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Abstract

A new system of equations for the two point spectral correlation functions is derived. The new equations are used to
demonstrate the instability of homogeneous wave fields to inhomogeneous disturbances.

1. Introduction

Starting with investigations of Phillips (1960) and Hasselmann (1962, 1963) there has been much interest-in
the energy transfer due to 4-wave interactions in a nearly homogeneous random sea. Longuet-Higgins
(1976) derived the narrowband limit of Hasselmann’s equation by starting from the nonlinear Schrodinger
equation, describing the evolution of the envelope of a narrowband, weakly nonlinear wavetrain. All this
nonlinear energy transfer occurs on a rather long timescale since the rate of change of the action density C is
proportional to C*. Hence ' '

(9C/0t)/C=0(c*w,) ‘ (1.1)
where £ is the wave steepness and @, is a typical frequency of the wave field.

A much faster energy transfer is possible in the presence of spatial inhomogeneities. For an inhomogeneous
random sea Watson & West (1975) angWillebr‘éﬁ’d (1975) obtained some lower-order corrections to the
" ‘transport"quation- of Hasselmann. Also, Alber (1978) and Alber and Saffiman (1978) derived an equation
describing the evolution of a random narrowband wavetrain. Just like Longuet-Higgins (1976), their starting
‘point was the nonlinear Schrddinger equation. Finally, starting from the Zakharov’s (1968) equation,
Crawford, Saffman, and Yuen (1980) obtained a unified equation for the evolution of a random field of deep-
water waves which accounts for both the effects of spatial inhomogeneity and the energy transfer associated
with a homogeneous spectrum.. From their analysis it became apparent that the spatial inhomogeneities gave
rise to a much faster energy transfer: |

(aC/ar)/C=0(%am,), (1.2)

although this energy transfer is reversible. The energy transfer associated with a homogeneous sea is,
however, irreversible. It should be emphasized that the assumption of an inhomogeneous wave field makes
sense because Alber (1978) showed that a homogeneous spectrum is unstable to long-wavelength
perturbations if the width of the spectrum is sufficiently small. For a Gaussian spectrum the instability

criterion was 0, /@ ,< €, where 0, is the width in frequency space. Similar results were also found by

Crawford el al (1980) for a Lorentzian shape of the spectrum. In the limit of vanishing bandwidth the
deterministic result of Benjamin and Fair (1967) on the instability of a uniform wavetrain was recovered.
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Still the question remains as to whether a random field of surface gravity waves has to be regarded as
inhomogeneous or not.”

The aim of this paper is to demonstrate, by way of a counter example, that the instability of homogeneous
random wave fields to inhomogeneous disturbances is not limited to narrow spectra. The implication of such
a conclusion is far-reaching, since it renders the current way nonlinear interactions are treated in wave
forecasting models inadequate. More adeqﬁate models, from the deterministic and the stochastic points of
view are given in sections 2 and 3, respectively.

The formulation in Fourier space, of the linear stability of homogenous spectra to inhomogeneous
disturbances is given in section 4. Two examples, one for a narrow-spectrum, and the other for a bimodal
spectrum are calculated in sections 5 and 6.

2. Deterministic equations

Our starting point is the discretized Zakharov equation, recently obtained by Rasmussen and Stiassnie
(1999):

0By, »
ot

i +ie, VB y—
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where

p =™ 22
=l | | | @2)

are discrete wave-numbers. m and 7 are integers, and A is the increment of a rectangular mesh in the wave-

number plane. 8, denotes Kroneckr’s delta. ¢, is the group velocity. The angular frequency @is given by
@* = gk, g being the acceleration due to gravity. The free surface elevation n(x,t)and the velocity

potential at the free surface y/(x, t) are related to the spectral amplitude functions B, , (x, t) through

1 @, il X~ ot . i (e X~ ut) ‘
net) =0z % \}3? (B"""e Bl ) ” | 2.3)

* Most of the background material up to this point was taken from Janssen (1983).

40



STIASSNIE, M.:NONLINEAR INTERACTIONS OF INHOMOGENEOUS RANDOM WATER WAVES

m,n m,n

Ving)=tx [E (5 dhrromd_pr o) gy
~ and the opposite relation

A? g ~ —i{ iy - B )
B, == n(x,t)+i , w(x ) [e I g (2.5)
2z \ 20,

A is a square with center x and side length 2L =27/A, so that the inside of this square is defined by
Xe (x—L,x+L) and ye (y-—L,y+L).

