(X=Xp)

where M is the tangent linear (TL) mode] i.e. the differential of M . For a discussionof this
hypothesisreferto the sectionon the tangentinear hypothesisjn which the remarksmadeon H
apply similarly to M . It explainsthat the realismof the TL hypothesisdependsot only on the
model, but also on the generalcharacteristicof the assimilationsystem,including notably the
length of the 4D-¥r time interal.

Thetwo hypothesesbove simplify the generaiminimizationproblemto anunconstraineduadraticonewhichis
numericallymucheasierto solve. Thefirst term J/,, of the costfunctionis no morecomplicatecthanin 3D-Var
andit will beleft outof thisdiscussionTheevaluationof theseconderm./, wouldseentorequiren integrations
of theforecasimodelfrom theanalysigime to eachof theobsenationtimesi , andevenmorefor thecomputation
of thegradient/ , . We aregoingto shav thatthe computationsanin factbearrangedn amuchmoreefficient
way.
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15.2 Theorem: minimization of the 4D-Var cost function

Theevaluationof the4D-Var obsenrationcostfunctionandits gradient,JJ ,(x) and OJ ,(x) , re-
quiresonedirectmodelintegrationfrom times0 to n andonesuitablymodifiedadjointintegra-
tion made of transposes of the tangent linear model time-stepping opésiators

Proof:

1
2)
3)
4)

5)
6)

7)

The first stage is the direct igration of the model fronX to X,, , computing succesaily at each obseation timet :
the forecast statd; = M;M; _;...M X,

the “normalized departures!; = Ri_l(yi —H,[x;]) which are stored,

the contrilutions to the cost functiod ;(X) = (y — H;[X;] )Tdi

And finally o o(x) = Zf: oJoi(¥).
To computeDJO it is necessary to perform a slightly comgpltactorization:

1 n
0o ==Y Oy
i=0

n
Y Mi..M;Hd,
i1=0

Hod, + M [H d; +M[Hid,+ ... +MIH d ]...]

and the lastx@ression is easilyvaluated from right to left using the folling algorithm:
initialize the so-calle@djoint variableX to zero at final timeX = 0

for eachtime stepi — 1 thevariable)?i_l is obtainedby addingthe adjoint forcing Hz-di to ;(L- andby performingthe
adjoint integration by multiplying the resultbyM ; ,i.e.X;_; = M, (X; +H; d;)

at the end of the recurrence, tizue of the adjointariableX, = —(1/2)eJ ,(X) gives the required result.

Theterminologyemployedin the algorithmreflectsthe factthatthe computationsdook lik e theintegrationof an
adjointmodelbackwardin time with atime-steppinglefinedby thetransposeaime—steppingaperatorsl\/liT andan
externalforcing HL-Tdi , which depend®n the distancebetweerthe modeltrajectoryandthe obsenations.In this
discrete presentation it is just a genient vay of evaluating an algebraiO(pressioﬁs.

25. In a continuous (in time) presentation, the concept of adjoint model could be carried much further into the feremtididijuations.
However, thisis notrelevantto realmodelswherethe adjointof the discretizednodelmustbe used insteadof the discretizatiorof a continu-
ous adjoint model. The only retent case is if some continuous operatoketesimple adjoint: then, with a careful discretization that pre-
senes this propertythe implementation of the discrete transpose operators can be simplified.
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15.3 Properties of 4D-Var

iD-Var

| ,..--."‘"_
tg t; | e
‘-""f H“"H_
"1-...‘_ . N . . -
assimilation window

Figure 12. Example of 4D& intermittent assimilation in a numerical forecasting systerryEv hours a 4D-
Var is performed to assimilate the most recent olsens, using a ggnent of the pndous forecast as

background. This updates the initial model trajectory for the subsequent forecast.

Whencomparedo a 3-D analysisalgorithmin asequentiahssimilatiorsystem4D-Var hasthefollowing charac-

teristics:

it works only underthe assumptiorthat the modelis perfect.Problemscanbe expectedif model
error are lage.

it requiresheimplementatiorof theratherspec:iaIMiT operatorsthe so-calledadjointmodel.This

can be a lot of ark if the forecast model is comple

in areal-timesystemit requiresthe assimilationto wait for the obsenationsover thewhole 4D-Var

time intenal to be available beforethe analysisprocedurecanbegin, whereassequentiabystems
can process obsextions shortly after thyeare @ailable. This can del§§ the aailability of x, .

X, is usedasthe initial statefor a forecast,thenby constructionof 4D-Var oneis surethat the

forecast will be completely consistentwith the model equationsand the four-dimensional
distribution of obserationsuntil the end of the 4D-Var time interval n (the cutof time). This

malkes intermittent 4D-& a \ery suitable system for numerical forecastifg(12).

4D-Varis anoptimalassimilationalgorithmover its time periodthanksto thefollowing theoremIt

meanghatit usesthe obsenationsaswell aspossibleevenif B is not perfect,to provide x, in a
much lessexpensve way than the equivalent Kalman Filter. For instance the coupling between
adwection and obseed information in illustrated ifig. 13.

26. Some special implementations of 4Bx\¢an partly sok this problem.
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Figure 13. Example of propation of the information by 4D-&f (or equialently, a Kalman filter) in a 1-D
model with adection (i.e. transport) of a scalar quantAyl features obserd at ag point within the 4D-¥r
timewindow (¢4, t,) will berelatedto thecorrectupstreanpointof thecontrolvariableby thetangentinearand
adjoint model, along the characteristic lines of the fldashed).

15.4 Equivalence between 4D-Var and the Kalman Filter

Over a giventime interval, underthe assumptiorthatthe modelis perfect,with the sameinput data(initial back-
groundandits covariancesB , distribution of obserationsandtheir covariancesR; ), the 4D-Var analysisat the
end of the time interl is equal to the Kalman filter analysis at the same time.

Thistheoremis discussedn moredetailsin the sectionaboutthe Kalmanfilter algorithm,with a discussiorof the
pros and cons of using 40aV

A specialpropertyof the 4D-Var analysisin the middle of thetime interval is thatit usesall the obsenationssi-
multaneouslynot just the ones before the analysis time. It is said thata¢|35\asmoothingalgorithni’-7.

Ref: TalagrandandCourtier1987, Thépautand Courtier1991,RabierandCourtier1992,L acarraand Talagrand
1988, Erricoet al. 1993.

16. ESTIMATING THE QUALITY OF THE ANALYSIS

It is usuallyanimportantpropertyof ananalysisalgorithmthatit shouldbeableto provide anestimateof thequal-
ity of its output.If thereis no obsenationthe quality is obviously thatof the backgroundin a sequentialnalysis
systentheknowledgeof theanalysisquality is usefulbecausét helpsin the specificatiorof the backgrounderror
covariancedor the next analysis,a problemcalledcycling the analysis.If the backgrounds a forecastthenits

27. Equvalent to thekalman smoothealgorithm which is a generalization of the Kalman fjltert at a much smaller cost.
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errorsarea combinationof analysisandmodelerrors,evolvedin time accordingto the modeldynamics.Thisis
explicitly represented in the Kalman filter algorithm.

If theanalysisgain K hasbeencalculatedge.g.in anOl analysisthenthe analysiserrorcovariancematrix is pro-
vided byEg. (A7)

A = (I-KH)B(I —=KH)" +KRK" (A3)

which reduces té&\ = (I —KH)B (A8) in the unlilely case wher& has been computedatly.

