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Large scale non-turbulent dynamics in the atmosphere

Abstract

Classical two-dimensional turbulence theory is often used to understand large scale atmospheric flows.
However, the equations governing classical two-dimensional turbulence can only be derived from quasi-
geostrophic theory by assuming that the horizontal scale is much smaller than the deformation radius, which
is the scale on which baroclinic instability takes place. Typically, the large scale quasi-two-dimensional dis-
turbances have the vertical depth scale of the troposphere and are of larger scale than the baroclinic waves
which maintain them. It is therefore more appropriate to study the quasi-two-dimensional disturbances with
a model appropriate to scales larger than the deformation radius. The simplest example of such a model
is the equivalent barotropic model. The semi-geostrophic model is also accurate in this regime, but more
general. We show that it does not permit the enstrophy cascades associated with classical two-dimensional
turbulence. This agrees with other results in the literature suggesting that two-dimensional flow on scales
larger than the deformation radius is essentially non-turbulent. The observed quasi-permanently unsteady
behaviour of the atmosphere thus represents the natural internal dynamics, and does not require explanation
by anisotropic forcing. In the ocean, on the other hand, the external deformation radius, which governs the
behaviour of two-dimensional eddies, is much larger than the internal deformation radius, which determines
the scale of baroclinic development. It may thus be appropriate to use two-dimensional turbulence as a
model for scales between the internal and external deformation radius.

1 Introduction

It is a matter of common observation that the motion of the atmosphere, on scales of the size represented on
traditional weather maps, exhibits permanent unsteadiness. However, the statistics of the flow are rather con-
stant, in that a similar number of disturbances are always present at a given season of the year. The question
is whether the large-scale transient behaviour is best treated as a forced-dissipative system, in which the atmo-
sphere would speedily relax to a symmetric state if the forcing was removed, or whether there can be a natural
unsteady evolution which would persist for long times in the absence of forcing or dissipation. Much work has
concentrated on the former, such as the pioneering work of Charney and Devore (1979) illustrating the effect
of topography in creating large-scale disturbances. An alternative view is the Hamiltonian approach, which
assumes that there are time-scales long enough for obviously dissipative events such as convection not to be
dominant, but shorter than the characteristic time-scales of radiative forcing and frictional spin-down. It is then
possible to model the evolution by equations which conserve energy.

This paper considers various Hamiltonian models. These are illustrated in Fig.1, which shows a hierarchy of
models derived from the three-dimensional Navier-Stokes equations under various scaling assumptions.

The most elementary relevant model is that of two-dimensional incompressible flow. Leith (1971) showed that
this model gives ak−3 energy spectrum which is consistent with observations of the large-scale flow, Gage and
Nastrom (1986). This model predicts a systematic cascade of energy to the largest scales and enstrophy to the
smallest scales. The latter property means that dissipation is required in computer simulations, even though
the mathematical results, e.g. Kato and Ponce (1986), show that solutions stay smooth for infinite time given
smooth initial data. Though the equations can be integrated in either direction in time, there is irreversibility
in the flow, characterised by the filamentation of the vorticity field. The behaviour of the model is somewhat
different if it is applied on a rotating spherical surface. Filamentation is not prevented, but the upscale energy
cascade in meridional wavenumber is limited by the beta effect, giving typical solutions for vorticity which are
arbitrary monotonic functions of latitude but independent of longitude. A review of these issues is given by
Holloway (1986).

Charney (1971) showed that the three-dimensional quasi-geostrophic equations could be used to predict qual-
itatively similar behaviour to that of two-dimensional incompressible flow in a stratified fluid. However, this
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Large scale non-turbulent dynamics in the atmosphere

Figure 1: The hierarchy of equations approximating the three-dimensional Navier-Stokes equations that are
used in this paper.L,H are horizontal and vertical length scales,U a velocity scale,f the Coriolis parameter
andN the Brunt-Vaisala frequency.LR is the deformation radiusNH/ f .

