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Summary.

This paper describes the assimilation of data from the next generation of infrared sounding instruments into
numerical weather prediction. models. After briefly introducing the instruments in question, the expected
retrieval performance of one of them, IASI, is examined in relation to a current infrared sounder, HIRS. An
example of their relative performances in characterising a meteorological significant temperature structure
is shown. Possible methods for efficient assimilation of these data are explored followed by a study on
how correlated radiance errors can affect retrieval performance. Finally cloud detection and quality control
methods are discussed. :

Introduction.

This paper continues the discussion started in Saunders (2001) of the issues surrounding
the assimilation of high spectral resolution infrared sounder data into numerical weather
prediction (NWP) models. While Saunders explored the problems involved with calculating
radiances from known atmospheric states (the forward problern) this paper explores how
information on the state of the atmosphere may be obtained from this new class of observa-
tions (the inverse problem) and used to improve the initial atmospheric state for numerical

weather prediction.

The advanced sounders to be launched into polar orbit in the next feW years are summarised
in Table 1. AIRS is a research, rather than an operatlonal instrument and also differs from
the other instruments being considered here in that it is a grating spectrometer rather than
an interferometer. However, there is significant interest in the NWP community in using
AIRS data as the spectral resolution, information content and data volume will be similar

to the operational Fourier, transform spectrometers that will follow.

In addition to the polar orbiting inétruméhts listed in Table 1, one may add the Geosta-
tlonary Imaging Fourier Transform Spectrometer (GIFTS) Whl(‘.h Wﬂl ﬂy as an experlmental
mission as part of the NASA New Millennium Program.

The advantages of advanced infrared sounders come from the hlgher spectral resolutlon and
higher number of channels observed. Figure 1 compares a portlon of the spectrum as it
would be observed by IASI with the instrument spectral response functions (ISRF) of the
HIRS* channels in this region. It is clear that the effect of the HIRS ISRF is to smear out

The High-resolution Infrared Radiation Sounder — part of the ATOVS instrument package

on the current operational NOAA polar-orbiting meteorological satellites.
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, Advanced Sounder
Parameter AIRS IASI CrlS
Instrument type Grating Interferometer Interferometer
Spectrometer
Platform Aqua MetOp-1 NPP & NPOESS
Satellite Agency NASA/JPL EUMETSAT/ NOAA TPO
CNES '
Spectral range (cm™1) 649-1135; Contiguous 650-1095;
1217-1613; 645-2940 1210-1750;
2169-2674 2155-2550
Number of channels 2378 8461 ~1300
Unapodised spectral 10001400 2000-4000 900-1800
resolving power
Spectral sampling ~ v/2400 0.25 cm ™1 0.625/1.25/2.5¢cm™?
Spatial footprint (km) 13.5 12 14
Nominal launch date May 2001 Dec 2003 2006 & 2009
Table 1.

Summary of Instrument Characteristics (from Saunders, 2001).

information from wavelengths with quite different atmospheric transmissions. The effect of
this is that the HIRS weighting functions are broader than the IASI ones and this in turn,
together with the effect of the larger number of IASI channels, results in lower vertical
resolution for HIRS.

The assimilation of this new type of satellite data into NWP models provides a new set
of challenges. This primarily arises from the shear volume of data that the instrument
produces (e.g., the AIRS instrument will produce ~35Gbytes/day) and the need to use the
observations efficiently. One must also consider how to treat the correlated errors between

the thousands of instrumental channels in the most efficient way.

This paper explores some of the problems that are likely to be encountered in assimilating
these data. It starts with a summary of the basic theory of data retrieval and assimilation
and considers the theoretical performance that we can expect for this class of instrument.
Next, possible methods for reducing the volume of data that needs to be assimilated are
explored, with particular attention being paid to channel selection. The effect of correlated
observation errors on retrieval performance is then examined. Finally possible strategies

for cloud detection and quality control are considered.
Basic Retrieval Theory.

The retrieval performance of sounding instruments can be qﬁantiﬁed in a variety of ways.
In this section, expressioné for retrieval accuracy, vertical resolution, information content
(entropy reduction) and degrees of freedom for signal (the number of independent pieces of
information retrieved) are derived plus equations relating a given atmospheric perturbation

to the retrieved profile.

202




A.D. Collard: Assimilation of IASI and AIRS data: Information Content and...

