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Atmospheric waves

By Martin Miller

European Centre for Medium-Range Weather Forecasts

1. INTRODUCTION

In orderto understandthemany andvariedapproximationsandassumptionswhich aremadein designinga nu-

mericalmodelof theearthsatmosphere(whetherof small-scalefeaturessuchasindividual clouds,or mesoscale,

regional,globalweatherpredictionor climatemodels),it is necessaryto studythevariouswavemotionswhichcan

bepresent.Theidentificationandappreciationof themechanismsof thesewaveswill allow usto isolateor elim-

inatecertainwavetypesandto betterunderstandtheviability andeffectivenessof commonlymadeapproximations

such as assuming hydrostatic balance.

Herewewill attemptto identify thebasicatmosphericwavemotions,to emphasisetheirmostimportantproperties

andtheir physicalcharacteristics.Basictextbookssuchas'An Introductionto DynamicMeteorology'by Holton

or 'NumericalPredictionandDynamicMeteorology'by Haltiner and Williams provide a goodintroductionand

complementthis shortcoursewell. Whereasthesetextbookstreateachwavemotionseparatelystartingfrom dif-

ferentsimplifiedequationsets,we will separatewavesfrom a morecompleteequationsetby variousapproxima-

tionsmadeat laterstagesthusmakingit easierto relatetheimpactof a particularapproximationon severalwave

types. Nevertheless,to retainall wavetypesin theinitial equationsetis unmanageableandwewill introducesub-

sets of equations later.

We will restrictourselvesto neutral(non-amplifying,non-decaying)wavesin which energy exchangesareoscil-

latory.

While theexactequationshavebeenconsiderablysimplifiedinto ausefulform for studiesof atmosphericdynam-

ics,thesesimplifiedequationscannotbesolvedanalyticallyexceptin certainspecialcases.Themaindifficulty aris-

esthroughthenon-linearadvectiveterms , etc.Althoughthesetermscanconsiderablymodify the

linearsolutionsandarealsophysically significantbecausethey representtransferandfeedbackbetweendifferent

scalesof motion,thelinearizedequations(obtainedby removing second-orderadvectiveterms)areusefulfor iden-

tifying theorigin of distincttypesof wave(acoustic,gravity andcyclone)in theequations.It shouldbeunderstood

that althoughnonlinearitywill modify the acoustic,gravity andlong wavesit will not introduceany additional

wave types.Sincetheorigin of wavescanbeidentifiedin thelinearizedequationsandthesecanbesolvedanalyt-

ically, useful methods for filtering individual modes can be determined.

2. BASIC EQUATIONS

Thefollowing mathematicalanalysisrequiresa choiceof verticalcoordinate.While it is commonto usepressure

or a pressure-basedverticalcoordinatein large-scalemodelling,this is not a necessarytheoreticalrestrictionand

we can write the equations in (height),  (pressure) or ( ), as follows:

-coordinates

v ∇⋅( )v v
�

∇⋅

� � σ ���
*⁄=

� �����	�, , ,( )
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(1)

(2)

(3)

(4)

(5)

where  and

All source/sink terms are omitted.

-coordinates

An exact transformation of(1)–(5) to -coordinates gives:

(6)

(7)

(8)

(9)

(10)

where

(11)

and , , and
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-coordinates

Either by transforming(1)(5) or (6)–(11) we can obtain the exact -coordinate set:

(12)

(13)

(14)

(15)

(16)

where , and .

All partial derivatives respect their coordinate system.

Notethatputting in (3), and elsewheregivesthefamiliar large-scaleequationsets,but we

will not make this approximationat present.In principlethefollowing linearizedanalysiscanbedonein any co-

ordinate;we will useheightbut muchof this analysishasbeendonein pressureandsigmacoordinateselsewhere

(e.g.Kasahara, 1974;Miller, 1974;Miller  and White, 1984).

For simplicity wewill supposethatthemotionis independentof andneglectthevariationof theCoriolisparam-

eterwith latitude( ). Also wewill considersmalldisturbancesonaninitially motionlessatmos-

phere. A non-zero basic flow and restoration of  and non-zero  will be considered later.