is only the case for horizontal scales smaller than the deformation radiusLR. Thus the upscale energy trans-
fer would not necessarily destroy non-zonal perturbations of scales larger thanLR. Larichev and McWilliams
(1991) and Farge and Sadourny (1989) have studied the ’turbulence’ of two-dimensional models appropriate to
scales larger thanLR and found a much more stationary spectrum and weaker cascades. This is consistent with
the observed unsteady non-zonal behaviour of the troposphere and the more zonal behaviour of the stratosphere
whereLR is greater. In the ocean the situation is rather different, because the external deformation radius felt
by barotropic eddies is much larger than the internal deformation radius on which baroclinic disturbances grow.
Thus the two-dimensional incompressible model may be more relevant in the ocean.

There is extensive theory of the equations of two-dimensional incompressible flow because the Lagrangian con-
servation of vorticity strongly constrains the solutions. There is much less theory for the equivalent barotropic
model obtained as the asymptotic limit of the quasi-geostrophic potential vorticity equation for scales larger
thanLR. This is because the equation is less amenable to analysis. The dynamics of this regime have thus
received much less attention.

Cullen (2000) showed that the semi-geostrophic model was accurate for scales larger thanLR, and it is also
amenable to analysis. We therefore use a barotropic version of this model on thef -plane to study the regime
L > LR. We demonstrate by computation that the model does not produce cascades to small scales. It only
appears to permit algebraic growth of line elements. This does not prevent the growth of spiral structures
in potential vorticity, as discussed by Methven and Hoskins (1998), but does prevent the exponential growth
of potential vorticity filaments observed in two-dimensional turbulence. The resulting flow is therefore more
’reversible’ than classical two-dimensional turbulence. We also derive theoretical results that show why the
cascade is inhibited, though it is not possible to exclude local regions of exponential growth.
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Large scale non-turbulent dynamics in the atmosphere

Figure 2: The hierarchy of equations approximating the shallow water equations that are used in this paper.
Notation as Fig.1, withg being the acceleration due to gravity andh the mean depth.

The scaling required for semi-geostrophic theory to be accurate only requires one horizontal length scale to be
large compared withLR. Thus it is valid for filaments which are not sharply curved. In the example shown by
Methven and Hoskins (1998), the depth of potential vorticity filaments reaches 4km, requiring an along-filament
scale greater than 400km (i.e. a wavelength greater than 2500km) for semi-geostrophic theory to be accurate.
The theory will not be reliable for studying the instability of the filaments, which will typically generate length
scales smaller thanLR in both directions. Methven and Hoskins show examples of such instabilities, and the
issue is also discussed by Malardel et al. (1993) in the context of the instability of a filament of potential
vorticity associated with a front. The lack of cascades in semi-geostrophic solutions at smaller scales than
LR represents a symptom of the inaccuracy of the approximation, and does not indicate that there are no real
cascades or consequent efficient mixing. However, the theory is relevant for study of the persistence of non-
zonal eddies in the atmospheric circulation, since these are on scales similar to or larger thanLR. It is also
relevant for studying long-lived, i.e. stable, filamentary structures.

2 Two-dimensional turbulence in the atmosphere

2.1 Quasi-geostrophic theory

The classical theory was originally set out in three dimensions by Charney (1971). In this paper we consider
various approximations in the context of the shallow water equations, as illustrated in Fig.2.

The quasi-geostrophic shallow water equations on a domainΓ(x,y) with boundary∂Γ can be written
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Dq
Dt

= 0

u = (−∂ψ
∂y

,
∂ψ
∂x

) (1)

q− f = gh0∇2ψ− f 2ψ
∂ψ
∂n

= 0 on∂Γ

where D
Dt ≡

∂
∂t +u.∇, q is the quasi-geostrophic potential vorticity,ψ the stream-function,u = (u,v) the veloc-

ity. f the Coriolis parameter,g the acceleration due to gravity, andh0 a reference value of the fluid depth are
all assumed constant. The deformation radiusLR is

√
gh0/ f .