HIRS (NOAA 15) Channels 1—=10 and Typical IASI Spectrum
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Fig. 1. A comparison of a portion of a typical spectrum as
would be observed by IASI with the instrument spectral

response functions (ISRF) for HIRS in this region. The
smoothing out of spectral features by the HIRS ISRF is clear.

The best estimate, X, of the atmospheric state, x, is in general found by minimising the

cost function, J(x), where

T(0) = 50x - %0 BT (x = x0)+ 5y~ y() B+ E)(y ~y(x)) (1)

where the observations, y, have observational error covariance E and forward model error
covariance F; B is the error covariance matrix of the a priori measurements xg; and y(x)

is the observed radiance that would result for a given atmospheric state x.

For strictly linear problems, the solution vector, %, and associated error covariance, A, is

given by the optimal estimation method of retrieval (Rodgers, 1976) where
£=B"1+HN(E+F)H) (B xo + H(E + F)'y) (2a)
and
A=B"'+HYE+F)TH). ’ (2b)
Here, H = V,y(x) is the matrix of instrument weighting functions.
Most realistic problems, however, are not strictly linear in which case one needs alternative

methods to seek the minimum of the cost function. One method of doing this, suitable for

moderately non-linear problems, is through Newtonian iteration:

Xot+1 = X0 + (B + HyN(E+ F) ' H,) ' H,T(E + F) Uy — y(%a) — Ha(x0 — xa)] (3)
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where x, is the solution after the nt® iteration.

The variance of the retrieved profile is then given simply by the diagonal of A while infor-
mation on the vertical resolution is contained in the off-diagonal terms, i.e., the inter-level

correlations.

Rodgers (1976) defined the information content, S, of the retrieval via the reduction in
entropy thus: ‘
1
§ = logy (AB™) ' @

If the true atmospheric state is represented by the vector xT and the error on the given
observation (including forward model error) is €y, one finds that in the linear case (e.g.,
Eyre, 1987)

(% —x0) = WH(xt — x0) + Wey
_ = R(xT — %0) + Wey (5)
\‘Where the gain matrix, W = (B~! + HT(E + F)"'H)"'HT(E + F)~".
One can show that o

R=1I-AB™" (6)
where I is the identity matrix.

Further inspection of Eqn. 5 reveals that the expected retrieved profile for given a priori

information is

E[(& - %0)] = R(xt — %) (7a)
with the noise on this solution being

El(% - x0)(% — x0)T] = W(E + F)yW 7T (7b)

R is known as either the Averaging Kernel (Backus and Gilbert, 1970) or the Model Reso-
lution Matriz (Menke, 1984)*. The rows of R give the contributions from each level of the
X1 — Xo profile (i.e., the difference between the truth and a priori profiles) to a given level
in the 2 —xg profile (the difference between the retrieved and a priori profiles). Conversely,
the columns tell one how a perturbation in a single level of xt — xg is distributed over

%—-XD.

Rodgers (2000) has shown that the number of degréés of freedom for signal (i.e., the number
of separate information eigenvectors provided by the measurements) in the retrieval is given

by the trace of the resolution matrix, Tr(R).

t R here should not be confused with the common usage of R to indicate the total observa-
tional error (E + F).
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Purser and Huang (1993) use this property of the resolution matrix to define vertical reso-
lution in terms of effective data density, p, where the data density, p;, for layer ¢ of thickness
Az; is given by h

pi = Rii/ Az ‘ ‘ (8) .

The vertical resolution by this definition is thus 1/p; for level i. Purser and Huang go on to
define a smoothing operator based on the correlation structure of R to eliminate the worst
of the level-to-level fluctuations in p, but for the examples in this document this does not

appear to be a problem and the simpler definition is preferred.

Rodgers (1990) shows that the analysis error covariance, A, can be thought of as the sum of
two error covariances, Ay and Ajs corresponding to the contributions from the null-space
and measurement errors respectively (Aps is hereinafter referred to as the “propagated

measurement eiror”). For the optimal estimation method,

Ay=B1+HI(E+F)'H) BB +HI(E+F)'H)! (9a)
and

Ay=CB'+HIE+F)'H)HI(E+F)THB T+ HI(E+F)"'H)"L. (9)

The null-space error arises from the fact that the retrieved profile is a smoothed version of
the truth with the a priori profile providing those components where the observations do
not add information. Thus the analysis error covariance, A = E [(% — x¢)(% — x¢)T], has a

component which accounts for the smoothing error.