In orderto tracetheeffectof individual termswewill use‘tracerparameters' whichhave thevalue

1 but can be set to zero to eliminate the relevant term.

We define ,where  and  is a reference pressure (e.g. 105 Pa), and write

where denotesmallperturbationson a meanstateand definethe

basichorizontallystratifiedatmospherewith . Sinceweconsidersmallperturbationssuchthatprod-

ucts of perturbations can be negelcted and that , ,  we can write(1)–(5) as:
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(17)

(18)

(19)

(20)

(21)

where  and .

EXERCISE:

DeriveEq. (19)

Thecoefficients � ��� in (17)–(21)areindependentof and , sotheseequationsarelinearand,in an

unboundedregion,admitsolutionsof theseparableform where canbeacomplex func-

tion, and and arethe -wavenumberandthefrequency respectively. Complex valuesof would imply am-

plifying/decaying waves which are not considered here.

The full solutionis theappropriateFourier sumof termsof this form over all wavenumbers.Sincewe shall be

looking at individual waves we choose to discuss individual wave components rather than the Fourier sum.

Inserting , , andthecorrespondingexpressionsfor ,

, , and into (17)-(21),andnotingthattheoperators , canbereplacedby and , re-

spectively, yields the following set of ordinary differential equations in the unknowns :

(22)
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(24)

(25)

(26)

Then(22) and(23) give:
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(27)

(28)

Eliminating  between(25) and(27), and using (26) and the relation:

where  is the Laplacian speed of sound, gives:

(29)

Using (30)

to eliminate  from (24) yields:

(31)

In general , , arefunctionsof � so and areobtainedby simultaneoussolutionof thetwo first

orderequations(29)and(31)andthe , , , fieldsobtainedfrom (27), (28), (30)and(25), respectively.

However, for ourpresentpurposesit is sufficient to considerconstant(mean)valuesof , and whichare

related by . Then the differential equation for the height variation of  is:

(32)

3. EXACT SOLUTIONS OF THE LINEARIZED EQUATIONS

The exact linearized equation for , obtained by setting  in (32), is:

(33)
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Onesolutionof (33) is , andthecorrespondingdynamicalstructurecanbedeterminedby setting in

(22)–(26)to give and . This is geostrophicmotionin the -directionandis also

exactly hydrostatic. More detail of this solution will be considered later.

If  in (33) then:

(34)

Setting  leads to the differential equation:

(35)

In general,if thewave motionis confinedbetweenphysicalboundaries,then(35) mustbesolvedwith respectto

boundaryconditions—thatis mustsatisfythe differentialequation(35) andthe prescribedvaluesof on

theseboundaries.It is reasonableto supposethatonly wavesof a certainfrequency andwavenumbercansatisfy

all these constraints. For such waves the permissible values of the (characteristic) function

are calledeigenvalues and the solutions corresponding to these eigenvalues are calledeigenfunctions.

For simplicity we shall supposethat thefluid is unbounded(theboundedproblemwith at

(say)canbeattemptedasanexercise)andin thiscaseit is readilyseenthat is asolutionto (35)provided

that:

(36)

This frequency or 'dispersion' relationship is of fourth order in:

(37)

and contains two pairs of waves moving in the  and  directions, with:
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(39)

Thefirst pair of rootsrepresentinertial–gravity wavesandthesecondpair representacousticwaves. This is not

obvious,especiallywith thedegreeof complicationrepresentedin thesetwo relationships,soit is usefulto look at

extreme cases (i.e. short/long waves) to clarify the above classification.

In suchdispersionrelationsa basicunshearedzonalflow ( ) canbeincludedby replacing by ( ), i.e.

Doppler shifted.

3.1  Gravity Waves

In thetroposphere,the inertial frequency is smallcomparedwith theBrunt–Väisäläfrequency (a global

averageof ). Moreover their magnitudestogetherwith thoseof and satisfythefollowing

inequalities:

(40)

Using relation(40) and consideringshort waves such that , then(38) reduces to:

(41)

This is thedispersionrelationfor shortinternalgravity waves(wavelength km say).Sincethewavesarerel-

atively short they are not modified significantly by rotation (no�  in (41)).

