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Abstract

An algorithm is presented for the detection of surface rainfall using passive microwave measurements by satellite
radiometers. The technique consists of a two-stage approach to distinguish precipitation signatures from other effects:
(1) Contributions from slowly varying parameters (surface type and state) are isolated by comparing observed bright-
ness temperatures to those obtained from previous orbits only containing rain-free observations. (2) Effects of more
dynamic parameters, i.e., surface temperature and moisture, are reduced by successive subtraction from the obser-
vations by means of principal component analysis. For this purpose, the general signatures of both temperature and
moisture variations are deduced from radiative transfer simulations. The fundamentals of this approach are based on a
methodology developed by Conner and Petty (1998). The technique is applied to TMI observations and compared to
co-located measurements of TMI and PR, as well as independent techniques over selected regions in Africa, North and
South America, as well as India. All techniques provide similar rainfall screening skill where our technique showed supe-
rior results over Africa, North America, and India. Based on Heidke skill scores as a function of rainfall and brightness

temperature range, an efficient calibration tool to retrieve near-surface rainfall intensities is provided. .

1 Introduction

Rainfall estimation from satellite data over land surfaces still represents a challenge because neither
at visible/infrared (VIS/IR) nor-at microwave wavelengths (MW) do raindrops provide significant
contributions to the total signal to allow a direct estimation of rainrate. Principally, cloud top tem-
perature and reflectivity is related to time-space averages of surface rainfall in VIS/IR methods.
The loose physical connection between these quantities prohibits an instantaneous estimate. At mi-
crowaves, surface emissivity is high and spatially variable which increases the uncertainty of the
atmospheric contribution estimate. Here, mainly scattering by precipitating ice provides the main
information on surface rainfall. However, since the beginning of VIS/IR and MW remote sensing
both data sources are exploited (Petty 1995). Recent accuracy assessments indicate average errors of
at best 50-100% with a strong dependence on season and region as well as dataset resolution (Bar-
rett et al. 1995, Smith et al. 1998). Thus algorithm improvements are only achieved if local surface
conditions are accounted for and if the signal to rainrate relationship is based on data which is more
representative of global rainfall system variability.

With the launch of the Tropical Rainfall Measuring Mission in November 1997, the first spaceborne
precipitation radar (PR) became available (Kummerow et al. 1998). It is a single-frequency (13.8
GHz), electronically scanning radar with nominal resolutions of 4.3 km and 0.25 km in the horizontal
and vertical dimensions, respectively. The cross-track scan pattern covers a 215 km swath consisting
of 49 beams along a scan angle of + 17 °. Its sensitivity is specified with 0.7 mm h~! with a calibration
accuracy of ~ 0.8 dB. A microwave radiometer is available on the same platform (TRMM Microwave
Imager, TMI) providing measurements at 10.65, 19.35, 21.3, 37.0, and 85.5 GHz on a conical scan with
a nearly constant surface incidence angle of 52.8? and a swath width of 760 km. All channels measure
vertically and horizontally polarized radiances (expressed as equivalent black body temperatures,
TB) except the 21.3 GHz channel which only measures vertically polarized radiances. Since only one
antenna is used for all channels the spatial resolution of the effective field of view (EFOV) depends
on frequency and ranges from 37 km x 63 km at 10.65 GHz to 5 km x 7 km at 85.5 GHz. The TRMM
orbit is non-sunsynchronous and covers latitudes between 38°N and 38°S. Thus the combination of
both sensors provides an excellent tool for the evaluation of available rainfall detection and estimation
techniques as well as for new developments.