Comparing Eqns 7b and 9b, one can see that the deviation of the retrieved profile from the

expected value is given by the propagated measurement noise.
Calculation of Retrieval Properties for IASI.

* In this section we shall compare the expected performance of a currently operational infrared

sounding instrument, HIRS, with that expected of IASL

These investigations require the analysis covariance matrix, A, to be calculated from the a
priori data error covariance and the measurements’ error covariance using appropriate TASI
weighting functions, H. The weighting functions used were calculated for a mid-latitude
summer case using the IASI fastmodel, RTTASI (Matricardi and Saunders, 1999).

For apodised (Level 1c) IASI data, the instrumental errors will be correlated between nearby
channels and so the observational error covariance matrix is approximafed by a penta-
diagonal matrix. The noise levels used are the current (Oct. 2000) best estimate of the
instrument noise onlaunch and were provided by F. Cayla of CNES. The interchannel error
correlations are calculated (using the method of Amato et al., 1998) assuming a Gaussian

apodisation function which is truncated at an optical path difference of 2cm and which
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produces an instrument spectral response function with a full width at half maximum of

0.5cm 1.

In addition to the instrumental noise, a greatly simplified approximation to the forward
meodel noise is included in the form of an extra (0.2K)? being added to the diagonal of
the matrix. As will be seen later (see also Saunders (2001) and Sherlock(2000b)), this

representation of forward model noise as uncorrelated between channels is not realistic.

The HIRS noise values come from Table 3.2.1-2 of the NOAA KILM Users Guide which
can be found on-line at http://perigee.ncdc.noaa.gov/docs/klm/html/c3/sec3-2.htm
#£321-2 to which a forward modelling error of 0.2K is added in quadrature (i.e., the same

forward model error is assumed as for IAST).

The a priori covariance matrix used is an ECMWTF background error covariance on the 43
levels used by RTTASL

Expected Retrieval Performance.

The expected retrieval errors (i.e., the square root of the diagonals of the matrix A defined
in Eqn. 2b.) for TASI and HIRS are compared in Figure 2 for temperature and humidity.
In both cases, it can be seen that the retrieval accuracy that we can expect from IASI is a

significant improvement over that from HIRS.

Similarly, Figures 3a and 3b show that the vertical resolution (defined in Eqn. 8) is signifi-
cantly improved for the case of IASI. Indeed for humidity retrievals the vertical resolutionis
so high that it is of the order of the spacing in the levels in the radiative transfer/retrieval
scheme and thus motivates the production of future fast radiative transfer models with

higher vertical resolution.

The number of degrees of freedom for signal for the IASI retrievals in this case is 26.8 which
is a five-fold improvement on the HIRS value of 5.5. Similarly the information content as
defined in Eqn. 4 is 84.2 bits for IASI compared to 12.4 for HIRS.

One further test of instrument performance is to investigate how a given structure in the
atmosphere will be interpreted in the retrieval scheme. To do this one defines a given
deviation from the a priori profile and then uses Eqn. 7a to determine the expected retrieved
profile. Eqn. 7b is then used to determine the expected deviation about this expected

retrieved profile.

Figures 4 shows this for a temperature perturbation that was used in an earlier study by
Prunet et al. (1998). This profile was one of those that Prunet et al. extracted from a study
by Rabier et al. (1996) which identified error structures in the initial atmospheric state of an

NWP model run that would grow rapidly with time and would result in erroneous forecasts.
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Fig. 2. IASI and HIRS temperature and humidity retrieval accuracies.
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Fig. 3. IAST and HIRS temperature and
humidity retrieval vertical resolution.
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Fig. 4. One of the “Rabier curves” used by Prunet et al. and the
corresponding expected profiles that would be retrieved by the HIRS
and TASI instruments as calculated via the resolution matrix plus the

expected errors on those profiles (see text for discussion of these errors).
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These error structures were important in the failed forecasting of the reintensification of

the remnants of Hurricane Floyd over Brittany and SW England in September 1993.

In Figure 4 one can see how I[ASI performs much better than HIRS at retrieving fine
structure in the temperature profile. Particularly the 3km wide temperature spike at 4km

altitude is much better represented for the former instrument.

It should be noted, however, that preliminary studies by McNally et al. (2000) indicate that

these “sensitive regions” are often cloud contaminated, especially with low cloud.