Rasmussen and Stiassnie define two small parameters. One is the wave-number resolution parameter

S=A/ kp and the other is a nonlinearity measure £ =a; where kp and a are typical wave-number and

typical amplitude, respectively. Here we treat the case ¢ /& = O(1), for which the dispersive terms in (2.1)

are of the same order as the nonlinear term. Alternative formulations are discussed in Appendix A.

3. Stochasic equations

It is assumed that the system (2.1) for the spectral amplitude functions B,, (x,t) describes the evolution

of the wave-field also when B,, , are random functions. For waves undergoing weak nonlinear interactions

we follow Alber (1978) and seek a system of equations for the slow variation of the two-point space
correlation spectral functions.

Paw (%,%,,1) = <BMN(x17t)B;I,N(x25t)> ’ R ER )

where superscript * denotes the complex conjugate. In eq. (3.1), thergngle brackéts denote an ensemble

average. We write eq. (2.1) at the point x; = (x1 'V ) , multiply. it by BL, y (x2 ) and add it to the equation

for By~ (x,) multiplied by B . (%) , and take ensemble average. The resulting equation is
< v (%) By (x )>+lchN (V +Vy )< MN(xl)B;I,N(xZ))_
M?-2N*( & 82+6MN AN
SkM Na)MN M*+N? | o ox2 | M?>+N*|oxdy, ox,,

—-2M? .
M N (ay ? H B (3) B (5) = (32)

= 32 X T(Kyys Ky Fomy g Koy ) Orc (Rrg e+

my,n my,0g 27T 1 my mn_mm)
iy oy Mg o0y Py 71 11 2 2472 35713 17 221 3571y

.{e (w,,, N Oy wmz.nz_wm}v"f‘)t <B;[,N (xz)B*ml,n; (xl)Bmz,,,z (xl)Bm]’,,,} (x1 )>_

—e (mM N Oy iy = Oy =By )f <BM,N (xl )Bml,"l (xz)B*mz,nz (xZ)B*mJ,m (x2 )>}
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The derivatives with respect to x;,,,%, and y, can be replaced by derivatives with respect to the average

coordinates

1 1
x=5(x1+xz)= y=oty) (3.3)
and with respect to the spatial separation coor&inates
Le=X—X, NL=Y—X, (3.4)

Thus from (3.2) we obtain for g, (x, r,t) :

OPuw - = g M?-2N? aszN
R 7 JNY, - =+
ot s L xPow 4kyy @y | M+ N*  Oxor,

+ 3MN asz.N + asz,N + N’ -2M? asz,N —
M?+N*| oxdr,  oyor, M?*+N* oyor,

=3 % I T(kyn.k )8 (Fae s+

my.ny 2 my gy 2T my
ny,ny My Ny Ny 127 2272 353

(3.5)

LURLLY iy, hy my,hy )

_{ei(wM,N+mmm—mmzmrfx'ews.ﬂ)f <B;4,N (xz)B*ml,nl (xl)Bmz,nz (xl)Bm,,m (xl )>_
—i( It N+ @y~ Py “‘”ma,l_\’ * *
e Wy N +0, Wy oy l <BM,N (x])Bml,ll, (xz)B iy (xZ)B ny,my (x2)>}

As seen in (3.5) the evolutionary equation for the second-order correlation involves fourth-order correlation

terms. To evaluate these terms, we assume that B, (x,t)- correspond initially to a Gaussian random

process, and we further assume that the evolving random amplitudes retain the same Gaussian statistical
properties. For Gaussian statistics, the fourth-order cumulant vanishes, allowing us to write the fourth-order
correlation in terms of products of pairs of second-order correlations, i.e.

(Bl (%) Bmn (%) Buy o (5) By, (%1)) =

; (3.6)
= 2<B;4.N (xZ)Bmz,nz (xi }}{B""V”l (xl )Bm'-,_n.1 (x1)> 51{ (kM,N —kmz,nz )51( (km,,n, —kmj,m3 )

A similar expression can be written for the other fourth-order correlation in (3.5). Under the Gaussian

closure approximation then, eq. (3.5) can be wriiten

Py

i

+iCun ¥ ePyn =5
Gy NDy N

,_3MN FPun  F Puw SN O P | _
M?*+N?| oxdr,  dvor, M*+N* oyor,

g M?-2N? asz,N +
M?+N?* Oxor,

3.7

'=2pM,N % T(kM,Nﬁgz’{m,nP'%M,:‘!?g{m,n)licm,n (x—i-%rj—cm,n (x-%r):l
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where

C,.(xt)=p,.(%0,t) (3.8)

is the wave action spectral function.
4.  Formulation of a linear-stability problem

In order to study the stability of homogenous spectra to inhomogeneous disturbances it is convenient to
transform (3.7) from the physical to the Fourier plane.