In avariationalanalysisprocedurethe errorcovariancef the analysiscanbeinferredfrom the matrix of second
derivatives, orHessianof the cost function thanks to the follimg result:

16.1 Theorem: use of Hessian information

The Hessianof the costfunction of the variationalanalysisis equalto twice the inverseof the
analysis error ogariance matrix:

_ .ot
A = EQJD

Proof:

The Hessian is obtained by féifentiatinge/ twice with respect to the controhriable X :

J(x) = (x=xp) B (x=xp) + (y—H[x]) R (y —H[x])
0J = 2B (x—x,)—2H R (y - H[X]) (A5)
J" = 00J = 2(B™ +H'R'H)

Now we epress thedct thatl]J(Xa) = 0 and we insert the true model statg into the equation:
_ p-1 Tp-1
0=8B (Xa_xb)_H R (y_H[Xa])

= B (Xa— X, + X —Xp)—H Ry = H[x] + H[x,—x.])
= B (Xa—X)—H R ™H (x,—x,)-B (%, —x)-H R (y = H[x])

Hence
(B +H'R™MH)(xa—x) = B™(xp—x) +H'R™(y —H[x])

Whenit is multiplied ontheright by its transposeandthe expectatiorof theresultis taken, theright-handsidethencontains
two terms that multiply

(Xo=X)(y —H[x])"

which is zero becausewe assumebackgroundand obsenration errors are uncorrelated.The remaining terms lead to,
successiely:
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B'BB ' +H R'RR™H
B'+H'RH
A=B+HRIH)

B +H' RH)AB ™ +H'R™H)

which proves the result.

16.2 Remarks

A
J(x)
large I°7 small I
. X . >
! precise + unreliable X
A + estimate i aesrmare
p(x) ; !
-

X

Figure 14. lllustration in a one-dimensional problem of the relationship between the Hessian and the quality of
the analysis. In one dimension, the Hessian is the seconrdtierior comexity, of the cost-function of the
variational analysis: tawexamples of cost-functions are depicted in the upper panel, one with a streagjtyon
(ontheleft), theotherwith awealer one(ontheright). If the cost-functionis consistentvith the pdfsinvolvedin
the analysis problem, the Hessian is a measure of the sharpness of the pdf of the analysis (depictedrin the lo
panel). A sharper pdf (on the left) means that the analysis is more reliable, and that the probability of the
estimated state to be the true one is higher

A simple,geometricalllustrationof therelationshipbetweertheHessiarandthequality of theanalysids provided
in Fig. 14 . In amultidimensionabroblem,the sameinterpretations valid alongcross-sectionsf the cost-func-
tion.

If thelinearizationof theobsenrationoperatorH canbeperformedexactly, thecostfunction/ is exactlyquadratic
andJ" doesnotdependonthevalueof theanalysis:A canbedeterminedassoonas< is defined,evenbefore
theanalysidgs actuallycarriedout28. If thelinearizationis notexact,JJ"(x) is notconstantlt maydependalot on
x, evenif J itself doesnotlook very differentfrom a quadraticfunction. For instancejf J is continuouslydif-
ferentiablébut notstrictly convex, therearepointsatwhichJ" = 0.If OJ is notcontinuousthentherearepoints
atwhich J" is notdefinedatall. It meanghat H mustbeexactly linearin orderto beableto calculateA using

28. Actually neitherA nor K depend on thealues of the background or of the obsgians.
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the Hessianln practicedJ mustbe modifiedto usethe tangentlinear of H , which canbe acceptablén a close
vicinity of x,.

Theidentity AT = B +H'R™MH shaws clearlyhow the obsereddataincreasesheinverseerrorcovariances,
also callednformation matrices

Ref: Rabierand Courtier 1992.

17. IMPLEMENT ATION TECHNIQ UES

In mostpracticalapplicationsnumericalcostis animportantissue As shavn above, thereis a variety of analysis
methodsavailable.It doesnotimply thatary of theseis the best;they shouldbe regardedasa choiceof several
compromisedetweemumericalcost, statisticaloptimality and physical realismof the assimilationsystem.The
sectiondelon describentherfeatureof theanalysisalgorithmswhich canbeusedto furthercutdown onthenu-
mericalcost,without sacrificingtoo muchon the sophisticatiorof the analysismethoditself. They arediscussed
herein theframework of 3D-Var?®, but they canbe appliedequallywell (with afew adaptationsjo all relatedal-
gorithms: 1D-\ar, 4D-Var, PSAS or the Kalman filter

17.1 Minimization algorithms and preconditioning

In avariationalanalysissystema costfunction hasto be minimized,usuallyusinganiterative descentlgorithm.
The costof theanalysisis proportionalto the numberof evaluationsof the costfunctionandits gradient?, called
thenumberof simulations Whenthestateitself x is updatedaniterationis performedEachiterationmayrequire
oneor moresimulations dependingon the minimizing algorithmused.Hencethe technicalimplementatiorof a
variational analysis can be summarized asrailatoroperator:

x O J(x), OJ(x)

How to usethe simulatorto minimizethe costfunctionis a well-developedareaof mathematic¢calledoptimiza-
tion, a partof numericalanalysid. With the analysismethodsdescribedabore, the costfunctionwill bea scalar
functionof arealvectorin aEuclidearspacejn mostapplicationst will bequadraticandx will beunconstrained.
Thereare several ready-to-usalgorithmsthat do the minimization, called minimizes. An obvious method,the
steepestlescenmethod,is to updatex by addingacorrectionthatis proportionalto —[J(x) . Thisis usuallynot
very efficient,andmore popularalgorithmsarethe conjugategradientandquasi-Nevton methods They arestill
beingimproved. Therearemorespecializedalgorithmsfor situationswhere</ is not quadraticor x is bounded,
e.g.simulatedannealingor the simple, althoughsuchmethodscanbe very expensve. The incrementaimethod
describedelon canalsoberegardedasa particularminimizer A detaileddescriptionof the mainminimizing al-
gorithmscanbefoundin dedicatednathematicabooks. Amongtheimportanttheoreticatesultsaretheoptimality
propertiesof the conjugategradientmethodin the caseof an exactly quadraticcostfunction, andits equivalence
with a Lanczosmethodfor determiningeigervectorsof the Hessianmatrix. Also, the quasi-Nevton methodscan
beregardedasa preconditioningpf the costfunctionusingaccumulatednformationaboutthe secondierivatives.

Themainaspecbf J thataffectstheperformancef cornventionalminimizers(assuming/ is quadraticor almost)

29. Thisreflectshistory Themainstepin meteorologicatiataassimilatiormethodsvasthemove from Ol to 3D-Var. It wasamajortechnical
challengean termsof codingandnumericalcostat thetime, which requiredsomemajordevelopmentsn thefieldsof adjointcoding,formula-
tion of the incremental technique and design of the preconditioner

30. Someminimizationalgorithmsalsouseinformationaboutthe secondlerivative of the costfunction,which requireshe codingof the sec-
ond-oder adjointof its components.
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is its conditionnumber This quantitymeasuregheellipticity of theiso-surficesof J, andit describeshedifficulty
of minimizationproblem(or ill-conditioning) dueto thegradient[lJ notpointingaccuratelyfowardtheminimum
(Fig. 15). In this case minimizers @ trouble coverging, a phenomenon called tharrow valley effect.