Main Issues in Assimilating AIRS and TASI Observations.

RAW
OBSERVATIONS

PREPROCESSING |

FORECAST
OBSERVATIONS

PRE-PROCESSED

DATA
RADIANCE f§
INCREMENTS §
OBSERVED
VARIABLES
GEOPHYSICAL
VARIABLES

§ FORECAST
PROFILES

PROFILE :
INCREMENTS §

Fig. 5. A schematic illustration of the variational assimilation
of satellite radiance observations (from Eyre, 1997).

Figure 5 illustrates how observations are assimilated into the NWP fields in a 3-Dimensional
Variational Analysis (3DVar) framework (Eyre, 1997). A priori data from the model forecast
fields is optimally combined (Eqn. 3) with preprocessed radiance data to produce a new

forecast field that is an improved estimate of the true atmospheric state. The preprocessing
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of the observations includes cloud-detection and/or cloud-clearing plus other quality control
- processes. This stage may also include a one-dimensional retrieval stage which allows for the
determination of parameters (e.g., skin temperature) which may be required by the radiative
transfer code but which are not part of the 3DVar control variable. When considering the
issues specific to the assimilation of advanced IR sounder data, one must consider both the
1DVar (where the state vector has ~ 100 elements) and 3DVar stages (Where the equ1valent

vector is ~ 107 elements long).

The most obvious property of the new advanced IR sounder data is the very large number
of channels — over 1000 for all the instruments being considered here. ,This is compared
with the 19 infrared channels of HIRS (or the total of 40 for ATOVS).

One can theoret1cally, glven very large computatlonal resources, try to asmmrlate all the
Iau_lctu(,e data available. 11ub is not OIuy Very computatlonauy 1ntens1ve Lespecrany if one -
has to deal with non-dlagonal observatlonal error covariance matrices — see later) but s
also very inefficient as the number of independent pieces of information contained in the

data is much fewer than the number of channels. .

The s1mplest way of reducmg the size of the problem is to use only a. subset of channels A
One method to do this is to be explored in the next sectlon Typ1cally 100 1000 channels
would be selected.

A more sop’mstrcated version of the channel selection method is to select a subset of channels
and then find nearby channels W1th s1mﬂar propertles and add them together. Known as
super channe]hng, tlllS method improves over the simple channel selectlon method through
the reduction i in the 1nstrumental noise. However it is probable that i in co- addlng similar .
but not 1dent1cal channels the combmed channel’s J acob1an ‘will not be as sharp as each
individual channel One must also cons1der that the fast-modelling of super- channels (at..v
least as it 1s currently done) requlres that a smgle Planck function is assumed for the Whole
range of channels in the super- channel and. this may also introduce errors if the spectral _,

range 1s too large

One may extend the idea of super-channels further and consider a moré;general'set of linear
combrnatrons of channels heremafter referred to as pseudo- channels This may be de51rable ;
for one of two reasons o )
Firstly, one may-'-attemp't to find a co-ordinaté system in measurement space so that the =
new observational error covariance matrix is diagonal. One does this by determjm'n\g' the .
. eigenvectors, X, of the (E + F) matrix (the eigenvalues of which lie along the diagonal of
the diagonal matrix A) and then using pseudo-channels represented by the vector z = XTy.

Eqn. 3 can then be rewritten - .
Xnt1 =Xo + (B + 8, TA10,)710,TA [z = 2(xn) — On(X0 — xa)]  (10)
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where ®,, = XTH,,. One may then select only those pseudo-channels with small variances
(given by the elements of A). If one cannot make a large reduction in the number of pseudo-
channels in this way, this method is rather limited as one still has to calculate and store X

which has the same dimensions as (E 4+ F).

Alternatively, one may use a priori data (either in the form of a climatological dataset or
a previous set of observations) to produce a set of empirical orthogonal functions (EOFs)
of the covariance of the instrument spectra. Those EQOFs with small amplitudes may be
then discarded as not being representative of atmospheric signals and thus reduce the data
volume. A side effect of this is that in the act of discarding the small amplitude EOF's one
is also greatly decreasing the noise in the spectrum (if one were to reform the spectrum
from the remaining EOFs). This noise reduction is simply a result of the regularisation
imposed by the a priori data and a similar regularisation will occur during the assimilation
process with the NWP forecast fields being the a priori data. It should also be noted that
this noise will tend to be highly correlated between channels.