First, we define

P v (4,7,2) ijN (x,r,t)e ™ dx ‘ 4.1

and take the x to q Fourier transform of (3.7):

.aﬁMN A ‘gi M?-2N? ap\MN
R ——(ec . - ' LA
Y ( eM N q)pM,NV 4k, Dy n M N 9, or.
4 3MN Py v g Py n +N2—2M2 . 0Py n _ 42
M?+N*| 7 o, 7 or, M*+N* ™ or, ‘
1 R A i(g-a1) T i(g-q)E
T E’TM N),(m,n)J-pM,N (ql ) mn (q_% )l: 2 e szqn
where JZM,N)(m,n) =T (kM,N.km,n,kM,N,km,n )-
Next we define
pM N (q,p, ij N q:r t) Iprdr ' - 43)
and take the r to p Fourier transform of (4.2):
Pyn A g [M?P-2N
2l + + +
>y (Cqrn) Pt o N P A (¢.p, +4,p,)
N2 -2M*? A o
0,8,V = E By Con@-) (44

2 1 2 1
'I:pM.N_(qI’p_E(q_ql)at)_pM,N (QI,P'EE(,q—q,),tﬂdql
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However

A

1 ¢2
Cm,n (q) = _i;jpm,n (q’ pl )dpl H (4'5)

so that finally (3.7)reduces to

Pun

~(eqpn- )p +—& M -2N° +———(q,p,+q,p.)+

or o ) Punt e o e N Py P TP
N?-2M? 2 1

TN 9,P, | Pu = 2 Lo s )] Ponn (@ -15 P2 (4.6)

2 1 2 1
~[,0M,N (ql,p—z(q—ql),f)—pM,N(qpp+5(q~ql),tﬂdqldpl

For a homogeneous ocean p,,, is independent of x and we denote it as p,(nhz, (r,t) , so that its xto ¢ and

r to p Fourier transform is 275,5(") ( p) ) (q) . From eq. (3.7) or (4.6) one can see that any homogeneous
wave-field is necessarily also stationary. The main issue of this note is to address the question of stability of

the homogeneous solution to a small inhomogeneous disturbance p,(:,), (x,‘r, t) .
Substituting
Punn (@ 1) = 27D (DY (@) + Prua @, P,1)s (4.7)

into(4.6), and linearizing in p(d) we obtain:

m,n?

d V(d)
latpM‘

N? -2M*?
+ M2+N2 q}’py

g M?*-2N?
P [ IYEYE q.p:+
M.NwM,N +

{1t (9.p, +4,p.)+

3MN
M?+N?

2 1_2 q. = q 2
d) __ h (h
]}pMI)V "';[p;!l,(p—-i)* pMI,:v(p-I-E]”%,T(M,N).(m.n) jp f”d’)'(q, D )dpl (48)

Assuming disturbances with wave number q(d) and frequency Q:

PPun=fun(p)e T N(g gy (49)
and substitution in (4.8) gives:
M?-2N? 3MN N?-2M?
r—=2 @Dy +— (DD +qPp) g p1} f (D) =

(q

9 Px q
4kM_Na)MN M2+N2 M?+ M*+N* 7 57

(4.10)
1 2@ :
= ;[P A(l]‘l,(P ) (l) (P _")] Z T(M.N),(m,n)jf mon (p)dp,
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Dividing eq. (4.10) by the term in the curly brackets, integrating over p, and defining a new variable

0, =] f.(p)dp,, (4.11)

the following algebric linear system is obtained

Qyn = M,NZTEM,N),(m,n)am,n (4.12)
where
A k) 4“2 g
1 J‘ (O3, (p_T)_pM’.N (p+7)]dp
Lyv== 2 2
' g M~ -2N" (@) @) N’ -2M?
Q+ —qp,+————@¥ p, + T
AT VS LU SR v LR SR M S v vl e
4.13)
In Appendix B we show that 513')1\' has the following relation to the wavenumber spectrum Sy,:
2 ar’g  sin*(p L) sin® (pyL) @, 5
p)= 1+ - S +k (414
Pun(P) L4a)M,N [ pi wz(kM,N 1p|m (P M,N) )
For simplicity we assume the homogeneous spectrum to be discrete, so that
Sﬂfl(k) = Z Sm,n5(k.—km,n)’ ‘ : SRR SRR (415)
In the sequel we’ll study two particular cases. A unimodel spectrum, for which
Spp = S, 0(k-k,) |, k,=(k,,0) (4.16)
and the bimodal case
S,, =S,6(k—k,)+S,0(k~k,), : (4.17)
3. The instability of a unimodal spectrum
 Substituting (4.16) into (4.14) gives
87°gS, ., o R e
=E%5(p), 5.1)