(41) defines an upper limit to the frequency, i.e.  for , with a period of about 10 minutes.

Since , thepropagationis primarily in thevertical , with propagationspeedsof approx-

imately 10m/s.

We can substitute  back into(22)–(26) and obtain the ‘geometry'.

EXERCISE:

Showthat theseoscillationsaretransverse(particlepathsparallel to wavefronts).Derivefrom(41)a relationship

between group velocity and phase velocity and consider its geometric interpretation.

Gravity wavesactasa signalto thesurroundingfluid of localisedchangesin potentialtemperature.Shortgravity

waves are dispersive since their phase velocity  is a function of  and they radiate energy.

Internalgravity wavesareexcitedby local diabaticor mechanicalforcing. A particularlyinteresting,important,

andubiquitoustypeof gravity waveisgeneratedwhenthereisstablystratifiedflow overorography. Theseareknow

asleewaves, astationarywavepatternoveranddownstreamof theobstacle.Relativeto themeanwind thephase
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linesslopeupstream;energy mustbepropagatedupwardhencethephasevelocitymusthaveadownwardcompo-

nent (this follows from the previous exercise). Since the waves are stationary :

.

This can be solved for (given ) to give the phaseslopes. For vertical propagation , i.e.

, hencefavourableleewaveconditionsrequiresuitablelocalcombinationsof mountain/hillgeometry

and large-scale flow.

Theimportanceof vertically propagatinggravity waves,especiallyleewaves,in forecastandclimatemodelshas

attractedrecentattentionandtheirassociatedverticalmomentumfluxesappearto beasignificantfactorin thedy-

namics of the large-scale circulation and of the stratosphere in particular.

As wemovetowardsthelongwave limit of (38) theinfluenceof rotation(through ) is increasinglyfelt andthese

long inertial gravity waveshave frequenciestendingtowards / Their horizontalphasespeedsbecomelarge,of

relevancein the designof time-integration schemesand in the problemof initialisation. The limiting caseof

 represents a pureinertial wave with neither buoyancy or pressure forces important.

EXERCISE:

Substitute  back into(22)–(26).

3.2  Acoustic waves

In asimilarmannerwecanexamine(39). Theinequalitiesin (40)areindependentof thecharacterof theoscillation

and consideringshort waves such that  it follows that:

(42)

Also if , then:

(43)

The structure of these short waves may be found by substituting Eq.(43) back into(22)–(26).

EXERCISE:

Show that these waves are longitudinal with negligible temperature changes.

Themotiontransmitspressureperturbationswith a speedc, thespeedof sound,for all wavelengths—i.e.themo-

tion is nondispersive.

For long acoustic waves i.e. ,  and  it is readily deduced that:
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(44)

Since , arehorizontalandverticalphasespeeds,respectively, wecandeducethatshortacousticwaves

propagate with wave fronts almost vertical and vice-versa for long waves.

4. SIMPLIFIED SOLUTIONS TO THE LINEARIZED EQUATIONS—FILTERING APPROXIMA TIONS

It is usefulto simplify theexactlinearizedequationssincewecanthenextendthephysicalprinciplesbehindthese

approximations to simplify the much more complicated non-linear equations.

In particular, in thissectionweshallshow how soundwavesandgravity wavescanbefiltered,anddeterminecon-

ditions under which the static approximation to the pressure field is valid.

It is notobvious‘a priori' how anapproximationmadein oneequationfeedsthroughto affect termsin otherequa-

tionsandhencemodify themathematicalandphysicalsolutions.Wethereforecarryout thenecessaryelimination

rathercarefullyandfor this purposewe retaintheparameters to tracetheeffectsof anapproxima-

tion. However, we seefrom (32) that and occurin thecombination which vanishesin theexact

equations . Consequently, a spurioustermwill ariseif we neglect but retain , or

vice-versa.We thereforemusteitherretainboth and or neglectboth.We thereforehave to set in

(32).