—————___iso-J] curves

— \
\

Figure 15. lllustration of the so-called nawrgalley effect: in a plane of the controaxiable space where the
convexity of the cost-function depends a lot on direction, the isolines areanalipses, and in most places the
gradient of the cost function is nearly orthogonal to the direction of the minixgymwhich means that
minimization algorithms will tend to aste man iterations zigzagging shdy towards the optimum.

Condition number. The conditionnumberof ¢/ is definedto betheratio betweerthelargestandthe smallestei-
gervalue ofJ" . The lager the numbethe more ill-conditioned the problem is.

If the conditionnumberis equalto one,i.e. J" is proportionalto | , the costfunctionis saidto be sphericaland
the minimum can be found in one iteration becatisd (x,,) points directly tavard the minimum.

In thegenerakase.J is elliptic, butit is possibleto definea changeof minimizationspacecalledpreconditioning
thatdecreasethe conditionnumber Theideais to presenthe minimizerwith a problemthatis notthe minimiza-
tion of J(x) , but anothereasieproblemfrom which x, canbeobtainedeasily The mappingbetweerbothprob-
lems is defined as folles using greconditioneroperatorL :
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17.2 Theorem: preconditioning of a variational analysis

If L is an ivertible operatgran equialent revriting of the minimization problem:

X, = Argmind
Jx O J(Xx),0J(x)

with the initial pointx;, = X,
is thepreconditionedoroblem:
Xa = Arg mine/

Jix O Jx) =J(L,), I (x) = L'OJ(L,)
with the initial pointy,;, = L™'x, .

The solution is gien byx, = Lx

a-

Theproofis left asanexercise In 3D-Var, asimpleandefficient preconditioners the symmetricleft-handsquare
root of B, i.e. a matrif* L such thaB = LL . In this case one can shthat

J(X) = XX +JH(LX)

i.e.the |, termis now the canonicalinnerproduct.An ideal preconditionemould of coursebe provided by the
symmetricsquareroot of the Hessianmatrix. Somesophisticatedninimizer packagesllow the userto provide
his owvn preconditioner to the code, which canetélfie form of a cleer specification of the inner product.

Ref: Gilbertand Lemaréchal 1989.

17.3 The incremental method

Theincrementamethodis arelatively empiricaltechniquedesignedo reducethe costof solvingapredefinedrar-
iational problem, e.g. by reducing the resolution of the increments.

In theintroductionit wasexplainedhow thecontrolvariablecouldbe madesmallerthanthe modelstateby requir-
ing thattheincrementganonly benon-zeran a subspacef themodel.In this casethereis no guarante¢hatthe
analysisverifiesary optimality conditionin the full modelspace For instance Ol solvesthe problemseparately
in asetof subspace@efinedby theobsenationselection) put theresultis notasoptimalasagloballeast-squares
analysisWith 3D- or 4D-Var s it usuallynot affordableto solve thevariationalproblemat the full modelresolu-
tion. However, it is expectedthat mostof the complity of the analysisis in the synopticscalespecausghis is
wheremostbackgrounderrorsareexpectedto be. If theincrementsareright atthe synopticscalesthenonecan
expectthesmallerscalego bemoreor lessforcedto berealisticfeaturesy themodeldynamicslt is undesirable,
though to completelyngglectthesmallscalesn theanalysigprocedurdoecausehey areimportantin the compar-
isonof the obsenationswith the backgroundstate.In otherwords,oneis looking for a low-resolutioncorrection

31. The symmetric square root is not unigue, it is defined modulo an orthogonal matrix.
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to a high-resolutionbackgroundThe incrementaimethoddescribedelov hasbeendesignedor this particular
problem.Mathematicallyit canbe thoughtthe approximatiorof a large problemby a sequencef smallerprob-
lems. Havever, there is no proof of the ceargence of the general proceo%?re

In the incrementaimethodsomehigh-resolutionversionsof the costfunction, the obseration operatorandthe
modelstateareconsidereddenotedespectiely (J,, H,, X;,) . We aretrying to minimize J,,(x,,) . Oneor several
successie approximationgo this problemaresolved successfullyEachoneis aninner loop thattriesto updatea
high-resolutiorstatex,, ; into anotheronex, ;, ; thatis moreoptimal(in thefirst update x;, ; = x,). Theinput
information to the inner loop is\g@n by the high-resolution departures:

dpi =Y —Hy(Xp;)
and by a la-resolution ersionx; of x,, ; defined by a corersion operatos,, _ ;:
X; = Sh_ (%)

It is naturalto linearizethelow-resolutionobserationoperatorH in thevicinity of x; whichis thebestcurrently
availableestimateof the analysi§3, whichyieldsalinearizedobserationoperatorH; thatdependsntheupdate
index ¢, and defined as the flifential of H in the vicinity ofx; :

H(x)=H;(x=x;) + H(x;)

However, for consisteng with the high-resolutiorproblem,onealsorequiresthatthe low-resolutionis keptcon-
sistentwith thehigh-resolutioronefor x = x;, sothatthelinearizeddeparturesisedatlow resolutionwill becal-
culated as

y—H(X)=y—[H;(x=x;) + Hy(xp, ;)] = dp ; —H;(x=X;)

so that the lv-resolution cost-function to minimize in the inner loop is

Ji(x) = (X=xp) B (x=xp) + [dy, ; —H;(x=x)]'R™d}, ; —H;(x = ;)]

which is exactly quadratic.lts minimumis x; ,; which canin turn be usedto updatethe high-resolutionstate
using a (possibly nonlinear) ad hoc eersion operatofS; _ ,,:

Xpi+1 = Xni ¥S1 2 n(Xie1) =S - n(X;)

which ensureghat the high-resolutionstateis not modifiedif the innerloop minimizationdoesnot changethe
state.From x, ; , ; thenew high-resolutiondeparturesl,, ; ,, canbe calculatedandusedto definethe next low-
resolutionproblem.If d, ;,, = d,, ; thenthe high- andlow-resolutionproblemsarefully consistenwith each
otherandthewholealgorithmhascorverged.However, it notguaranteethatthereis acorvergenceatall. Thisis
why one mustbe careful aboutthe physical implicationsof changingthe resolution.The intuitively important
assumption for carergence (this can be pren in simplified systems) is that

32. ltis possible to guarantee gemyence for some special forms of the incremental algorithm.

33. One wuld rather lile to use a la-resolution ersion of the linearized high-resolutid#;, in the vicinity ofx,, , but it would be more
expensve than the technique described here.
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HpoSp n(Xi 1) —Hpe Sp n(X) =H (X 41— X;)

i.e. thechangesn the modelequivalentsof the obserationsshouldbe similar at high andlow resolutionslf for
instancethey are of oppositesigns, one can expect the model stateat high resolutionto go away from the
obsenationsduring the procedureuntil it is stoppedby the J,, term—anot very desirablebehaiour. Whether
this is a genuineproblemis still an areaof researchHistory has shavn so far that 3D-Var with a simple
incrementaformulationanda ratherlow resolutionof theinnerloopscanbe muchbetterthanan Ol algorithmat
full resolution, for a similar numerical cost.

Ref: Courtier et al1994.