For length scalesL� LR, equation (1) reduces to

Dq
Dt

= 0

u = (−∂ψ
∂y

,
∂ψ
∂x

) (2)

q = gh0∇2ψ
∂ψ
∂n

= 0 on∂Γ

This is the standard equation for two-dimensional incompressible flow, with the potential vorticity reducing to
the absolute vorticity. The solutions can be analysed by using vorticity conservation, for instance as set out in
Gerard (1992). Given initial absolute vorticity which has bounded gradients, we estimate the rate of growth of
the vorticity gradients. Differentiating the first equation of (2) gives

D
Dt

∇q+

(
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)
∇q = 0 (3)

This can be written in terms of the stream-functionψ as

D
Dt

∇q+

(
− ∂2ψ

∂x∂y
∂2ψ
∂x2

− ∂2ψ
∂y2

∂2ψ
∂y∂x

)
∇q = 0 (4)

These equations can be used to estimate the rate of increase of vorticity gradients, using a bound on the velocity
gradients in terms of the vorticity and its gradients (Gerard 1992, p 424):

‖ ∇u(t) ‖≤Clog(2+ ‖ ∇q(t) ‖) (5)

Exact definitions of the norms used are given by Gerard. However, they are essentially maximum norms. The
bound is derived from the solution procedure for the Poisson equation forψ in terms ofq. Because of the
dependence of the bound in (5) on the vorticity gradients, the estimate of vorticity gradients obtained from (3)
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allows exponential growth in time. This does not prevent regularity being proved for all time, but allows the
accumulation of enstrophy at small scales. This can be expressed as a statement that

‖ ∇u2 ‖≤C ‖ u2 ‖ (6)

whereC grows exponentially in time. If theL2 norm is used instead of the maximum norm, then an estimate of
the form (6) holds withC independent of time, but dependent on the domain size. Thus the mean scale of the
flow is bounded, but local regions where small scales are generated are permitted. This agrees with widespread
computational experience.

In the caseL� LR, equations (1) reduce to the ’equivalent barotropic’ equations:

− f 2 ∂ψ
∂t

+gh0u.∇(∇2ψ) = 0

u =
(
−∂ψ

∂y
,
∂ψ
∂x

)
(7)

∂ψ
∂n

= 0 on∂Γ

These equations are less amenable to study than (2), as they cannot be expressed simply as vorticity conserva-
tion. This is because the leading order transport term, which would be− f 2u ·∇ψ, is zero. It is therefore to
be expected that advection will be much less effective at changing the potential vorticity distribution. Larichev
and McWilliams (1991) show that the solutions behave very differently from those for two-dimensional incom-
pressible flow. In particular, the spectral shape for the potential enstrophy remains almost invariant in time,
with a slow migration to larger scales. There is no cascade to small scales.

We also note at this point an important difference between two-dimensional and three-dimensional quasi-
geostrophic flow. If the flow is non-divergent, there is no transfer of energy between potential and kinetic
energy in the shallow water equations. If the non-divergent flow is also geostrophic, we can write the kinetic
energy as12 f−2h(∇h)2, whereh is the fluid depth. In the case whereh−h0� h0, this reduces to12 f−2h0(∇h)2.
The potential energy is12h2. Conservation of the individual parts of the energy then implies that the mean scale
of h is also preserved, preventing any upscale cascade. Charney (1971) showed that there could be an upscale
cascade for three-dimensional quasi-geostrophic flow, provided the scale was less thanLR. Thus shallow water
models cannot be used to study the upscale cascade inh, except on scales small enough for the geostrophic
constraint not to be relevant.

2.2 Linear theory

We illustrate the effect of varying the deformation radius by a standard linear analysis. Assume a basic state
ψ =−Uy, implying a geostrophic wind(U,0) and potential vorticityq= f + f 2Uy, and linearise (1) about this
state, giving:

∂q′

∂t
+U

∂q′

∂x
+v′

∂q
∂y

= 0

q′ = gh0∇2ψ′− f 2ψ′ (8)
∂ψ′

∂n
= 0 onδΓ
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Substitutingψ′ = ψ0expi(kx+ωt) gives

− i(ω+kU)( f 2 +gh0k2)ψ0 + ikψ0 f 2U = 0 (9)

giving a frequency

ω+kU =
f 2kU

( f 2 +gh0k2)
(10)

For scalesL� LR we haveω'−kU and forL� LR we haveω' 0. Thus waves of much shorter wavelength
than 2πLR translate with the mean flow, and waves with much longer wavelength are stationary.