For reasonsalready discussed,the acoustic and inertial-gravity solutions to (32) are proportional to

, provided that the oscillations obey the following frequency equation:

(45)

4.1  The elimination of acoustic waves

It is helpful to discussthephysicalorigin of acousticwavesin orderto indicatethemathematicalapproximations

necessaryfor their elimination. Acousticwaveswill occurin any elasticmedium,andtheelasticcompressibility

of a fluid is representedby in thecontinuityequation,so it is reasonableto supposethat theremoval of

this termwill filter acousticwaves. Moreover, sincewe want to usethesesimplified(anelastic)equationsin, for

example,a lateranalysisof gravity waves,wehopethattheeffectof filtering soundwaveswill notdistortthegrav-

ity waves in the anelastic equations

So setting ,  in the general frequency equation(45) gives:
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,

σ2 � 2 - 2 1 4
�

0
2⁄+( )≅

σ  ⁄ σ -⁄

�
1
�

2
�

3
�

4, , ,�
2

�
3

�
2
�

3–( )�
1
�

2
�

3
�

4 1= = = =( ) �
2

�
3�

2
�

3
�

3
�

2=

� -
�

1

2
�

0
-----------+ 

  �exp

 2 - 2
�

1
2

4
�

0
2

-----------
 2 � 2 � �– σ2 �

4 1–( )+[ ]

σ2 � 2–
--------------------------------------------------------------- �

2
�

4
σ2

� 2
-----– � � 2

1 �
1–( )�

0
------------------- � � 3 1–( )++ + + + 0=

∂ρ ∂ �⁄

�
3

�
2 0= = �

1
�

4 1= =

 2 � � σ2–( )
σ2 � 2–

------------------------------- - 2 1

4
�

0
2

-----------+=

σ

� 2 � �⁄ 1«



Atmospheric waves

10 Meteorological Training Course Lecture Series

 ECMWF, 2002

(47)

The short-wave approximation ( ) to (47) is:

(48)

which by comparisonwith theshort-wave approximationto theexactequation(41) clearly representsan(undis-

torted) gravity-wave oscillation. Similarly the long inertial waves represented by  are undistorted.

Thebasiccriterionfor neglectof , viz , is obtainedby comparing(46) and(36) andthis

criterion can be seen to be that:

Thatis, thatthefrequency of inertial-gravity wavesmustbemuchsmallerthantheacousticfrequency, acondition

always well satisfied.

Fromtheseconsiderationswecanusetheacousticallyfilteredequationswith confidencein any detailedexamina-

tion of gravity waves in the atmosphere.

Putting in the fully non-linearequationsdefinesa setof equationswhich do not supportacoustic

waves. Although local elasticdensitychangesareabsent,variationsin densityareincludedthroughthevertical

density variation  and where multiplied by  in the vertical momentum equation.

4.2  The hydrostatic approximation

Thehydrostaticapproximationto thepressurefield ( ) canbemadeif in thever-

tical componentof themomentumequation(19).However, neithertheprecisecircumstancesunderwhich thisap-

proximation is valid nor its dynamical feedback on wave structure is obvious.

Referring to(45) it is clear that the criteria for the neglect of the terms involving  are:
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examinethis secondcriteriona little morecarefully. From(41)weseethatthefrequency of puregravity wavesis
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σ2 � 2 � �  2

 2 - 2 1

4
�

0
2

-----------+ +
-------------------------------------+=

 2 � 2 � �⁄( )  2 1 4
�

0
2⁄+( )»

σ2 � �  2

 2 - 2 1

4
�

0
2

-----------+ +
-------------------------------------=

σ2 � 2∼

∂ ∂ � δρ ρ0⁄( )⁄ �
2 0=

σ2 � 2  2 - 2 1

4
�

0
2

-----------+ + 
 «

�
2

�
3 0= =

�
0( ) �

� � � �⁄ 0= ∂ δ �( ) �∂⁄ � δΘ«

�
4

σ2 � 2  2 - 2 1 4
�

0
2⁄+ +( )«

σ2 � �«

� �

σ2 � �  2

 2 - 2 1 4
�

0
2⁄+ +

--------------------------------------------≅



Atmospheric waves

Meteorological Training Course Lecture Series

 ECMWF, 2002 11

in which case only if . We can thereforeonly set for systemswith flow

'geometry'satisfying this criterion, i.e. the horizontal wavelength must be much greater than the vertical

wavelength.