17.4 The adjoint technique

As shawn in the explanationof the 4D-Var method,somecomputationakazings canbe achiezed by a suitableor-
deringof the algebraicoperationsijn orderto reducethe sizeandnumberof the matrix multiplicationsinvolved.
For minimization problemsin particular whenthe derivative of a scalarfunctionwith respecto a large vector
needdso beevaluated(e.g.Jo), it is advantageouso usethe chainrule badkwards i.e. from the scalarfunctionto
theinputvector Algebraicallythismeangeplacingasetof matriceshy theirtransposediencethenameof adjoint
technique. The definition of the adjoint depends on the scalar préftiusesi:

Adjoint operator. By definition,givenalinearoperatorA goingfrom aspaceE to aspaceF,
andscalarproducts< ., . >;, and< ., . > in theserespectie spacesthe adjointof A is the
linear operatorA  such that for anvectors(x, y) in the suitable spaces,

<Ax,y>F: <x,A*y>E

Important remarks on the adjoints

. Riesztheorem: The adjointalwaysexists andit is unique,assumingspacef finite dimensiori°.
Hence,codingthe adjointdoesnot raisequestionsaboutits existence,only questionsof technical
implementation.

. In the meteorologicaliterature,the term adjoint is oftenimproperlyusedto denotethe adjoint of
thetangentinearof a non-linearoperatorOnemustbe awarethatdiscussiongboutthe “existence
of the adjoint” usuallyaddresghe existenceof the tangentlinear operator(or the acceptabilityof
usingthe adjoint of animpropertangent-lineain orderto minimize a 4D-Var cost-function).As
explained abwe, the adjoint itself alays eist.

. In generalthe adjoint dependson the definition of spacesE and F'. For instance,a canonical
injection(i.e. Ax = x with E beinga subspacef F') is not necessarilyself-adjointalthoughA
does not imolve ary arithmetic operation.

. In generalthe adjoint dependon the choiceof scalarproducts,evenif E = F. For instancea
symmetricmatrix may not be self-adjointif the scalarproductis not the canonicalproduct(see
below).

34. orinner poducts
35. Itis actually true for all continuous operators in Hilbert spacgshis is outside the scope of this paper

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 43



Data assimilation concepts and methods

3

Theorem: adjoint and scalar product change TheoperatorA: E - F beingidentifiedwith
its matrix, andthe scalarproducts< . , . >; and< ., . > beingidentifiedwith their symmetric
positive definitematricest andF' suchthate.g.< x,x > = x'Ex , thematrix of the adjoint
of A is

A" =E'A'F

The proof is olious from the definition ofA”:
_ T ,T _ * _ Tmpt*
<Ax,y>p =x A Fy =<x,Ay>;=x EAy

andnotingthatE is invertible.In mostpracticalcasegsuchasin therestof this paper)theimplicit scalarmproduct
usedis the canonicalinner produc®, so thatthe transposés the adjoint: AT = 4", However, one musttake
carewheneer anotherscalarproductis used,becauset hasimplicationson the codingof the adjoint: the scalar
product codicients or their imerses must be used according to thevalemuation.

Adjoint of a sequenceof operators. Likethetransposetheadjointof a productof operatorss the productof the
adjointsin thereverseorder The scalarproductmatricescancelout eachother sothatif A = A;A,...A, isa
sequence of operators, its adjoint is

(A,4,..A,) = E'A]...AJAIF

which shows that, evenif the scalarproductsarenot the canonicalinner product,in mostof the adjointcodingit
canbeconsideredhatthe adjoint is the transpose.The guidelinesfor practicaladjointcodingaredetailedin an
appendix.

Ref: Errico and Wkicevic 1992.

18. DUAL FORMULATION OF 3D/4D-VAR (PSAS)

The 3D-Var formulation (A5) canbe rewritten into a form called PSAS(Physical SpaceAssimilation Systent’)
which is equialent in the linear case onljhe idea is to notice that thepeession

X,—%, = BHT(HBHT +R) (y —Hxp)

can be split as the follding two equalities

36. or:inner dot poduct or: Euclidean poduct

37. The misleading name PSA&wintroduced for historical reasons and is widely used, probably because it sauttis UIS slang ord
pizzazz
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w, = (HBH +R) (y—Hx,)
Xa—Xp = BH TWa
wherew, hasthe samedimensionasy andcanbe regardedasa kind of “increment”in obseration spacés,

whereasBH ' is asmoothingtermthatmapstheincrementrom obsenationto modelspace Theaimis to solve
the analysis problem in terms wf rather than in model space. Onawis to sole for w the linear system

T
(HBH +R)w = y—Hx,

which canberegardedasthe dual of the Ol algorithm.Anotherway is to find a costfunctionthat w, minimizes,
for instance

F(w) = WT(H BH' + R)W—ZWT(y—be)

which is a quadratic cost function. The practical PSAS analysis algorithm is assfollo
1) Calculate the background departuyesHx,,

2) Minimize F(w) . Somepossiblepreconditioningsaregiven by the symmetricsquareroot of R or
HBH'.

3) Multiply the minimumw, by BH' to obtain analysis increments.
4) Add the increments to the backgrouxgl

A 4-D generalizationof PSAS s obtainedby a suitableredefinition of the spacew to be a concatenation
(Wy..., ...,w;, ...) of all thevaluesw; atall obserationtime stepsi . ThenH mustbereplacedoy anoperator
thatusesthetangentinearmodelM; to maptheinitial modelstateto the obseration spaceat eachtime stepi ,
ie. (H,My, ...,H;M,, ...). Thefactorizationof the costfunction evaluationusingthe adjointmethodis applied
to thecomputatiorof theterm H BH'w, sothattheevaluationof the4D-PSAScostfunction F(w) isasfollows:

1) Calculate the departurgs—H;M;(x,,) for each time step, (this needs only be done once)

2) Integratethe adjoint modelfrom final to initial time, startingwith a null model state,addingthe
forcing HlTWi at each obseation timestep,

3) Multiply the resulting adjointariable at initial time byB , which yieldsBHw ,

4) Integratethe tangent-lineamodel,startingwith BHw asmodelstate storingthe statetimesH; at
each obsemtion time step. The collection of the storedues isH BH'w.

5) Add w'Rw and WT(y —HXx,) (bothobtainedby sumsof alreadycomputedquantities)to obtain
F(w).

More commentonthe4D-PSASalgorithmareprovidedin Courtier(1997). The PSASalgorithmis equivalentto
therepresentemmethod Bennettand Thornkrn 1992).

As of todayit is still unclearwhetherPSASis superioror notto the corventionalvariationalformulations 3D and

38. Note,though thatit doesnot have theright physicaldimensionsTheactualincremenin obsenationspacds HBHTWa ,andaprecise
physical interpretation ofv,, is difficult.
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4D-Var. Here are some pros and cons:

. PSASis only equivalentto 3D/4D-Var if H is linear, which meansthatit cannotbe extendedto
weakly non-linear obseation operators.
. However, mostimplementation®f 3D/4D-Var areincrementalwhich meanghatthey dorely ona

linearizationof H aryway: they include non-linearitythroughincrementalupdateswhich canbe
used identically in an incrementadrgion of PSAS.

. It is avkward to include &/ term in PSAS for constraintg@ressed in model space.

. Backgrounderror modelscanbe implementeddirectly in PSASasthe B operator In 3D/4D-Var
they need to be werted (unless thyeare fictorized and used as preconditioner).