All of the above methods of reducing the observational data volume may be used in the
1DVar preprocessing stage, the 3DVar stage or both. However, one may also assimilate the
retrieved profiles obtained at the 1DVar stage into the model at the 3DVar stage. This
method has been used at most NWP centres for TOVS observations, but many are now

adopting the direct-assimilation of radiances explained above.

The two main difficulties with the assimilation of profile data are that the a priori infor-
mation used in the retrieval of the profile will also be assimilated in the 3DVar stage and
that the retrieval errors are highly correlated between levels and this should be allowed for.
In fnany cases retrieved profiles have been treated like degraded radiosonde profiles with
errors uncorrelated in the vertical which results in a sub—optlma.l assimilation. Theoretical
work by Joiner and da Silva (1998) and Jomer and Dee (2000) has further 1nvest1gated the
assimilation of retrieved profiles. The Iat_ter paper tentatively concludes tha’g assimilation of
retrieved radiances can be close to optimal providing that the a priori estimate used in the
retrieval step is the same as that used in assimilation and that the correct error covariance

for the retrieval is used in the assimilation step.

It is anticipated that — at the Met Office at least — radiances rather than retrievals will be
assimilated and that the data volume will be reduced at both the 1DVar and 3DVar stages

by channel selection. In the next section channel selection will be described.
Channel Selection.

Ma,ny different methods have been suggested for channel selection. The method described
here was suggested by Rodgers (1996). In experiments comparing various channel selection

techniques in the context of variational assimilation for NWP, Rabier (2000) found this to
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be significantly better than the others.

Rbdgers’s method involves choosing a figure of merit — either information content (Eqn 4)
or Degrees of Freedom for Signal (DFS = T'I‘(R)) — and determine which channels have
the biggest impact on this.

This is done by starting with the background. error covariance matrix, B, and then eval-
uating A through Eqn. 2b for each individual channel. After all the channels have been
tried the one that results in the highest ﬁgure of merit is kept for the next 1terat10n For
the next iteration two channels are used, one of them bemg the best one from the previous

iteration. This process is repeated untll the reqmred number of channels have.beerr chosen.

Rodgers noted that if one can assume that the observatronal and forward model erTors are
uncorrelated between channels, one, can grea,my speea up this calculation by deterrmmng

the new solutlon error covariance, A,, from the prev1ous one, A;_j: via the relatlon

vy

LA, =-Ai¥i‘{1“— hi(eAi.—rhi)?ﬁ!/_[l%fiF (Ai—lhi)Th:i]} (11)

Here h;, is the Jacobian of the channel beirrg tested divided by the standard deviation of

the observation plus forward model error.

I I R W |
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~ Fig.. 6. Degrees of freédom. for signal versus number of channels: =~ ¢
used for a typical IASI case...Much of the impact of a full.
retrieval can be obtamed Wrth less than 1000 channels

213



A.D. Collard: Assimilation of IASI and AIRS data: Information Content and...

1.000 T 1 — T — -
1172 Channels Shown
E -
=
c
£ 0.100 -
© 3
e | ]
o ]
3 -
o
- J
L
[} o
£ ;
& 0.010 -
c i )
5] | 4
- . i, -
O I [ N J
| 1 | i
0 001 IM “'m‘ L N | i.lh [ [l L 1 | i

1000 1500 2000 2500
Wavenumber (cm™)

Fig. 7. The positions and impact, in terms of change in degrees of freedom
for signal, of the first 1172 channels chosen for a typical IASI situation.

Figure 6 shows how the figure of merit — in this case DFS — typically improves with the
number of channels selected for.IASI. The number of DFS is close to the maximum value
after 500—1000 channels have been chosen resulting in a 8-16-fold reduction in the number

of channels that need be assimilated.

Figure 7 shows the first 1172 channels chosen in this case together with the impact on the
retrieval — in terms of DFS — of adding each of these channels. Channels in the 15um CO,
band and the 6.3um H;0 band tend to be chosen first while channels in the 4.3um CO,

band are not chosen until later due to the high instrumental noise at these wavelengths.