The difficult microwave signal interpretation over land surfaces has favoured somewhat the imple-
mentation of empirical algorithms which make use of co-located satellite and ground-based (radar)
observations to derive a calibration of satellite measurements by reference data (e.g. Ferraro and
Marks 1995). For large-scale regional or even global applications this approach is hampered by the
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limited representativity of available calibration data sets. Thus co-located radiometric and radar
measurements from TRMM provide an outstanding data source covering tropical and subtropical
latitudes over various climatological regimes. '

The technique presented here makes use of a first-order approach to remove seasonally varying
surface contributions from instantaneous TMI measurements by generating maps of clear-sky tempo-
ral averages of brightness temperatures over various continents, i.e., Africa, India, North and South
America. Effects of surface skin temperature and moisture are removed to achieve an increased sen-
sitivity to low rainfall rates according to local conditions. The outline of the technique is presented
in Section 2. In Section 3, case studies are presented including retrievals over monthly time scales.
The paper is concluded by summary and discussion. ’ ’

In the following, rainfall intensity is always treated in terms of rain liquid water content (LWC) to
avoid uncertainties imposed by the somewhat uncertain drop size distributions and the dependence
of rainfall rate calculation on fallspeed parameterization. Additionally, both scattering (oc D®) and
emission (oc D?3) are closer related to liquid water and ice volume densities (where D denotes particle
diameter).

2 Methodology

2.1° Background fields

The algorithm implies that both rather slowly varying and more quickly varying changes of TBs
occur over time and space. While the latter include effects of surface temperature and moisture as
well as precipitation, the more slowly varying changes are caused by vegetation growth and decay
or land use changes. Due to the lack of accurate input data as well as models to describe these
variations, averaged TB distributions from cloud-free observations were generated employing the
globally applicable screening algorithm founded by Grody (1991) and refined by Ferraro and Marks
(1995). Based on this, all observations contaminated by wet land, precipitation, and snowcover were
removed.

The averaging was carried out for two periods: period 1 from 18/08/98-02/09/98 (241 orbits)
and period 2 from 13/12/99-05/01/00 (373 orbits) with a (0.25°)2 spatial resolution. All further
analyses were restricted to four areas which cover different surface and vegetation types as well as
precipitation regimes. Effects of orography on surface emissivity (e.g. M”atzler and Standley 1999)
were not accounted for because of the comparably low spatial grid resolution. From tests maximum
deviations of £5° from the nominal zenith angle were found producing TB variations below 2 K
(Burose 2000).

Figs. 1 and 2 show examples of average TBs and their standard deviations from period 1 over the
four regions at 85.5 GHz (horizontal polarization). The features are rather smooth and variations
are mainly introduced by open water surfaces (due to varying EFOV locations over time) and snow
together with undetected light rainfall and clouds. In the following, only those observations are
analyzed for which the standard deviation of the background TBs are < 10 K at 10.65 GHz to
restrict the investigation to homogeneous surfaces.

2.2 TMI principal components

TBs at different frequencies are usually positively correlated, in particular over land surfaces where the
background signal is rather strong. Only in case of scattering by precipitating ice the higher frequency
measurements are negatively correlated to those at lower frequencies. The full set of available channels
carries therefore some redundant information. The dimension of the input data set (9 for the TMI)
may be reduced by means of principal components.

2 Technical Memorandum No. 330



Rain Detection over Land Surfaces ... 90

The collection of TB-vectors from observations or simulations was therefore decomposed into
independent vectors by calculation of the covariance matrix of differences between the TBs and their
background values, i.e., dTB, = TB, — TB,. Then, a matrix of eigenvectors, Eo, can be computed.
The EOFs are like the TBs a matrix composed of m measurements / simulations and n channels:

EOF, = TB, E, (1)
EOFs are orthogonal to each other in vector space, i.e.:

S EOF,EOF; =0 2)

while:

Y TB{TB;#0 (3)

for 4,7 =1,n and i j. Moreover, the associated eigenvalues, );, provide the contribution of each
EOF to the total variability in decreasing order. The first EOF represents the largest contribution to
total variability, the second EOF the second largest etc. In case of TMI TBs, the A of the first three
EOFs usually sum up to more than 98% of the total variability.

2.3 Temperature and moisture effects

The idea of surface effect correction by generating datasets where either temperature or moisture
dominate the signal and which are subtracted from the actual observation signal by orthogonalization
follows the approach of Conner and Petty (1998). For each observation, the departure from the
background signature is corrected by:

5TB0’ =0TB, — < dTBg, e > e (4)
— < 0TBo,em > em

et m denote the first eigenvectors of the synthetic temperature (t) or moisture (m) correction data
set originating from simulations as explained below while < .,.> denotes an inner product. Thus
the second and third terms on the right-hand side of the equation represent the signatures from the
unwanted contribution projected into TB-space.