. The sizeof the PSAScostfunctionis determinedby the numberof obserationsp insteadof the

dimensionof themodelspacen . If p «n thenthe PSASminimizationis donein a smallerspace
than 3D/4D-Var. In a 4D-Var contet, p increaseswith the length of the minimization period
whereas: is fixed, so that this apparent atNvage of PSAS may disappear

. The conditioningof a PSAScostfunction preconditionedy the squareroot of R is identicalto
thatof 3D/4D-Var preconditionedy thesquareroot of B . Howeverthe comparisormaybealtered
if more sophisticatedoreconditioningsare used,or if one squareroot or the other is easierto
specify

. Both 3D/4D-Var and PSAScanbe generalizedo includemodelerrors.In 3D/4D-Var this means
increasinghe sizeof the controlvariable,whichis notthe casein PSAS,althoughthe final costof
both algorithms looks the same.

Ref: Bennettand Thornbrn 1992 Courtier1997.

19. THE EXTENDED KALMAN FILTER (EKF)

The KalmanFilter andits extendedversion(EKF) are developmentsof the least-squareanalysismethodin the

framework of a sequentiabataassimilation,n which eachbackgrounds provided by a forecastthat startsfrom

thepreviousanalysislt is adaptedo the real-timeassimilatiort® of obsenationsdistributedin timeinto aforecast
model M .

Theanalysisequation®of thelinearKalmanFilter areexactly theonesalreadydescribedn theleast-squareanal-
ysistheoremThenotationis thesame gxceptthatthebackgroundi.e. forecastiandanalysiserrorcovariancema-
trices are nw respectiely denotedP; andP,. The background statg, is a forecast denoted .

19.1 Notation and hypotheses

They are the same as in the least-squares analysis theow=pt that:

. the backgroundandanalysiserror covariancematricesB and A arerespecirely replacedby P;
and P, to denote thedict that the background iswa forecast.
. Thetime index i of eachquantityis denotedby the sufiix i . The modelforecastoperatorfrom

datesi to i +1 is denoted byM; ;.

39. The wrdfilter characterizes an assimilation techniques that uses only atiserfrom the past to perform each analysis. An algorithm
that uses obseations from both past and future is callesh#zoother4D-Var can be garded as a smooth&@bseration smoothing can be
usefulfor non-realttime dataassimilationg.g.reanalysisalthoughtheideahasnot beenusedmuchyet. The Kalmanfilter hasa smoothewer-
sion calledkalman smoother
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forecast errors: the deviation of the forecast prediction from the true evolution,
M; ;. ,[x(i)] -x( + 1), is calledthe modelerror*® andwe assumehatit is not biased** and
that themodel error covariance matrix Q(z) is known.

uncorrelatedanalysisand model errors: theanalysiserrorsx,(i) —x,(i) andmodelerrorsof the
subsequent forecadd; ;. [x.(i) —x,(i + 1)] are assumed to be mutually uncorrelated.
linearized forecastoperator: the variationsof the modelpredictionin the vicinity of theforecast
stateare assumedo be a linear function of theinitial state:for ary x(i) closeenoughto x,(i),
M, ;. 4[x@)]-M,; ;. 1[x(2)] = M; _;:4[X(E) —x,(i +1)] .whereM is a linear operator

19.2 Theorem: the KF algorithm

Proof:

Underthe specifiechypothesesheoptimalway (in theleastsquaresensejo assimilatesequen-
tially the obsenrationsis givenby the Kalmanfilter algorithmdefinedbelov by recurrenceover
the obseration timesi :

State forecast X;(i +1) = M; _ ;. 1X4(Z) (KF1)

Error covariance forecast P;(i +1) = Miﬂi+1PaM-£_.i+1 +Q(2) (KF2)
Kalman @in computation K (i) = Pf(i)HT(i)[H(i)Pf(i)HT(i)+R(i)]_l (KF3)
State analysis x,(i) = x:(¢) + K(@)[y(Z) —H @)X (7)] (KF4)

Error corariance of analysis P,(i) = [I —K(@)H(@)]1P() (KF5)

and the analyses are the sequenceg(@) .

The forecastequation(KF1) just translateghe fact that we usethe model M to evolve the modelstate, startingfrom the
pra/iousoptimalanalysisxa(i) . Theequation(KF2) is obtainedby first subtracting Xt(i +1) from (KF1)andusingthe
linearity of the forecast operator:

X((i+ 1) =x(i+1) = M; o q[Xa(@0) =x (D] +[M; _ o () =%, (2 + 1)]

Multiplying it on theright by its transposeaindtaking the expectationof the resultyields, by definition, Pf(i +1) onthe
left-handside, and on the right-handside four terms. Two of theseare M i+ P (l)M i - i+1 andQ(i) by
definition. The remainingtwo termsare cross-correlationbetweerthe anaIyS|serror Xa(z) Xt(l) andthe modelerror
for Wl Li+T which areassumedo be zero. This meansthat Pf (2 +1) provided by (KF2) is the backgrounderror

+
covariance matrix for the analysis at time- 1.

The equationgKF3), (KF4) and (KF5) are simply the least-squaranalysisequationgA6), (A5) and (A8) that

40. Ormodelling eror.

41. This is equialent to assuming that the background errors are unbiased, so it is not realljypothesis.
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were proven abee, usingP; (i) as background errors, and assuming khas computed optimally

5.3 Theorem: KF/4D-Var equivalence

Over the sametime interval [0, N] assuminghat Q = 0 (i.e. the modelis perfect),andthat
bothalgorithmsusethe samedata(notably P;(0) is theinitial backgrounderrorcovariancema-
trix), then there is equality between

1) the final analysix,(N) produced by the alve Kalman filter algorithm, and
2) the final \alue of the optimal trajectory estimated by 4BxV.e. M, | aX4(0).

Thistheoremmeanghatthe KF verifiesthefour-dimensionaleast-squaregptimality theoryex-
pressedby the4D-Varcostfunction,althoughit is definedby asequencef 3-D analyseswhereas
4D-Var solhes the 4-D problem globally

5.4 The Extended Kalman Filter (EKF)

The Kalmanfilter algorithmcanbe generalizedo non-linearH and M operatorsalthoughit meanghatneither
the optimality of theanalysisnor the equivalencewith 4D-Varhold in thatcaself H is non-linear H canbede-
fined asits tangentiinearin the vicinity of x,, asdiscussedn a previous section.Similarly, if M is non-linear
whichis thecaseof mostmeteorologicahndoceanographicahodels,M canbedefinedasthetangentlinear fore-
cast modeln the vicinity ofx,, i.e. we assume that foryatikely initial statex(z) (notablyx,(z)),

M; i alX@)] =M; o aXa(D)] = M; 4 [X(2) =Xo(2)]

andtherealismof this hypothesismustbe appreciatedisingphysical aguments asalreadydiscussediboutthe
obsenation operatorand 4D-Var. If H and/or M are non-lineay the algorithm written above is called the
ExtendedKalman Filter. Note that the linearization of M interactswith the model errors in a possibly
complicatedway, ascanbe seenfrom the proof of Eq. (KF2) above. If non-linearitiesareimportant,it may be
necessaryo include empirical correctiontermsin the equation,or to usea more generalstochasticprediction
method such as an ensembleprediction (or Monte Carlo) method,which yields an algorithm known as the
Ensemble KalmaniFer.