Note that the first channel to be chosen in this example is at 667cm™?, which is in the
centre of the CO; vz Q-branch — a channel which sounds stratospheric and mesospheric

levels. This channel is the first chosen for two reasons:

Firstly, the a priori knowledge at the altitudes that this channel sounds is very poor and
so any information from the observations will result in a large improvement. This is im-
portant as one might find that even though some levels are poorly known, it might still be
more important to get more information on other, more accurately known, regions of the
atmosphere (e.g., levels where errors in the knowledge of the stage of the atmosphere can
result in large forecast errors as described by Rabier (1996)). Therefore, one might wish

to modify the B matrix used in the channel selection calculations to reflect not only where
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knowledge is worst but also where knowledge is most desired.

Secondly, the assumed forward model error for all of the channels in this example is the
same (0.2K), which is clearly unrealistic. One might expect the Q-branch to be less well
modelled in which case the assumed forward model error might be far too low. In this
situation, it is less likely that this channel would be chosen so soon. In other words, one

must endeavour to make sure that the observational error covariances used are realistic.

This methodology works on a case by case basis, i.e., one can calculate the optimal channels
to choose for a given atmospheric state. One can also estimate the optimal set of channels
for all possible atmospheric states by extending the calcﬂations described above so that
the state vector assumed is a concatenation of state vectors from a range of representative
atmospheric situations (Rodgers, priv. comm.). One may tune this process further, so that
more important atmospheric situations (for NWP) are given more weight. Of course, it is
impossible to include all possible atmospheric states in such a calculation and more work

needs to be done to determine how to allow for all situations that may be important.
The Effect of Correlated Observation Errors.

A complication in the use of high-spectral resolution infrared sounder observations is that
the (E 4 F) matrix is thousands of elements square and thus has millions of elements in
total. This makes its manipulation unwieldy. If one can assume that the (E + F) matrix is

- diagonal, however, the problems associated with inverting large matrices would disappear.

In reality the (E + F) matrix is not diagonal. The forward model errors, F, are certainly
correlated to some degree from channel to channel (Sherlock, 2000a), while for apodised
interferometer observations the instrumental error covariance matrix, E, will always have

some non-zero near-diagonal elements.

The effect of another type of correlated error — that of the inclusion of undetected cloud
in the observations — is explored in this paper for illustrative purposes. In addition, the
effect on retrieval accuracy of assuming that the highly correlated cloud error covariance is
diagonal is explored. This follows work by Collard (1999), while work examining the effect
of correlated forward model error has been done by Sherlock (2000b)

Watts and McNally (1988) showed that if a minimal variance retrieval is attempted where
the true error covariances, E’, F/, and B’, are approximated by E, F, and B respectively,

the analysis error covariance can be derived as follows:

The linear minimum variance solution to the retrieval problem (Eqn. 2a) may be re-written

as
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& =x0+ W(y - o) | (12)

Here, W = (B! + HT(E + F)"'H)"*H™(E + F)~! is the gain matrix being assumed by
the retrieval scheme. If the true Jacobian is H' then y — yo = H'(xp — %0)¥ and

% — %o = WH/(x — x0) + We, - (13)

where €, is the measurement and forward model error.

From this it can be seen that the resolution matrix , WH/’, depends only on the assumed
observational and background error covariances rather than the true values. The changes
in the characteristics of the retrieval on using the wrong input error covariances therefore

only manifest themselves in the noise levels and bias, not the resolution.

Rearranging FEqn. 13 gives
% —x7 = (I - WH')(x¢ — x7) + Wey, (14)

As (E' + F') = E[eyel], B' = E[(x0 — x1)(%0 — x7)7], and the true analysis error covari-
ance matrix, A’ = E[(%X — xT)(% — x1)7], and assuming that observational and background

errors are uncorrelated,
A'=(I-WH)B'(I- WH)T + wo'w7
=B - WH'B' - B(WH')T + WH'B'(WH')T + WO'W~
=B - WH'B' - (WH'B')T + WH'B'H" + (E' + F'))WT (15)
When (E'+ F') = (E +F), B’ = B and H' = H this reduces to Eqn. 2b.

In this work, only the effect of using the incorrect observational error covariance is being

explored, therefore Eqn. 15 becomes. .