2.3 Semi-geostrophic theory

Now consider the semi-geostrophic shallow-water model, as used by Cullen (2000). The equations are

Dug

Dt
+g

∂h
∂x
− f v = 0

Dvg

Dt
+g

∂h
∂y

+ f u = 0

∂h
∂t

+∇ · (hu) = 0 (11)

( f vg,− f ug) = g∇h

u ·n = 0 onδΓ

The suffixgdenotes geostrophic values. Following Cullen and Purser (1989), they can be rewritten in geostrophic
coordinates(X,Y) in terms of an inverse potential vorticityρ as

Dρ
Dt

= 0

U =
(
−∂Ψ

∂y
,
∂Ψ
∂x

)
(12)

ρ = det
∂2(Ψ+ 1

2(X2 +Y2))
∂(X,Y)2

∇
(

Ψ+
1
2
(X2 +Y2)

)
∈ Γ.

where D
Dt ≡

∂
∂t + U ·∇; andU = (U,V) and Ψ are the velocity and stream function with which the inverse

potential vorticity is transported in geostrophic coordinates. The solution forx in terms ofX can be described
in terms of minimising the energy:

E =
1
2

f 2
∫

Γ

(
(x−X)2 +(y−Y)2)dτ (13)
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with respect to incompressible particle displacements conservingρ. These displacements can be interpreted as
area-preserving displacements ofx for fixed X. An equation of the form (4) still governs the rate of growth of
inverse potential vorticity gradients. Using (12), we obtain

D
Dt

(∇ρ)+

(
− ∂2Ψ

∂X∂Y
∂2Ψ
∂X2

− ∂2Ψ
∂Y2

∂2Ψ
∂Y∂X

)
∇ρ = 0 (14)

The equation that determinesΨ from ρ is a Monge-Ampere equation forR = Ψ + 1
2(X2 +Y2). R has to be

a convex function. Thusρ is transported by a flow generated by the difference between a convex stream-
function and a solid-body rotation. If the flow is steady, particles move along streamlines. Convexity prevents
streamlines converging exponentially, and thus exponential growth of gradients ofρ, except over distances short
compared with the length of a streamline. Only algebraic growth is permitted, controlled by the rate of increase
of U with distance from the centre of rotation.

In the unsteady case, consider a closed loopS in the fluid, with scalar line elementds. Then we can cyclically
displacex by a distancedsaround the loop, which changes the local value ofx by an amount(dx/ds)ds, giving

δE = f 2
∫

S
(x−X) · dx

ds
ds (15)

This has to be zero because the solution forx in terms ofX represents an energy minimising state. Writing
U = f (y−Y,X−x), (15) can therefore be written

δE =
∫

S

dU
ds
· (Uds) = 0 (16)

The rate of extension of the loop can be written

d|S|
dt

=
∫

S

dU
ds
·dX (17)

Comparing (16) with (17) shows that there can be no growth of the line element coming from the parts withdX
correlated withU. Thus the normal straining mechanism leading to the enstrophy cascade is excluded. Growth
is possible from the parts of the line element uncorrelated withU. This will normally be algebraic growth only,
as in the steady case. Transient exponential growth is possible if the time evolution changes the velocity field
in a way that the line element does not align to it as it grows. Thus the exponential growth of line elements,
as observed in normal two-dimensional turbulence, is inhibited in the semi-geostrophic case, but it is not at
present possible to exclude it altogether.