To demonstrate this more clearly we set ,  in (45), showing that:

(49)

Comparingthisequationwith (41) it is obviousthatunless , thegravity wavewill beconsider-

ably distortedif thepressurefield is hydrostatic.Theinertial wave is, however, unaffected.Soin particular, if the

systembeinganalysedhascomparableverticalandhorizontalwavelength,thehydrostaticassumptionshouldnot

beused- for examplein convective scalemodels.If however , that is km for disturbancesof

depth  km, the hydrostatic approximation will not appreciably distort the gravity waves.

Acousticfrequenciesdonotappearin (49)andatfirst sightit wouldappearthatall acousticoscillationshavebeen

filteredfrom theequationsof motionby makingthepressurefieldshydrostatic.This is not thecasehowever, since

oscillationscharacterisedby everywherearenotrepresentedin (49); sincethisequationwasobtainedfrom

(32)by assumingthat wasnot identicallyzero.Verticallypropagatingacousticwaves( )are,however, fil-

tered by demanding that the pressure field should by hydrostatic.

4.3  The Lamb wave

Wenow examinethecasewhere everywhere.In thiscase(32)is clearlyredundant,andwemustreferback

to (29) and(31) to obtain the frequency of possible oscillations. From these equations with

(50)

(51)

Now is a trivial solutionbecausewith , it follows thatthefluid mustbemotionlessandhydro-

static  i.e. the initial state.

The root  is the geostrophic mode previously examined.

The remaining oscillation is represented by:

(52)

with

Since tracetheelasticcompressibilitythis typeof motionis aform of acousticwave,andcanbeeliminated

by setting  in the continuity equation and  in the vertical momentum equation (19).

Note that, if  but , a spurious pressure perturbation  will arise.
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To discuss the structure of the oscillation more carefully set , in which case:

(53)

Referring back to the equations of motion in the usual way we obtain for the rest of the variables

Theoscillationis thereforeapressurepulsepropagatinghorizontallyat thespeedof sound.Thistypeof oscillation

is known asa Lambwave; it hasnegligible physicalsignificanceandis removedby theanelasticapproximation.

TheLambwave canalsobeeliminatedby appropriateupper- or lower-boundaryconditions.For large-scalefore-

castmodelsthesemethodsof eliminationarenot usuallyappropriate.However the longestgravity waveshave

comparable phase speeds to the Lamb wave (see Section 7).

It is worth stressingthatthepresenceof theelastictermin thecontinuityequationis ratherconcealedin thepres-

sure-andsigma-coordinateformsof thecontinuityequation,however both(9) and(15) areelastic(evenwith the

hydrostatic approximation, ).

Although the hydrostaticapproximationfilters vertically propagating soundwavesit is unnecessarilyrestrictive

andit hasbeenshown thata smallapproximationto theverticalaccelerationcanachieve thesameeffect (Miller,

1974;Miller  and White, 1984).

4.4  Filtering of gravity waves

For thetheoreticalstudyof large-scaledynamicsandalsofor theearlierlarge-scalenumericalmodels,thepresence

of gravity wavesis of little significance(andanuisance!).Thefollowing analysisdemonstratesthatrequiringthe

local rate of change of divergence to be zero is a sufficient filter.