A'=B - WHB - (WHB)? + WHBH” + (E' + F))W7
=B - WHB - (WHB)” + WHBH’ + (E+ F))W? - W(E + F)WT + W(E' + F)WT.
=A+W({E +F) - (E+F)WT , (16)

* In fact (assuming X is the linearisation point), y —yo = H'(x1—x0)+¥'(%0) —y(X0) where
¥'(x0) and y(xq) are the true and calculated observations vectors at xo respectively. In the
purely linear case, the éxtra terms will produce only a bias in % but when the problem is
non-linéar this will result in extra terms in the covariance of % also. This should be allowed

for as part of the forward model error covariance matrix.
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Eqn. 16 is used in the discussions to follow.

In the following, the gross effect of correlated cloud contamination errors is studied by
calculating a set of spectra for a range of cloud heights, phases, optical depths and particle
sizes. Only clouds that result in a maximum brightness temperature difference of less than
1K relative to the clear sky case are included in the next step. This is because it is expected
that clouds with relatively high radiometric signals are likely to be detected and allowed
for in the retrieval process (either by ignoring the observation altogether, attempting some
form of cloud-clearing or simultaneously retrieving temperature, humidity and those cloud
properties that would affect the retrieval of the clear sky parameters) and only the clouds
with relatively small signals will directly affect the clear-sky retrieval statistics.

The error covariance matrix for undetected cloud is then calculated via the relation
1 L= =T
Scioud = —~ E (AL - AI)(AL' — AI) (17)

where Al; is the array of brightness temperature differences (cloudy minus clear) for the 7t
spectrum and AIis the mean brightness temperature spectrum for all n spectra considered.
The mean deviation of the cloudy brightness teniperature spectrum from that for clear sky,
AI, would in practice manifest itself as an extra term in the bias correction. The error
c_ovaﬁance matrix that results from this and its correlation matrix are shown in Figure 8,

while the diagonal of this matrix (compared to IASI noise) is shown in Figure 9.

In Figure 10a, the effect of attempting to retrieve the temperature profilet with correlated
forward model errors due to cloud is shown, both where the retrieval assumes the true
observational error and where the observational error covariance matrix is assumed to be
diagonal. Figure 10b shows the same thing but with the cloud error multiplied by a factor
of 10 (i.e., the cloudy error covariance is multiplied by 100).

In the case where the original cloud error covariance is used (and where the error associated
with undetected cloud is a fraction of the instrumental noise), the degradation of the solution
accuracy when this error covariance matrix is approximated by a diagonal is small. However,
when the residual cloud error covariance is multiplied one hundred-fold (standard deviation
multiplied by ten), the diagonal approximation is seen to cause large degradation to the
solution standard deviation. This large reduction in retrieval accuracy can be avoided if

the full error covariance matrix is used.

Using a full observational error covariance matrix in the solution of the retrieval problem is
problematic for two reasons. The first one is, of course, the size of the matrix, but it may

be possible to mitigate these problems if linear combinations of, channels may be used as

i Note that for ease of calculation only every eighth IASI channel is used.
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Fig. 8a. A simulated observational error covariance matrix due
to the presence of undetected cloud. The relatively high error
covariances in the window regions and the low covariances in the
absorption bands due to COy, HyO and O3 can be seen clearly.
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Fig. 8b. The correlation matrix corresponding
to the error covariance matrix shown in Fig. 8a.
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Fig. 9. The diagonal elements of the cloud error covariance of
Figure 8a compared to the IASI instrument noise. Five curves
are shown: The noise due to undetected cloud is shown in green
while the blue curve is this noise multiplied by ten. The black
curve is the IASI instrument noise while the red and magenta
curves result from the IASI noise being added in quadrature to
the noise represented by the green and blue curves respectively.

shown in Eqn. 10. The second difficulty will be with the determination of the true (E + F)
matrix which will require much effort both in observation monitoring and theoretical work

on the expected form of (E + F') (particularly the correlation structure).
Cloud Detection and the Use of Cloudy Radiances.

There are three approaches to dealing with observations which may contain cloudy data:
detect and ignore all observations with clouds in the field of view (cloud detection), attempt
to remove the effect of clouds from the observation (cloud clearing), or attempt to retrieve

profile information simultaneously with cloud properties.