“The final objective is therefore the reduction of the orginial TB departure to its equivalent only
containing precipitation information. Thus (4) has to be carried out to cancel out both temperature
and moisture effects. Only the first EOF is used since it is assumed that the isolation of individual
signatures (of temperature etc.) is successful so that the first EOF contains all information of this
variables thus a very high explained variance. '

In contrast to Conner and Petty’s method, we only use radiative transfer simulations in the correc-
tion because observations-in particular over land surfaces—always suffer from insufficient screening
of unwanted effects either from the surface or from the atmosphere. Since the synthetic datasets
used for setting up the eigenvectors for correction in (4) are supposed to show only the signature
of either surface temperature or moisture, remaining other effects represent a serious problem. For
example, if data containing precipitation is included, the correction suppresses precipitation signa-
tures in the observations even though aiming at precipitation estimation. Thus simulations provide a
significant advantage over observations. Finally, the moisture dataset is not corrected for temperature
contributions as was necessary in Conner and Petty’s approach.

Radiative transfer simulations were carried out for cloud-free atmospheres using radiosonde ob-
servations of temperature and humidity profiles combined with a semi-empirical surface emissivity
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model (e.g. Bauer and Grody 1995). The model was employed in a simplified version which allows
to estimate vertically and horizontally polarized surface emissivities at the desired frequencies as a
function of skin temperature, fractional coverage of vegetation and water as well as surface roughness.
The absolute model accuracy is questionable; however, in this study we only aim at relative effects
of temperature and moisture on TBs. Two datasets were generated:

¢ Temperature: Differences between TBs from similar profiles and for identical surface conditions
were calculated where only the skin temperature was modified to +5 K and -5K of the temperature
of the lowest atmospheric layer. Through the profiles, vegetation coverage was randomly varied
between 0 and 1, water coverage was set to 0, and roughness was varied between 0 and 0.1 cm,
respectively. '

e Moisture: As above but for identical skin temperatures using fractional water coverages of 0.5
and 0 (dry land).

After calculation of covariance matrices and eigenvectors, the explained variance by the first EOF was
89% for the temperature and 86% for the moisture dataset. Finally, corrections were applied with (4)
to all observations from both periods and all regions. From this, eigenvectors, i.e. ep, p=precipitation)
were calculated assuming only precipitation signatures are left.

Results for the first three EOFs and all regions are displayed in Figs..3 and 4 for periods 1 and 2.
One common feature is the decrease of ep, with frequency in the first EOF. This is fairly independent of
region as well as time period suggesting a globally constant ep. The explained variance, however, has
a rather strong dependence on region and period, ranging from 61% to 87%. A possible explanation
is the variability in the atmosphere due to cloud water and water vapor indicated by positive ep at
lower frequencies and slightly negative e, at 85.5 GHz in the second EOF. Over India, the monsoon
in period 1 vs. its break-up in period 2 reflects this interpretation. The contributions of the third
EOFs are not significant with explained variances below 6%.

Finally, the precipitation signal can be obtained from ep by:

PI=<0TB,, ep > (5)

where PI represents an index (in units of K) which is positively correlated to rainrate (rather to ice
water path).

2.4 TMI-PR co-location

Calibration requires co-location of TMI and PR observations which are recorded along different scan
geometries and resolutions. First, the TMI reference resolution was defined to be either that of the
19.35 GHz or the 85.5 GHz channel to investigate the difference. In both cases, the effective field
of view (EVOV) was enlarged by a factor of 2.5 to cover the area of which ~98% of the signal are
received (vs. 50% from the 3 dB EFOV). The EFOVs are approximated by ellipses and the antenna
gain function by Gaussian functions following the orientation of the real EFOVs along the scan. Only
those PR pixels which cover the inner PR swath (beams #15-35) and which were registered at 2 km
altitude were included to avoid ground clutter effects which increase with nadir angle and closer
to the surface. To minimize sampling problems, only TMI-PR data pairs with valid PR retrievals
(LW Cpp > 0g/m3) covering more than 80% of the TMI EFOV were used. -