5.5 Comments on the KF algorithm

The input to the algorithmsis: the definition of the modelandthe obsenation operatoy the initial conditionfor
(%, P) whenthe recurrenceof thefilter is started? the sequencef obsenationsy , andthe sequenc®f model
andobsenationerrorcovariancematrices(Q, R) . Theoutputis the sequencef estimateqx,, P,) of themodel
stateandits error covariancematrix. The organizationof the KF assimilationlookslik e a coupledstreamof esti-
mations of model states and errovagancesKig. 16).

42. Notethatit is notwell known whether afteralongtime,theanalysiscease®r notto dependsignificantlyon theway theKF is initialized.
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Figure 16. The ganization of computations in a KF or EKF assimilation.

The variationalform of the least-squareanalysiscanbe usedin the analysisstepof the Kalmanfilter, insteadof
the eplicit equations written abe.

Thenumericalcostof the KF or EKF is thatof the analysistself, plusthe estimationof the analysiserror covari-
ancesdiscussedh aspecificsection plusthe (KF2) covarianceforecasequationwvhich requiresn forecastof the
tangentinearmodel(n beingthe dimensionof the modelstate)to build the operatorM . The storagecostitself
is significant,sinceeachP matrixis n x n (only a half canbe storedsincethey aresymmetric)andin (KF5) the
KH matrix mustbeevaluatedandstoredtoo (unlessthe variationalform is used,in which casen evaluationsof
the gradientof the costfunction mustbe performedto build the Hessianwhich mustthenbeinverted).Ilt means
thatthecostof theKF is muchlargerthan4D-Var, evenwith smallmodels Thealgorithmshouldratherberegarded
asareferencan thedesignof moreapproximateassimilationalgorithmswhich arebeingdevelopednowadayst
is still notclearwhatis thebestwayto approximateheKF, andtheanswemwill probablybeapplication-dependent.

Therearemary similaritiesbetweemD-VAR andthe EKF andit is importantto understandhe fundamentadif-
ferences between them:
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. 4D-VAR canbe run for assimilationin a realistic NWP framewvork becauset is computationally
much cheaper than the KF or EKF
. 4D-VAR is moreoptimalthanthe (linear or extended)XF insidethetime interval for optimization

because it uses all the obsdions at once, i.e. it is not sequential, it is a smoother
. unlike the EKE-4D-VAR relies on the ypothesis that the model is perfect (iz.= 0).

. 4D-VAR canonly berun for afinite time interval, especiallyif the dynamicalmodelis non-linear
whereas the EKF can in principle be run fere
. 4D-VAR itself doesnot provide an estimateof P;, a specificprocedureto estimatethe quality of

the analysis must be applied, which costs as much as running theleouiE K-

Ref: Ghil 1989,Lacarraand Blagrand 198&:rricoet al. 1993.

6. CONCLUSION

This presentationf analysisalgorithmshasbeencentrednthealgebraof theleast-squaresnalysisnethod How-
ever oneshallnot forgettheimportanceof otherissuedik e obseration screeningandphysical consisteng of the
assimilationjncludingbiascorrectionwhich canbeof greatimportancefor thequality of theassimilatiorsystem
taken as a whole.

Therecenttrendin dataassimilationis to combinethe advantage®f 4D-Var andthe Kalmanfilter techniquesln
areal-timeassimilationsystem4D-Var over a shorttime intenal is a very efficient analysismethod.A Hessian
estimatiormethodcanprovide a goodestimateof theanalysiserrorcovariancematrix. A simplifiedversionof the
extendedKalmanfilter forecaststepis thenused(SKF) to estimateheforecastkerrorcovariancesatthetime of the
next analysiswhich mustthenbe combinedwith anempirical,morestaticmodelof the backgrounderror covari-
anceslt is hopedthatagoodcompromiséetweerthesealgorithmscanbeachieved. Therecanbe someconstruc-
tive interactionawith the problemsof ensembl@rediction,andspecificstudiesof analysisquality lik e sensitvity
studiesandobsenationtargeting. Thesenew methodsprovide mary by-productswvhich still remainto be usedas
diagnostic tools for improng the assimilation and forecast system.

APPENDIX A A PRIMER ON LINEAR MATRIX ALGEBRA

Note:thisis a simplified presentatiofor finite-dimensionatealvectorspacesFor moregenerakesultsandrigor-
ous mathematical definitions, refer to mathematicabtmks.

Matrix. A matrix A of dimensionn X p isatwo-dimensionahrrayof realcoeficients(a where

i is the line inde, j is the column inde A matrix is usually represented as a table:

i.i)i =1l..n,j=1..p

@y gy - - - Ay

A1 Qo2 Qap
A= (aij) =

Qn1 Cpp - - - Gy

A matrix for whichn = p is called a square matrix.

Diagonal Thediagonalof asquaren x n matrix A is thesetof n coeficients(a;;), ., , . A matrixis called
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diagonal if all its non-diagonal cdifients are zero.

Transpose Thetransposef an X p matrix A isa p xn matrix denotedA " with the coeficientsdefinedby
(aij)T = (aj;) i.e.thecoeficientsa;; anda ;; areswappedwhichlookslike asymmetrywith respecto thedi-
agonal:

Q11 Q21 - - - Ay
Q1 Q2 Ap2
T
A =
Q1p Qop - - - Q]

Symmetry. A squarematrixis symmetricif it is equalto its transposei,e. A = AT . Thisis equialentto having

a;; = a;; forary i and;j. A property of diagonal matrices is thatyttere symmetric.

Scalar multiplication . A n x p matrix A timesarealscalarA is definedasthe n x p matrix AA with coefi-
cients(Aa;;) -

Matrix sum. Thesumof two n x p matricesA andB is definedasthe n x p matrix A + B with coeficients
(a;;+b;;) . It is easyto seethatthe sumandscalarmultiplication definea vector spacestructureon the setof
n X p matriceg(thesumis associatie andits neutralelements the zeromatrix, with all coeficientssetto zero).

Matrix product. Theproductbetweerann x p matrix A anda p x ¢ matrix B is definedasthe n x g matrix
C = AB with coeficients (c;;) given by

Theproductis notdefinedif thenumberof columnsin A is notthesameasthenumberof linesin B . Theproduct
is notcommutatve in general The neutralelementof the productis theidentity matrix | definedasthe diagonal
matrixwith valuesl onthediagonal andthesuitabledimensionlf g = 1 theproductcanbegeneralizedo matrix
timesvector x by identifying the right-handterm of the productwith the column (x;) of vectorcoordinatesn a
suitablebasis;thenthe multiplication (on theleft) of avectorx by amatrix A canbeidentifiedto alinearappli-
cation fromx to Ax. Likewise, 1 x 1 matrices can be identified with scalars.

Matrix inverse.A squaren x n matrix A is calledinvertibleif thereexist an n X n matrix denotedA™ and
called irverse ofA , such thatn ™A = AA™ = |

Trace. Thetraceof asquaren x n matrix A is definedasthescalarTr(A) = Z:‘: ,a;; Whichis thesumof the
diagonal codicients.

Useful properties.

(A, B, C are assumed to be such that the operations/tiedee a meaning)
The transposition is linear. (A + )\B)T = AT+AB'

Transpose of a product (A B)T =B'AT

Inverse of a product (AB)_1 =A™

1. T

)

-1
Inverse ofatranspose(AT) = (A
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Associativity of the product (AB)C = A(BC)

Diagonal matrices: their productsandinversesarediagonalwith coeficientsgivenrespectiely by the products
and irverses of the diagonals of the operands.