AP (p)=

(]

so that (4.13) becomes
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1, =2 g 210 - (ssz,,) (6" ~ 24 62
Equation (4.12) degenerates into
LT, =1 (5.3)
with
T,=k>/4n’ (5.4)
Solving for £ we obtain
Q2 = 82 £ & (g -2 1 (d)z )g'? -2 (d)2 —32k04S0) 53

For stability we need Q° >0. If q ¥ < Zq(z)2 both brackets in (5.5 )are negative and the situation is

stable. However, for

2 2
g >2¢@* and
y

x

kS, >+ (qr“”2 2¢1") (5.6)
a homogenous sea is unstable to the inhogenous disturbances.

-For unidirectional seas, i.e q( ) =0, equation (5.6) gives

(qu ) /k, )2 < 32(/«3 S, ) ‘ G.7)
The most unstable disturbance and its growth rate are » ’
(Gmax /Ko ) =16(k§_ S,,) , 5.8)
and
Qo /Ko =2(k§so) | (5.9)

which is the stochastic manifestation of the Benjamin and Feir instability.
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6.  The instability of a bimodal spectrum
For the bimodal sea given by (4.17), equation (4.12) gives
o =1,(To4 + T, yoy) (6.1 D
Oy = I (Ty 04+ Thoy) 6.15)

To simplify the algebra we assume that the original waves, as well as the disturbances are collinear and that
ky >k, . Under this condition .

K’ ky Kk
T, = 47;_2 > Ty _41_7:_2, Ty=Ty,; = 417; (6.2)
-27*g*S g
[ =——2 14 /[Q - (——)*¢* 6.3
a1 Y G ] | (63))
—2n°g*s g |
I, =—=2 12 /[Q" - (——)¢* 6.3
1 kua)zn [ (Skuco“) q'] ‘ | (63)
For (6.1) to have a solution its detenninan; must vanish, i.e:
I, T, -Dd, T, -H= Tl Xy (6.9
which reduces into a quadratic equation for Q*
Q' +bQ* +¢c=0 - o (6.5)
where
b=(1S +nSwe’ - (6 +6)g" -~ o (6.6)
c=(Y— 712)SISIIQ4 ~(hS0y+ VuSub)q’ +6,6,4° - (6.7)
and -
"= gk] /2, u = gkII /2 5 64k3 5 511 —mﬁ' (68)

One can show that the dlscnmmant of (6. 5) is always positive, so that (6. 5) has always two real roots. For
stablhty both roots- have to be positive, which requires b < O and ¢>0.
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The first condition, b < 0, yields

2y 7S+ YuSy _ 32Kk/ by (kS + Ky Sy)
8, +0y K +ky

=g 6.9)

The second condtition, ¢ > 0, leads to
0<g*<s, q°>s5,>5 (6.10)

where s, , are solutions of ¢ =0, (see 6.8), namely

$12 = {71511S1 + 711515’11 i\ﬁylall‘gl + 71151S11 )2 — 4y, (Y — 71)51511S1S11 }/251611 (6.11)
both of them positive.

Thus, the region s, < g° < s, is always unstable. However the instability region may be wider, depending

on the location of s compared to s;, and s, .

Example (i): two adjacent modes

Here we choose ky =k, , ku=k, + A; and S; = aS,, Sy (1 — @) S,. The instability range 0< g <./s, is
given by

@@ /k,f <32-i+0? -a) 0/ 8, ) (2s,), 6.12)
where the representative wave-number is

ke=k,+(1-0a)A (6.13)

For ot =0, 1 we recover the unimodal result (5.7).

For o= Y the instability range, and the growth-rate are

(qu) /s )2 <32(1"0-25A/k1/2) (kf/zso)’ (6.14)
and
Q,,,/ gk =2(1_O-25A/k1/2) (klz/zso) (6.15)

Both the instability range and the growth rate coefficients are smaller than in the unimodal case (either o =
1, or o = 0), which seems to support Alber's finding that a narrow spectrum tends to become less unstable
when widening.