Principally, rainfall algorithms over land make use of the information contained in the 85.5 GHz
TB, thus their reference resolution would be 5 km x 7 km for the TMI given that the surface can
be considered homogeneous over the footprint of the lowest employed frequency. Intercomparison
of retrievals on the resolution of the 19.35 vs. 85.5 GHz TMI channels with PR estimates indicate,
however, that algorithm perfomance decreases with increasing resolution. This is an effect of the
parallax effect introduced below and the fact that the physically loose relationship between surface
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rainrate and precipitating ice path that improves with footprint size used for averaging (Burose 2000).
Consequently, all further results refer to the resolution at 19.35 GHz, i.e., about 18 km x 30 km.

Data from the first day of period 1, i.e., 16 orbits on 18/08/98 were used for the following evalua-
tion. Thus between 1,000 and 10,000 rain contaminated TMI-PR data pairs were available depending
on region.

2.5 Parallax correction

An important issue is the projection of all signatures to the radiometer footpoint. If the major
signal contribution originates from larger altitudes, the comparison to radar data at the footpoint
location may lead to errors in the calibration dataset because the radiation source is located above a
different footpoint for off-nadir viewing sensors. This is more serious at higher frequencies because the
weighting function peaks at higher altitudes thus further away from the footpoint. A method similar to
that of Bauer et al. (1998) was developed here to correct for this effect over land surfaces and with TMI
data. For this purpose, radiative transfer simulations based on mesoscale cloud model simulations
were carried out using modél experiments from the Cooperative Huntsville Meteorological Experiment
(COHMEX, Smith et al. 1992), the Cooperative Convective Precipitation Experiment (CCOPE,
Johnson et al. 1993), and the Convection Profonde Tropical Experience (COPT-81, Redelsperger
and Lafore 1988). The quasi-three dimensional radiative transfer model of Bauer et al. was employed
with the TMI observation specifications, varying surface conditions, and observation geometries (i.e.
TMI overpass directions).

The centers of gravity, zcg, of the weighting functions were calculated providing a measure of
the altitude of the major signal contribution. From all simulations, a regression-type relation was
derived to serve as an estimator of zgg from TMI observations. The PR observations have to be
shifted towards the sub-satellite point by:

dce = R.B=zcqa (6)
1 R. \?
S

where R, =6370km denotes the earth’s radius and § is the angle between earth’s center, EFOV
footpoint and corrected footpoint of the raincloud. In non-raining conditions, dgg has to be 0 while
in tropical convection it may reach values of up to 15 km. In any case, the accuracy of this correction
depends on the representativity of the cloud simulations keeping in mind that all model clouds
represent rather strong convection with significant amounts of cloud ice.

Fig. 5 compares the correlation coeflicients between PI and rain liquid water content obtained
from PR data (LWCpg) before (left column) and after (right column) correction using regressions
for 2¢g from all three cloud model simulations seperately and together. The x—axis represents the
Zcg-intervals to which the correction is limited. The general increase of correlation with altitude
range indicates the increase of the precipitation signal in the PI with increasing convection intensity.
For example, over India for 2¢g € [4 — 6km], the parallax correction improves the correlation be-
tween Plrpr and LW Cpgr by 0.05 applying the CCOPE or COPT-81 regression. It is evident that
CCOPE and COPT-81 simulations perform better over all regions, except over South America where
COHMEX shows higher correlations. COHMEX represents the deepest isolated convection among
the simulations with large amounts of graupel. The intercomparison shows larger zpg over South
America than over the other regions, i.e., the correlation curves do not show the same saturation
as the others. The improvement obtained from the parallax correction becomes evident for altitudes
above 4 - 6 km, except over Africa and South America. Based on these results, the parallax correction
was applied only for zog > 5 km when calculated from the COPT-81 simulation.
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2.6 Heidke skill score

As in Conner and Petty (1998), the Heidke skill score (HSS) was employed to quantify the accuracy
of rain detection from both PR and TMI:

2(AD — BC) .
B2+ (C?+2AD+ (B+C)YA+D) - ()