3 Numerical results

3.1 Dynamical core experiments

We first show the results of a dynamical core experiment using the ECMWF model at a resolution of TL95L50.
This is an important illustration because the upscale cascade in the stream-function in quasi-geostrophic theory
can only occur in the three-dimensional case. The experiment was carried out using the standard procedure
defined by Held and Suarez (1994). In particular, the only physical ’forcing’ is zonally symmetric. Fig.3
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Figure 3: Wind fields at model level 39 (around 500hpa) at 100 day intervals from a dynamical core experiment
with the ECMWF model.

shows the winds near 500hpa at 100-day intervals, showing that non-zonal eddies persist even in the absence
of asymmetric forcing. There is no sign of an inverse cascade taking the height field towards a zonal state. The
scale of the eddies will be primarily set by baroclinic instability and is therefore equal to the effectiveLR for
the flow. We can say that the inverse cascade appears to be absent for scales larger thanLR.

3.2 Shallow water models and experimental design

The models used for this study are two of the models used by Cullen (2000) to study the accuracy of the semi-
geostrophic approximation. They are spherical models. For the purposes of this study, the Coriolis parameter
was set to a constant value at all points in order to ensure uniformity of the radius of deformation. Inclusion
of the correct variation of the Coriolis parameter would have obscured the issues studied in this paper. The
semi-geostrophic model is that described and used by Mawson (1996). It uses equations (11), semi-Lagrangian
advection of the primitive variables(ug,vg,h), and an implicit method of calculating(u,v) to ensure that the
geostrophic relation is satisfied at each new time level. The variables(h,u,v) are stored on a C grid, and
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(ug,vg) are held on a D grid. The implicit equations are solved by a multigrid method. The data are initialised
by first choosing analytic height and geostrophic wind fields, and then carrying out the discrete initialisation
procedure set out in Mawson (1996). The initial values ofu andv are set by making an initial time step, and
calculating theu andv needed to preserve geostrophic balance. The primitive equation model is a shallow water
version of the semi-implicit version of the UK Meteorological Office model (Cullen et al. (1997)). It uses a C
grid, semi-Lagrangian advection, and multigrid solution of the implicit equations. Both models were run on a
latitude-longitude grid with 288×193 points.

In order to show the effect of the deformation radius, we use two values for the mean fluid depth,gh0 =
105m2s−2 and 5000m2s−2. We set the Coriolis parameter equal to its North Pole value of 1.45810− 4. The
equivalent deformation radii are 2148 and 480km respectively. At the equator, these correspond to wavenum-
bers 3 and 13.3. We use test data with a spread of zonal wavenumbers between 3 and 19. The perturbations are
thus mainly on scales less thenLR in the first case, and greater thanLR in the second case. The amplitudes of
the depth perturbations are chosen to give roughly equal potential vorticity perturbations at each wavenumber
in the case where the depth perturbations are small compared with the mean depth. The amplitudes are such
that, in the case withgh0 = 5000m2s−2, the maximum and minimum depths are 825m and 154m and are thus
large compared with the mean depth of 510m. The initial depth field is shown in Fig.4.

The choice of changingLR by changing the mean depth means that the velocity fields and height gradients
are the same in both experiments. Since the initial rate of extension of line elements and increase of potential
vorticity gradients depends on the velocity field, this gives the closest comparison between the two cases. The
potential vorticity distribution is not the same, because the variations of the factor 1/h are large when the
smaller mean depth is used. Fig.4 shows the initial semi-geostrophic and Ertel potential vorticities in the case
gh0 = 105m2s−2. Since most of the structure is on a scale less thanLR, the two fields are not very similar. Fig.5
shows the semi-geostrophic and Ertel potential vorticities in the casegh0 = 5000m2s−2. There is now a strong
correlation with the depth field, as expected and the two forms of potential vorticity now have a very similar
distribution.

3.3 Results from the shallow water models

We first show results from 20 day integrations usinggh0 = 105. Fig. 6 shows the final depth fields, which
are very similar to each other, and dominated by the same scales of perturbations as the initial data. This
is consistent with the expected conservation of the mean scale of the depth field in two-dimensional quasi-
geostrophic flow. The depth field given by the primitive equation model is slightly smoother. The numerical
methods are the same in both models, so cannot explain the difference. A possibility is that the primitive
equation model can use gravity waves to disperse numerical errors, while the semi-geostrophic model cannot.
The result may also indicate that an upscale cascade is operating at the smaller scales, where the geostrophic
approximation is less accurate.