48



STIASSNIE, M.:NONLINEAR INTERACTIONS OF INHOMOGENEOUS RANDOM WATER WAVES

Example (ii): two well separated modes

Here we take ky = 2k; = 2k, ; and 51 = oS,, Sn = (1 — o) S,. The representative wave-number is
ko= (2 - o)k, ‘ S (6:16)

The instability range and the most unstable mode for o, = ¥ are

(qg(cd) /Ky )2 <g(17+‘/g) (kl/z ) ‘52-2(7‘712/2 S, ) ‘

6.17)
and ’
Q5 / gk, =217(k2,S,) O (618)

Note that the instability ‘range coefficient 52.2 is significantly larger than 32, its counterpart for the: uniniodal
case. The growth-rate coefficient 2.17 is also somewhat larger than 2, see equation (5. 9) Thus the
broadening of the spectrum, in this case, seems to contradict Alber's result. '

7. Discussion

Based on the examples given in section 5 and 6, we conjecture that almost any homogénoﬁs wave field is
unstable to inhomogeneous disturbances. This contradicts the conclusions of previous authors that found no
instability above a certain spectral width. However, their conclusion was based on a model equation, ‘which
is valid for narrow spectra only, Wthh makes any results regardmg wider spectra doubtful 1f not
meamngless

If our above conjecture will find further support, which we believe it will, then the way nonlinear:interaction
in wave-forecasting models is treated; will require a significant change. Namely, models like our equation
(3.7) for two-point spectral correlation function, will replace Hasselmann’s action transfer equation.
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Appendix A: Alternative formulations
Equation (3.50) in Rasmussen (1999) reads:

o (k2 -2k 32 6k k, 9°B k*-2k% 32
g—li+cg-VB+ £ | = 2y81;3+ x2y8B+y x OB
ot 8kw| K® - ox k*  oxoy S e

= "iJ._” Toa2s BB, B, ()G o sdkdk,dk, (A1)
where

B(k,xl,t)=i [ £ n(xo,x1)+i1,2£ v//(xo,x,)J e kx0met) gy (A2)
g

2z 2 2w

In the derivation procedure of (A.1), Rasmussen follows similar steps as for the Zakharov equation, but takes
into account multiple horizontal scales (x,, xi,...). Rasmussen leaves the question of the relations of 77(x,,x;)
and ¥(x,,x;) to measured records of 7)(x) and y¥(x) somewhat open.

To obtain (2.1) and (2.5) from (A.1) and (A.2), one should adopt the following definition:

-]

77(xo ’ xl ) = 2 Cm,n (xl )ei”(mo+nyo )/L (A3)
mn=—co
where
xj+L yn+L
_ —in(mx+ny)/ L
Con (xl ) - 4 L2 ‘[L J 77(x )e . dXdy . (A4)
X1 n +L

and similarly for v (x,,x;).

Many other definitions of 7 (x,,x) are poési‘ble. One of theni is:

co

n(xo,xl)=—-{— I c(k, x, )e™ ™ dk (A.5)
2 - -
wihére
ellox)=— [ n(e)H(ex, Le™de (A6
2 Y
and

(A.7)

; 1,‘when‘>‘(-x1! and]y-y1| areboth < L
H= 0, otherwise

In contrast to (A.3) and (A.4), definitions (A.5), (A.6) and (A.7) do not lead to a discrete presentation. Note
that all equations in this paper (excluding the examples in sections 5 and 6) can be easily rewritten for
continuous cases.
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Appendix B: The relationship between P, and the wavenumber spectrum.

Note that

Pun =<Byx (x, )B;!,N (x,)> (B.1)

where

BM,N(x)= 4 _[ [(Za)g

. D, 2 —i[kp §(X+C) =Wy §
7 e B+ e Ty e+ Dl el
~L M,N

Substituting (B.2) into (B.1) yields (B.2)

_ 2 +L +L .
PunN =Z”ZI J J. {zwizv <n(x, +&)n(x, +&)> ——;—<7](x1 +&)wlx, +&)-

-L -L

) —i, Xy —xp +61—
~ylx +& N +&)>+ ;ng <y (x, +&)wlx, +§2)>}-e ot v (=32 52)‘14:1 ¢, (B.3)

For a homogeneous ocean p,,, is a function of r=x —x, Taking the ¥ to p Fourier transform

of (B.3):

A

i __l_w () —ipr g, _
B P=5n [ p et =

87° sin?(p, L) sin’ (pyL)

L p P,
T . ®B.4)
; ,
S (P bu) =5 Sy (P4 ha) =Sy (P 1= Sy (i)
M, .
where
1 h —ik.r .
S, (k)= Gy i <N (x+r)>e ™" dr (B.5)
According to linear theory, S, (k) = —a% S,,(k) and Sy =S = 0, so that (A.4) reduces to
2 An’g sin’*(p,L) sin’*(p,L) o’
) x ¥ M.,N
pl(p= ; i+ 1S By n +P), (B.6)
M.N L4wM,N px P; o’ (ky oy + p) M

where S, is nothing but the wavenumber spectrum.
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