HSS =

where A/D denote the number of cases where both TMI and PR gave precipitation / no precipitation
while B/C are the number of cases where TMI predicted no rain / rain and PR observations showed
rain / no rain, respectively. HSS = -1 would describe negative skill, HSS = 0 is no skill, and HSS
= 1 is perfect skill. To extend its application beyond rain identification, the datasets were classified
into intensity ranges with a lower threshold. Thus, A, B, C, and D depend on algorithm threshold
and LW Cpg: '

m n

k=i I=j

m j—1
B(i,5) = »_ > sk

k=1 =1

i—1 n

D@, j) = s(k, 1)

where s (k,1) denotes the number of counts with indices ’i, k’ referring to PR rain LWC (in g/m?) and
j, I referring to algorithm threshold (in K). (m, n) denote maximum numbers of intervals for each
quantity. Maximum HSSs per LWC threshold as well as correlation coefficients of the total sample
were also calculated. Since the frequency distribution of TB depression due to scattering is more or
less flat while that of LW Cppg rather follows a logarithmic behaviour, intervals for LW Cpgr were
defined from logio[LW Cpg]. This also enhances the sensitivity of HSS to lower rainfall intensities.

The interpretation of (7) and (8) in this context is that, for example, A (i,j) gives the sum of
samples above a given rain LWC and algorithm threshold, i.e., the weight for a positive skill above
(i,j). B represents the sum of samples above a given rain LWC and below the algorithm threshold,
i.e., a negative skill with respect to rain above (i) and TBs below (j). C and D work similarly with
respect to algorithm thresholds.

2.7 Other algorithms

For comparison, algorithms - originally developed for the Special Sensor Microwave / Imager (SSM/I)
— were employed due to their simple coding and general availability (e.g. as part of the standardized
products provided by the Global Precipitation Climatology Project, GPCP). The basic difference
between the two instruments are their spatial resolution and the replacement of the 22.235 GHz SSM/I
channel by the 21.3 GHz TMI channel. Due to the small cloudfree atmospheric signal contribution
over land surfaces, the latter effect should be small. Since the resolution of the PR product is rather
large (2.5 x EFOV dimensions of TMI 19.35 GHz channel), the difference between sensor imaging is
also considered of minor impact.

The NOAA / Satellite Research Laboratory algorithm (NOAA/SRL, Grody 1991, Ferraro and
Marks 1995) involves a stepwise screening of different surface types and precipitation depending on
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TABLE 1. Correlation coeffcients between LW Cpr and TMI precipitation indices (PI = eigenvector index, SI = scattering
index, 2C = two-channel index, GS = 85 GHz index, n = sample size).

Region n PI SI 2C GS

Africa, 3576 0.90 0.86 0.85 0.89

S. America 10077 0.60 0.70 0.70 0.65

India 1037 0.70 0.59 0.55 0.63 -

N. America 6686 0.83 0.78 0.73 0.82

their frequency dependent emission and scattering properties. Both screening and rainrate estimation
use a scattering index (SI) defined as the difference between the predicted TB at 85.5 GHz using
19.35 and 22.235 GHz TBs and the observed 85.5 GHz TB. The prediction is for non-raining and
non-scattering scenes thus the departure is a measure for rain intensity once scattering surfaces are
excluded. The NASA Goddard Scattering algorithm (GSCAT, Adler et al. 1993) originates from
combined mesoscale cloud - radiative transfer simulations and calibrates GS = 262K — T'Bgs linearly
to surface rainrate. Finally, the Conner and Petty 2C algorithm simply compares TB differences at
37.0 and 85.5 GHz with those from the background field. Again, the TB departure represents the
precipitation signal. SI and GS also provide rainrates when used with their calibration coefficients,
however, since we aim at rain detection and PI is not yet calibrated, only indices, i.e, PI, SI, 2C, and
GS are compared (all in units K).