Fig. 7 shows time-series of diagnostics from the integrations. We plot the potential and kinetic energies, the
potential enstrophy, theH1 norm of the velocity, defined by

∫ ∫
1

acosφ

[(
∂u
∂λ
−vsinφ

)2

+
(

∂ucosφ
∂φ

)2

+
(

∂v
∂λ

+usinφ
)2

+
(

∂vcosφ
∂φ

)2
]

dλdφ (18)

and theH1 norm of the potential vorticity, defined by
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Figure 4: Initial fields for shallow water experiments withgh0 = 105. Top: depth field (units 102m, con-
tour interval 80m). Centre: Ertel potential vorticity (units (ms)−1, contour interval 0.310−9. Bottom: semi-
geostrophic potential vorticity (units 10−13 m−1s−2, contour interval 1.0.
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Figure 5: Initial fields for shallow water experiments withgh0 = 5000. Top: Ertel potential vorticity (units
(ms)−1, contour interval 0.810−7. Bottom: semi-geostrophic potential vorticity, (units 10−13 m−1s−2, contour
interval 150.0.)

Technical Memorandum No. 353 11



Large scale non-turbulent dynamics in the atmosphere

Figure 6: Depth fields after 20 days of time integration withgh0 = 105: top: primitive equation model, bottom:
semi-geostrophic model. Units 102m, contour interval 80m.
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∫ ∫
1
a

[(
∂q

cosφ∂λ

)2

+
(

∂q
∂φ

)2
]

cosφdλdφ (19)

In these equationsλ,φ are longitude and latitude, anda is the radius of the sphere. The appropriate potential
vorticity is shown for each model. Each quantity is scaled by its initial value.

These diagnostics show good conservation of the potential enstrophy and total energy. These should be con-
served by both models, but neither numerical method exactly conserves either quantity. Thus the overall con-
servation is a good check on numerical accuracy. The kinetic energy drops slowly, losing about 16% of its value
over 20 days in the primitive equation model and 9% in the semi-geostrophic model. These relatively small
changes are consistent with the conservation of the mean scale of the depth field. TheH1 norm of the velocity
field is not so well conserved. The argument for conservation of the mean scale of the velocity field assumes
that potential enstrophy conservation constrains all the velocity gradients. Even in the non-divergent case this
constraint is not sufficient, because the potential vorticity only involves a particular linear combination of gradi-
ents. The results show a decrease of 58% and 41% in this norm in the primitive equation and semi-geostrophic
case respectively. This implies an increase in the mean scale of the velocity field.

In the primitive equation model there is a rapid increase in potential vorticity gradients, as measured by the
H1 norm. This is consistent with an enstrophy cascade. After 3 days the rise stops, and values then fall.
Maps of potential vorticity late in the run show very little structure. The obvious explanation is that the scale
collapse associated with the increasing gradients means that the solution is no longer resolved after day 3 and
the potential vorticity distribution thereafter is just numerical noise. This is the message of experiments carried
out with contour advection methods, e.g. Dritschel and Ambaum (1997). In the semi-geostrophic integration,
the rise in theH1 norm of the potential vorticity is much slower. The peak value is less than half that in
the primitive equation integration, and it takes 6 days to reach it, twice as long as in the primitive equation
integration. Maps of the potential vorticity even after 20 days show considerable structure.