Taking(17)–(21), setting  and eliminating  and  leads to the equations:

where we have introduced an additional tracer, , on . These equations have the

dispersion relation:

�
2

�
3 1= =

σ2 � 2  2 � 2+=

� ˆ
ρ0
----- e3 +  � σ �+( )cos=

� ˆ � ˆ 0= =

Θ̂ 0=


 ˆ σ
 � 2
--------

� ˆ
ρ0
----- 

 –=

ε 0=

�
1

�
2

�
3

�
4 0= = = = δΘ δ �

�
5

∂
∂ �-----

∂δ 

∂�---------- 

  � ∂δ �
∂�---------–

∂2

∂� 2
-------- δ�

ρ0
------ 

 + 0=

∂
∂ �-----

∂δ �
∂�--------- 

  � ∂δ 

∂�---------- 

 + 0=

∂
∂ �-----

∂2

∂ � 2
-------- δ�

ρ0
------ 

 
 
 
  � � ∂δ 


∂�---------- 
 – 0=

�
5

∂
∂ �-----

∂δ 

∂�---------- 

 



Atmospheric waves

Meteorological Training Course Lecture Series

 ECMWF, 2002 13

(54)

It canreadilybeseenthatsetting eliminatesthe inertial–gravity wave solution. Useof therotationalor

geostrophic wind clearly achieves this.

4.5  Filtered Rossby wave (previously the  solution)

Using the previous filtering approximationsandnow retainingthe variationof Coriolis parameterwith latitude

leads to the following equation for the pressure perturbation ( ):

(55)

Putting  proportional to  gives the dispersion relation:

and for a uniform basic zonal current (i.e. replacing  by ):

(56)

Thus these waves, known asRossby waves, must propagatewestward relative to the mean zonal flow since:

ClearlyRossbywavesaredispersive andlong zonalandmeridionalwavelengthswill propagatefastest.However

typical valuesshow that large-scaleRossbywavesmove quiteslowly (10 m s-1). From (56) we candeducethat

short zonal wavelengths have a group velocity opposite in direction to their phase velocity.

Equation(55) is a form of thebarotropicvorticity equationwhich statesthat thevertical componentof absolute

vorticity is conservedfollowing thehorizontalmotion.A usefulphysicalappreciationof thewestwardpropagation

is shown in Fig. 1 (from Holton).
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Figure  1. Perturbation vorticity field and induced velocity field (dashed arrows) for a meridionally displaced

chain of fluid parcels. The heavy wavy line shows the original perturbation position, and the light line shows the

westward displacement of the pattern due to advection by the induced velocity field.

By consideringachainof fluid parcelsalonga latitudecircleandrequiringthat is conservedthen,if

initially, a meridional displacement  results in:

but

A sinusoidaldisplacementthereforegivespositive (cyclonic) vorticity for southwarddisplacementsandnegative

(anticyclonic) vorticity for northwarddisplacements.It is thenclearfrom thediagramthatthis inducedflow field

advects the chain of fluid parcels such that the wave pattern propagates westwards.

5. SURFACE GRAVITY WAVES

Sofarwehaveconsideredperiodicoscillationsin unboundedfluids,andthequestionof appropriateboundarycon-

ditionshasnotarisen.Wenow examinewavesin aregionboundedbelow by asmooth,horizontal,rigid boundary

andabove by a freesurface. A “free” surfaceasthenameimpliesmeansthat thesurfaceshaperespondsto the

motionwithin thefluid andcannotbedetermined‘a priori' i.e. thefluid motionandtheboundaryshapemustbe

determined simultaneously for a complete solution of a free-boundary problem.

Any smoothsurface,eitherfreeor rigid, mustbeamaterialboundary. Thatis,particlesadjoiningthesurfacefollow

thesurfacecontours.It followsthat at , where is thesurfaceprofile,definesthis(kin-

ematic)condition. So , a conditionwith reducesto on a horizontal,rigid boundary. How-

ever, this kinematicconditionaloneis not sufficient to determinethe shapeof a free surface,andan additional

(dynamical)boundaryconditionmustbespecifiedto determinea solution. This extra boundaryconditionis con-

tinuity of pressure.In practicethisconditionhasto bere-expressedin termsof kinematicquantitiesby usingeither

the momentum or Bernoulli equations.

Wewill considerthesimplestexampleof surfacegravity wavesandisolatetheirphysicalorigin. For thispurpose

we supposethefluid to beunstratified . Acousticwavescanbeeliminatedfor reasonsgivenearlier, but

this has to be done rather carefully so we retain at present.