3 Results

Fig. 6 shows an intercomparison of precipitation indices from the above algorithms and LW Cpp >
0.01g/m?2 for all samples from period 1 and all regions. Sample sizes and correlations over all data
pairs are given in Tab. 1. From the scatter diagrams, all algorithms seem to perform similarly;
however, PI has a somewhat larger dynamic range in terms of K also indicated by the slightly
higher correlation coefficients over all regions except South America Over India the improvement
is significant with 0.07. The maximum HSS distributions indicate a larger skill of PI over South
America at very low LWCs and over India and moderate LWCs. However, for low to moderate LWCs,
PI performed worse over South America. For the remaining cases, PI and GS perform similarly while
ST and 2C show a weaker performance. This is an important observation because GS consists of a
simple TB difference indicating that over land surfaces lower frequencies than 85.5 GHz contribute
very little to rainfall detection. Generally, the skill is weak for low and high LWCs giving best
performance for LW C € [0.03, 0.3g/m3] ~ [0.5 — 8mm/h]. Above, the connection between ice water
path and rainfall at the surface deteriorates with increasing cloud development stage while below the
surface contribution is too strong.

HSSs are displayed in more detail in Fig. 7, here only for PI and GS. Both techniques show highest
skill scores (> 0.8) over Africa for the above mentioned LWC range. The more shallow convection
over India during the monsoon period reduces HSS and correlations while North and South America
are represented similarly. PI shows some skill at very low LWCs over South America as well as Africa;
however, more data has to be analyzed to investigate this feature. Another observation is the non-
linear relation between indices and LW Cpp. Since GSCAT (based on GS) employs a linear calibration
to rainrate while SI does not, larger differences can be expected once rainrates are compared. Here,
HSS offers a tool for determining a calibration for PI which may be updated over time and adjusted
to each region with e, being rather constant for all investigated areas and time periods.
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4 Summary and Conclusions

A method for rainfall detection from spaceborne passive microwave observations introduced by Con-
ner and Petty (1998) was adapted with focus on application to TRMM data. The availability of TMI
and PR data from the same satellite provides an excellent tool for algorithm testing and calibration.
The method is based on the correction of brightness temperature departures from long-term averages
for small scale influences by surface skin temperature and moisture thus isolating the precipitation
signature. This process is carried out through orthogonalization using eigenvectors obtained from

' separate datasets which only contain signatures of the effects to correct for. The Conner and Petty
technique was modyfied by introducing radiative transfer calculations from cloud-free radiosonde
profiles of temperature and moisture and a microwave surface emissivity model. This allows a cleaner
isolation of surface effects as opposed to observations. The technique was applied to two periods and
four geographical regions to investigate algorithm compatibility.

TMI and PR data were unified to represent average near-surface rainfall intensities (as LWCs)
involving a correction for parallax effects. This was developed from combined cloud model- radiative
transfer simulations using experiments from various non-hydrostatic models. It was shown that the
correction produced improved results once major signal contribution originates from altitudes above
5 km. However, a strong dependence of parallax correction performance on training dataset was
found requiring more representative simulations.

Intercomparison of our technique with standard indices (such as NOAA’s scattering index or
NASA’s 85.5 GHz TB index) showed slightly better performance over three out of four regions with
best results over India. Heidke skill scores proved to provide a more sensitive intercomparison tool
than correlation coefficients only. They also allow the calibration of TB indices to actually provide
rainfall rates or LWCs. While the principal component analysis resulted in a rather constant rainfall
eigenvector for all regions and both periods, the calibration to rainfall intensity would depend on
region and period. Consequently, the following activities have to focus on the non-linear calibration
of PI by PR observations covering the investigation of calibration stability and its dependence on
region.
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Figure 1. Average brightness temperatures at 85.5 GHz over selected areas for period 18/08/98-02/09/98.
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Figure 2. As in Fig. 1 but for standard deviations.
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Figure3. First three EQFs (from left to right) of e, for selected regions (from top to bottom) for period 18/08/98-02/09/98.

Numbers indicate percentage of explained variance.
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Figure 4. See Fig. 3 for period 13/12/99-05/01/00.
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Figure 5.

Correlation coefficients between uncorrected (left column) and corrected (right column) PR. coordlnates per lower
altitude threshold applying parallax correction from cloud model simulations.
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0

Figure 6.
all regions

Scatter of precipitation indices vs. LWCpgr at 2 km altitude

from period 18/08/98-02/09/98.
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o
Figure 7. Heidke skill scores for all regions from period 18/08/98-02/09/98 for PI (left column) and GS (right column).
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