We therefore study the first two days of these integrations more closely, for which time the potential vorticity
field should be reasonably resolved. In Fig. 8 we show graphs of theH1 norm of the potential vorticity for
the two models. In addition, we show graphs using two additional initial data sets. The second dataset is only
different from the first in the higher wavenumbers (greater than zonal wavenumber 3). The third dataset has
a wavenumber 2 perturbation instead of a wavenumber 3 perturbation. The difference in the behaviour of the
models is consistent, so we can safely conclude that the enstrophy cascade is inhibited in the semi-geostrophic
model. The use of a wavenumber 2 rather than a wavenumber 3 perturbation changes the answers significantly,
reducing the difference between the two models. This is to be expected, as the deformation radius corresponds
to wavenumber 3. Fig. 9 shows the potential vorticity distributions after 2 days for the original data. We can
see that the stretching is significantly greater in the primitive equation integration..

We next show results from the casegh0 = 5000. Fig.10 shows time series of the same diagnostics as plotted in
Fig.7. The kinetic energy changes are similar to those in the casegh0 = 105. The decrease in theH1 norm of the
velocity is somewhat less, being 45% in the primitive equation model and 30% in the semi-geostrophic model.
The rate of increase and the maximum relative value of theH1 norm of the potential vorticity are much less.
The primitive equation model still reaches its peak value at 2 days, much earlier than in the semi-geostrophic
model. Thus there is a general suppression of the enstrophy cascade, and the difference between the two models
is smaller.

In Fig. 11 we show the potential vorticity distributions after 2 days. The character of the fields is completely
different from Fig. 9, as expected from the differences in the initial data shown in Figs. 4 and 5. The difference
between the two models is much less apparent than with the larger value of mean depth.
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Figure 7: Graphs of diagnostics from integration of (top) primitive equation model and (bottom) semi-
geostrophic model against time.gh0 = 105.
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Figure 8: Graphs of the potential enstrophy gradient norm from integrations of primitive equation and semi-
geostrophic models against time for the first two days of integration using three different initial data sets.

4 Discussion

The main results of this paper are to reinforce earlier work that demonstrates the qualitative change in potential
vorticity dynamics between the casesL < LR andL > LR. The strong correlation of potential vorticity with
depth, rather than with relative vorticity, is clearly seen in the caseL > LR. The cascade of enstrophy to small
scales is inhibited in this case. The extra constraints applying to two-dimensional quasi-geostrophic flow mean
that the inhibition of the upscale cascade in the depth field can only be demonstrated in a three-dimensional
experiment such as the dynamical core experiment. Since the active scales in extra-tropical synoptic flow
are equal to or greater thanLR, the internal dynamics can be considered non-cascading and essentially non-
turbulent, as observed.

We have also shown that the enstrophy cascade is inhibited in the semi-geostrophic model. This is consistent
with the accuracy of this model for scales larger thanLR and inaccuracy for scales smaller thanLR. Since the
condition for semi-geostrophic theory to be accurate only requires that only one horizontal scale is larger than
LR, the creation of filamentary structures can be accurately described. However, they may be unrealistically
stable.

These results are very clear-cut, and reproducible with different choices of initial data. Though it would have
been ideal to use a contour dynamics code for the study, sufficient resolution was maintained for long enough
for the conclusions to be considered reliable.

The large differences between the potential vorticity dynamics in the two shallow water models has little impact
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Figure 9: Potential vorticity distributions after 2 days withgh0 = 105 for: top, primitive equation model;
bottom; semi-geostrophic model. Units and contour intervals as Fig.4
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Figure 10: Graphs of diagnostics from integration of (top) primitive equation model and (bottom) semi-
geostrophic model against time.gh0 = 5000.
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Figure 11: Potential vorticity distributions after 2 days withgh0 = 5000 for: top, primitive equation model;
bottom; semi-geostrophic model. Units and contour intervals as Fig.5
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on forecasts of the depth field. This is consistent with the finding of Methven and Hoskins (1998) that forecasts
of pressure and wind fields were very insensitive to increases in model resolution which improved the descrip-
tion of the potential vorticity evolution. Potential vorticity dynamics is important as an indicator of how well
tracers are transported. It is therefore important to determine whether observed potential vorticity filaments are
primarily visible as changes in the thickness of isentropic layers, or as relative vorticity filaments. In the former
case, the mixing may be much less efficient than suggested by classical two-dimensional turbulence.
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