With these assumptions(32) reduces to:

ζ �+ ζ 0=

δ�

� 0 � 1 ζ1 (conservation)+=

ζ1 � 0 � 1– βδ� (definition)–= =

D � 7–( ) D �⁄ 0= � 7= 7
� D 7 D �⁄= � 0=

� 0=( ) �
2



Atmospheric waves

Meteorological Training Course Lecture Series

 ECMWF, 2002 15

(57)

For simplicity we will look at the behaviour of small amplitude waves in a fluid with a free surface

above which thepressureis assumedconstant(e.g.air–seainterface,modelof waves

on inversion). The lower boundary is assumed to be a rigid horizontal surface at .

With the above comments in mind the (non linear) boundary conditions are:

(i)  at

(ii)  at

(iii) pressurecontinuousat the free surface,which in this example is equivalent to at

.

The linearized forms of these conditions are:

(i)  at

(ii)  at

(iii) at which,by using(29)andtheconditionthat ,

can be shown to be equivalent to

(58)

From(58) we seethat if we eliminateacousticwavesby setting , we mustalsoset in the

boundaryconditionotherwiseanoscillation,spuriousin thesensethatit cannotoccurin theexactequations,will

arise through an inconsistent approximation.

Equation(57), with theabove boundaryconditions,canreadilybesolved for all wavelengthsbut it is

instructive to consider long and short waves independently.

5.1  Long waves

If wavesarelong to theextentthat and , thenthenon-hydrostatictermcontainingtheterm in

(57) can be neglected by comparison with  and the solution is seen to be:

(59)

where .
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If the height scale is negligible by comparison with the density scale height left( )

andis, therefore,thepropagationspeedof long surfacewavesin a liquid or anatmosphericlayerwhich is much

shallower than 7 km. For instance, long waves on the boundary-layer inversion,  km and so  m s-1.

If, on the other hand,  (for example in a deep gas) then .

It is easyto show that theearthsrotationonly becomesimportantfor synopticscalesor longer. For theearthsat-

mospherethesedeeplongwavespropagateatabout270m s-1. Theselongwavesareoftenreferredto as“shallow

water” waves and the equationset resulting from (17)–(21) with the relevant approximations(normally with

) form the “shallow waterequations”.Theseprovide a popularequationset for analytical/dynamical

studies and also for testing and designing numerical integration schemes.

5.2  Short waves

When and theterminvolving cannotbeneglectedwhereasrotationcanobviouslybeso. The

solution can be shown to be:

(60)

where . Hence for , , a much slower phase speed than the long waves.

If desired, free-surface waves can be eliminated by imposing rigid upper and lower boundary conditions.

6. EQUATORIAL WAVES

NeartheEquatoratmosphericwavesacquirearatherdifferentcharacterandwhatwereclearlydistinctmechanisms

ceaseto beso. Following Matsuno(1966)wewill studyequatorialwavesusingtheshallow waterequationswith

, known astheequatorialbeta-plane,andincluding , andlinearizeagainaboutastateof nomo-

tion.  Hence:

(61)
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Derive the above equations from(1)–(5).

Assumingwavelikeformsfor in theeast–westdirection,but retainingthe

-variation explicitly leads to the differential equation:

(62)

It is convenient to non-dimensionalize the equation using:

(62) then becomes:

(63)

This equation is a form of Schrödinger equation with solutions, if

, (64)

of the form ,

where  is an th order Hermite polynomial ( ).

Clearly the solutions are 'trapped' near the Equator by the Gaussian function .

The dispersion or frequency relationship(64) is cubic in :

(65)

Thethreedistinctrootsrepresentapairof inertialgravity wavesandoneRossbywave. Thesolutionscanconven-

iently be studied by considering the cases (a)  and (b)  ( large), hence:

(66)

(67)

Returning to dimensional variables, we obtain for the phase velocities (defined by ):
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Obviously area pair of eastward andwestward propagating inertial gravity waveswhile is a westward

propagating Rossby wave.