Symmetric matrices: thesymmetryis conseredby scalammultiplication,sumandinversion,but not by the prod-
uct (in general).

The trace is linear Tr(A +AB) = Tr(A) +ATr(B)
Trace ofatransposeTr(AT) = Tr(A)
Trace of a product Tr(AB) = Tr(BA) = Z a;:b

i, J Ag}
Trace and basischange Tr(B_lA B) = Tr(A),i.e.thetraceis anintrinsic propertyof thelinearapplicatiornrep-
resented byA .

Positivedefinite matrices. A symmetricmatrix A is definedto be positive definiteif, for arny vectorx , thescalar
x Ax >0 unlessx = 0. Positie definitematriceshave real positive eigervalues,andtheir positive definiteness
is consered through imersion.

APPENDIX B PRACTICAL ADJOINT CODING

As explainedpreviously, codingthe adjointis mostlya problemof codingatransposeAssumingalinearoperator
is availableasa pieceof code,calleddirectcode therearetwo approacheso implementthe codefor the adjoint
operatorOneis to take the operatorasa whole, storeits matrix (e.g.by taking theimageof eachcanonicabasis
vector;the matrix of atangentinearoperatoris calledthe Jacobianmatrix andits coeficientsare partial deriva-
tivesof the outputwith respecto theinput) andcodethe multiplication by its transposewhichis only feasibleif
the matrix can bevaluated and stored at a reasonable price.

The other morecommonapproachis to usetherule abore for takingthe adjointof a sequencef operatorsand
to applyit to eachelementarystepof the directcode,called“model” hereto fix ideas.Most of thetime thereis a
pieceof adjointto codefor each(or almost)active instructionof the directcode,consideredselementanfinear
operatorseachin its little subspaceThe concepiof ‘subspacebdf apieceof codeis justified by thefactthatmost
component®f the statearenot modifiedby it, sothatthe correspondingperatoris a block-diagonamatrix with
just a little block spanning theaxiables that are actually used on input and modified on output:

=
=

~.

>

1]
o
| o

1
|
o

Froma codingpointof view, it is only necessaryo codetheactionperformedoy AiT , the othervariablesarekept
unchanged away. This allavs one to werk locally, by following a fev simple rules:
. the adjoint of a sequence of operations is theree sequence of the transposes of each operation.
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. the scalarproductsneedto be considerednly at the beginning and at the end of the codethatis
beingadjointed(unlessonewantsto usesomespecialpropertiesof piecesof codewith respecto
particular products, li&k the unitary character obgrier transforms with respect to thé norm).

. the input to a pieceof code(e.g. a subroutine)becomeshe output of the correspondingadjoint
code,andvice versa.Caremustbe taken when specifyingthe interfacesbetweensubroutinesso
whatis input andwhatis outputat eachstagemustbe clear It meansthat the adjoint codingis
much easierif good programmingprincipleshave beenrespectedn the direct codeto startwith,
such as modularifyconsistent ariable naming and intexte control.

. it is recommendedo usethe samevariable namesfor matchingdirect (i.e. tangentlinear) and
adjoint modelstates,n orderto be ableto reusethe direct codefor array dimensioningandself-
adjoint operations.

. theactualcodingof the adjointis performedat the smallestpossiblelevel of active subset®f code
(one active instruction, or a small numberof instructionsthat clearly depict an explicit linear
operator)that musteachbe a linear operatorwith known coeficients. Its adjointis the transpose
operatoy taken in the releant space, which implies the foling items.

. Eachmodifiedvariableis a part of the input spaceunlessthis subsetof codeis the firsttimeit is
usedin the whole direct code, i.e. it is being “defined” at this stage.

. Eachinputvariableis a partof the outputspaceunlessthis subsebf codeis thelasttimeit is used
in the whole direct code, i.e. it is being “undefined” at this stage.

. The adjoint of a ariable “undefinition”, i.e. the end of its scope, is its setting to zero.

. For coderobustnessit is advisedo considetthatno variableis beingundefinedarywhereexceptat

the end of codeunits like subroutinesvherethey mustall be pre-initializedto zero, so that each
adjoint operation will be written as the addition of something tareble.

Thelastitemsdesere someillustration. Whena new variablestartsto be usedat somepointin thecode,(e.g.an
arrayis allocatedor avariableis initialized for thefirst time) we go from a spacee.g. (a) to abiggerspacege.g.
(a, b) . Hencein theadjointwe gofrom (a, b) to (a) , whichis aprojectionoperatorandb is “undefined”in the
adjointcode,althoughno matchinginstructionexistsin a languagdik e Fortran, sothatno specificstatements
neededn the adjoint. The undefinitionis usually performedwhenreturningfrom an adjoint subroutinelf & is
used later in the adjoint code, it mustéd®een re-initialized.

Whena new variablestopsbeingused,we go from space(a, b) to (a), andthisis usuallyimplicit in thedirect
codeafterthelastinstructionthatusesd . Onecanconsiderthatthe definition of alocal variableis lostwhenre-
turningfrom asubroutineThisinconspicuousperationn thedirectcodeis mathematicallfknown asacanonical
injection. Its matrix is obtained from the direct code matrix, which pscgection

(@) = (1 OF

(Sothatthetransposeaperato?13 readsusingthe samevariableletters(althoughthey do not necessariljhave the
same walues as in the direct operation):

50

43. Sometimes called tlaeljoint of identity.
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or, in Fortran:
b=0.

If thisinstructionis forgottenit will resultin a badlyinitialized b variable,with possiblyerroneousesultsif the
same wariable name is used for other computations before.

Hencethe adjointof evena simpleassignmena=b dependn the scopeof the variables.If the input spaceis
(b) and the output space(is), the algebraic direct operation is

(a) = (1)(b)
so that the adjoint is trially

() = (1)(a)

andthe adjoint codeis b=a. If however b6 may be usedlaterin the direct code, it is not beingundefined the
output space i$a, b) and the algebraic direct operatianb is nav

15
The adjoint is
(6) = (1DE P

(andtheadjointcodeis b=b+a, whichis quitedifferent,becausd is now bothin the outputandin the outputof
the directcodé™. If b is usedlaterin the directcode,it will alreadycontainsomethingwhichwill be usedwhen
doingb=b+a in the adjointcode.Physically speakingjt meanshatthe sensitvity of the outputto & (whichis
whattheadjointvariableb contains)s thesumof thesensitvitiesto & in all operationghatreadthevalueof b in
the direct code.

If onecodesb=b+a althoughb is notusedlaterin thecode,b is still correctlyinitialized in the adjointbecause
theadjointof its eventualundefinitionis b=0 whichwill beplacedbefore.lt canbedifficult toremembein alarge
codewhereeachvariableis usedfor thelasttime. Variableundefinitionis usuallyeasyto spotbecausd is always
attheendof programsectiongsubroutinespr at variablede-allocationlf theinterfacebetweerprogramsections
is clearlydocumentedthis makesit easyto pre-initializetheadjointvariablesto zeroattheright place.Hencethe
bestadjointprogrammingule is to always assumehat a variableis beingusedlater, andto setall adjointcode
variables to zero when thare defined.