For  these three solutions are distinct but for , (65) can be factorized:

Theroot is unacceptable(show) but theroot is aneastwardpropagatingin-

ertialgravity waveandtherootomega is calledamixedRossbygravity wave; this is

because,as (thelimiting caseof gravity waves(see(66)), while, as , thelimit-

ing case of Rossby waves (see(67)).

Oneotherimportantspecialcaseis when . This correspondsto a wave with identicallyzero.This has

solutions(see(61)) , whereonly thepositive root is acceptable(thenegative root violates

theequatorialbeta-planeassumption.Seealso(65) with ). This fast-moving eastwardpropagatingwave

is theKelvin wave (seeFig. 2 ). Thesewavesoccurcommonlyin theoceanaswavesalongcoastlines(decaying

exponentially away from the coast).

Figure 2. Velocityandpressuredistributionsin thehorizontalplanefor (a)Kelvin waves,and(b) Rossby–gravity

waves (from Matsuno “Quasi-geostrophic motions in the equatorial area”, J. Meteorol. Soc. Japan, 1966).

Datastudiesof theequatorialstratospherehave identifiedbothvery long wavelengthKelvin andmixedRossby–

gravity waves.Considerablerecentinteresthasbeenshown in thesetropicalwavesin studiesof diabaticforcing in

thetropicsandits impactonhigherlatitudes(Gill , 1980etc.).Fig. 3 summarisestheseequatorialwavecharacter-

istics.
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Figure 3. Non-dimensionalfrequenciesfrom (65)asa functionof wavenumber. Thelinesindicatethefollowing

types of waves: Eastward propagating inertial–gravity wave (thin solid line); westward propagating inertial–

gravity wave (thin dashedline); Rossbywave (thick solid line); Kelvin wave (thick dashedline). (After Matsuno

1966)
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7. SUMMAR Y DIAGRAM AND MODELLING IMPLICA TIONS

Figure  4. Waves in a compressible atmosphere (from J. S. A. Green — Dynamics lecture notes)

Fig. 4 summarisesthebasicwave types.It is adispersiondiagramof horizontalphasespeedplottedagainsthori-

zontalwavelength(bothlogarithmicscales)soisoplethsof wave periodarestraightlinesof unit slopewith inter-

cept . Some points of interest are:

(i) The short vertical wavelengthacousticwaves which, while having phasespeedsnormal to their

wave frontsequalto , havevery largehorizontalphasespeeds(with wave frontsalmost

parallel to the ground).

(ii) Mesoscale gravity waves are almost non-dispersive.

(iii) Rossbywavesfor long wavelengthsvary like while theshorterwavelengthsincludethemixed

Rossby-gravity mode.

In previoussectionswe have identifiedseveralwave typeswith a wide rangeof frequencies.Thechoiceof time

stepin anumericalmodelis dominatedby thehighestfrequency waves(seeLectureNote1.4).Thusfor example,

acousticwaveshave a frequency andfor a typical large-scalemodel .

Hence is dominatedby theverticallypropagatingacousticwavesandit is desirableto filter out theseverti-

cally propagating waves by assuming hydrostatic balance.
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Horizontallypropagatingacousticwaves(Lamb)poselessof aproblemsincetheirfrequenciesarenotmuchhigher

thanthe long gravity wavesdiscussedearlierleft ( ). Neverthelessvariousnumerical

techniques have been devised to ease this restriction (see Lecture Note 1.4).

Wecouldmaketheanelasticapproximation( in thecontinuityequation)but retainthenon-hydrostat-

ic terms.An equationsetbasedon(17)–(21)with thenallowsusto predict , and ; however

thesecomponentsmustsatisfythecontinuityequation.Differentiating(20) with respectto time andsubstituting

from (17), (18) and (19) gives a diagnostic Poisson-type equation for the pressure of the form

which mustbe invertedeachtime step.This is a relatively expensive procedure

andnotjustifiablefor large-scalemodelsbecausethehydrostaticapproximationis well-satisfied.For muchsmaller

scalemodelswhere thedecisionis no longerstraightforwardandgenerallyeithertheanelasticapproxi-

mation is made or sound waves are retained and treated by some sophisticated numerical technique.
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