For instancetheadjointof atypicalline of codelike a=s* b+t * ¢ (the* isthemultiplication,s andt arecon-
stants) is

a=0 ! when a is first defined in the adjoint code

b=0 !when b is first defined in the adjoint code

44. Whethera is partof theinput spacen thedirectcodeis notimportant,becausét is beingoverwritten.In theadjoint, puttingexplicitly a
in both input and output spaceswid simply result in the additional useless line of adjoint cada: One should wrry more about the
scope of input &riables than about outpunables whenxamining the direct code.
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c=0 !when cis first defined in the adjoint code

c=c+t*a

If ary of thea, b, c variablesaredefinedasinput algumentso a subroutinein the adjoint, thenof coursetheir
initial value is defined outside and yh&hould retain their inputaue.

However, there is no problem of undefinition ®f in a statement li&ka=s* a+t * ¢ which has the adjoint
c=0 !when cis first defined in the adjoint code
a=s*a I not a=a+s*a !

Cc=c+t*a
becausea is both in the input and output spaces. Note that a conditioeahii in the direct code:

if (a>0) then
a=2*a

endif
defines a non-linear function afwhich is not licit. The problem is in the linearization, not in taking the adjoint.

Most problemswith writing adjointcodesarewith in the handlingof thetrajectory(thelinearizationcoeficients
thatappeamwhentaking the differentialof a non-linearoperator) becausehe adjointrequiresthesevaluesin an
orderthatis thereverseof their computatiororder They needto bestored,or recomputean thefly, whichis usu-
ally amatterof compromisingpetweerstoragespacgor diskl/O) andCPUtime, to assessn acase-to-caskasis.

APPENDIX C EXERCISES
The number of stars indicate roughly thgme of dificulty.
® Prove equatior{A8) giving A if K is optimal.
(i) Prove directly the equations\gn in the section on the scalar case.

(i)  Prove thetheoremon preconditioningjncludingthe casewherethe squareroot of B is used.Does
the condition number depend on the choice of square root matrix?

(iv) Comparethe BLUE equationswith the linear regressionequationsbetweenthe model and
obsenration \alues.

(v)  Write andcommenton the BLUE analysisin a one-dimensionamodel,with oneandthenwith 2
obsenations.

(vi) rewrite the KF equationdn the scalarcaseandexamineits corvergencein time if themodelis the
identity and ifR andQ are constant.

(vii) Calculate the product of a&etor with the Hessian using the simulator operator. only
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(viii)

(ix)

)

(xi)

(xii)
(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xxi)

(xxii)

(xxiii)

(xxiv)

(xxv)

The SWM (Sherlg—\Woodhury—Morrisson) approximation of a positive definite matrix is
I+ Zi (A — 1)viviT (A; arepositive scalars,p; arevectors).Prove thatit is positive definite,and
derive its irverse and a symmetric square root.

* Calculatethe normalizationfactorsto defineproperlythe Gaussiarpdfs for the backgroundand
the analysis states.

Write the algorithmto implementa Cressmaranalysis What happensf the observingnetwork is
very dense?

aprimitive analysigechniqués to fit a setof polynomialsto the obserations.Derive thealgorithm
in a one-dimensional fram®rk.

* Generalize the polynomial fit technique teegdifferent weights to diérent obserations.

Provethat| cov(z, j) | < Jvar(i)var(j) . Isit asufiicient conditionfor the covariancematrix to be
positive definite?

Prove that a covariance matrix can be factorizedin the form B = L'L and describesome
numerical methods to do it.

* Give examples in which the adjoint is not thevémse, andxamples in which it is.

* Derivein thescalarcasewhatis theanalysiserrorif theweightis calculatedusinganassumedy,
that is not the genuine background standard.error

* Prove thatthe backgrouncerror covariancematrix canbefactorizedasB = SCS whereS isa
diagonal matrix and’ is the correlation matrix. What is theysiical meaning oS ?

* Reawrite the 4D-Var algorithm using the inverseof the model (assumingit exists), putting the
analysis time at the end of the time intdrv

* (physics regularization) In the scalar case, considering the obsenration operator
H(x) = max(0, x), designa continuouslydifferentiableobsenration operatorf{ with atunable
“regularization” parameterso that |H—I§I| canbe assmall asrequiredand H = H outsidea
small intenal around zero.

** Designa scalarexampleusingthe previous obsenationoperatoyin which the cost-functionhas
one or tvo minima, depending on thalue of the rgularization parameter

* Prove that the scalarKF, with the model equalto the identity and constanterror statistics,is
equivalentto a running averagethatis defined,in the limit of a continuoustime variable,by an
exponential weighting function. o does the e-folding time depend on the error statistics?

* (adaptve filter) Rewrite the KF equation as an adaptve statistical adaptation scheme:
y = a + bx, wherethemodelstateis thetwo scalars(a, b) andy isthescalarobsenation, x is
an ternally defined function of time. The forecast model is assumed to be the identity

**  Generalizethe Cressmanalgorithm in order to retain some backgroundinformation at the
analysis points, as in the least-squares analysis.

** (retrieval and superobing) Modify the BLUE equationfor whenthe obsenationsarereplaced
by a linear combination of them through a retlealgorithmiV, i.e.y = Nx.

** Preconditionthe PSAScostfunction with the symmetricsquareroot of R andprove thatthe
condition number is then the same as 3-preconditioned by the symmetric square rodd of.
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(xxvi) *** (controlvariableremapping)n a continuousone-dimensionainodel,derive the adjoint of the
“remapping”operator[x = £(i)] O [x = f(g(Z))] wherei is the spacecoordinateand g is an
invertible, continuously diérentiable function. Does this makense in a discrete model?

(xxvii) *** Derive the4D-Var equationsy expressinghe minimizationproblemconstrainedy themodel
equationswith its Lagrangianandcommenton the physical meaningof the Lagrangemultiplier at
the analysis point.

(xxviii)** (flow-dependeng in 4D-Var) Derive the Hessianof a 4D-Var in which thereis one single
obsenation at the endof the analysisinterval. How doesthe analysisincrementcomparewith the
singular ectors of the model? (see the training course on predictability)

(xxix) *** The NMC method assumeghat the covariancesof forecasterror differences(differences
betweentwo forecastsstartingfrom 2 consecutie analysesndvalid at the sametime) aresimilar
to the forecasterror covariancesFormulatethis usingthe KF notationanddiscussthe validity of
the assumption.

(xxx) *** (laggedinnovationcovariancespssumingthatthe observingnetwork is alwaysthesamein the
KF, prove thatif theanalysisweightis optimal,thentheinnovationdeparturesrenot correlatedn
time.

(xxxi) *** (fixed-lag Kalman smoother)Derive the equationsfor the 1-lag Kalman smootheri.e. a
generalizatiorof the KF equationsn which the obsenationsat both timesof the currentanalysis
andof thenext oneareusedat eachanalysisstep.Tip: extendthe KF controlvariableto includethe
model state at both analysis times.

APPENDIX D MAIN SYMBOLS
X model state ector
X, true \alue of the model state i.e. perfect analysis
X, background model state
X, analysed model state
y obsenration \ector

H obsenrationoperatorimapsx into the y spaceby providing modelequialentsof the obsered
values)

H linearized obseation operator (in the vicinity of a predefined model state)
B background error a@riances (estimation errorn@riance matrix ok, )

A analysis error c@riances (estimation errorariance matrix ok, )

R obsenration error cwariances (error a@riance matrix ol — H(X,)

K analysis gin matrix

| identity matrix

J cost function of theariational analysis

J |, background term of the cost function
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J, obseration term of the cost function

J . penalization term of the cost function
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