Detecting and rejecting observations affected by cloud is the most conservative approach to
using the observations. An elegant scheme developed for numerical weather prediction is
that of English et al. (1999) which uses the observations and a priori data to determine the
probability of cloud being in the field of view using a variational approach. This has been
demonstrated successfully for TOVS and ATOVS.
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Fig. 10a. IASI retrieval accuracies using every eighth channel where
the true observational error covariance is described by the full error
covariance matrix shown in Figure 8a. Retrieval accuracies when the
assumed observational error covariance is the same as the truth, is just
the diagonal elements of the truth and for the clear case are shown.
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Fig. 10b. As figure 10a except the cloudy error
covariance is multiplied by a factor of one hundred.
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One may also use other instruments to aid in cloud detection. This can be through the use .

of microwave channels (which are less affected by cloud) to predict what the radiance for a
chosen infrared channel should be (e.g., NOAA/NESDIS plan to use AMSU channels 4, 5
and 6 to predict the 2390.91cm ™" brightness temperature for ATRS (Goldberg, 2000)). One
can also use a co-located imaging instrument to detect the presence of cloud without using
the IR sounder observations at all, AVHRR cloud detection being a good example of this
(Saunders and Kriebel, 1988).

One can go a step further than cloud detection and attempt to remove the effect of clouds
on the observed radiances. This is known as cloud-clearing and the most common method
for doing this is the N* technique (Smith, 1968) which is used by NOAA in its operational
TOVS retrievals (McMillin and Dean, 1982). The technique uses observations in adjacent
fields of view and assumes that only the cloud amount varies between those fields of view.

Joiner and Rokke (2000) have re-examined this technique in a variational context.

Eventually, one would wish to include cloud paranieters in the state vector (Joiner and
Rokke include the “N*” in their state vector) and to do a full simultaneous retrieval of
temperature, constituents and clouds. This has been examined by Eyre (1989) in the
context of TOVS observations. The main issues that need to be addressed is that the
problem is very non-linear, the a prior: data is usually poor and the calculation of the
radiative properties of clouds is less accurate than for clear air (especially transmissive

cirrus clouds).

There is great incentive to solve the problem of assimilation of cloudy radiances given the
preliminary result from McNally et al. (2000) that the regions that most affect forecast
uncertainty tend to be cloudy. McNally noted that the field often just contained low clouds
in which case one might at least be able to obtain information on the atﬁosphere above the

cloud tops (low stratiform cloud decks are the simplest to model in the thermal infrared).
Quality Control.

Quality control is the detection and rejection of observations that would have a detrimental

effect on the accuracy of the model field if they were to be assimilated.

One important part of quality control is the effective detection and characterisation of cloud
as described above. It has already been shown how poor knowledge of undetected cloud in

the field of view can have a highly detrimental effect on retrieval accuracy.

There can be many other reasons why the observed radiances are in error ranging from

instrumental noise to errors in the modelling of the observed radiances.

Theoretically, the most powerful way to determine whether the observations are as expected

is to evaluate the cost function, J, (Eqn. 1). The value of the cost function should be on
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average equal to half the number of observations, n,55/2, and the standard deviation about
this mean should be /2n,p5/2. Therefore, if the value of the cost function for a given

observation is significantly outside of this range then the observation may be erroneous.

A value of J that is too high indicates that the fit is poorer than expected. This can be

caused through one of three reasons:
i) The observation is truly erroneous.

ii) The assumed errors are too small. In this case, monitoring of the statistics for J can

provide insight into how to refine the E, F and, potentially, B matrices.

ili) The measurement errors are not normally distributed. In this case one would have
to determine what would be a reasonable range for J given the actual distribution of
error. One source of observational error where this might be the case is that due to

undetected cloud as was explored earlier.

If J is too small, by far the most likely explanation is that the assumed errors are too large.

Again, this will provide information to help improve the error covariance matrices used.

In addition to cost function tests, one may also simply determine whether the difference
between the observed and modelled radiances (based on either the a priori or retrieved

atmospheric state) is reasonable.

One may also attempt to detect climatologically unlikely radiance spectra by projecting
them along the eigenvectors of the observed covariance matrix for the observations and
comparing the amplitude of the signal in these directions with the range of values that

would be expected given the eigenvalues of the matrix.
Conclusions.

This paper has attempted to outline the major issues that concern the future assimilation

of data from high spectral resolution infrared sounding instruments.

It has been shown that this next generation of instruments can potentially greatly increase
the amount of information that may be assimilated into NWP models. However, care must

be taken to ensure that the data is used most efficiently.

All of the areas explored in this papef — the efficient use of observations and channel
seiection, the effect of correlated error, cloud detection and quality control — will require
more research in the future, both in preparation for the satellites’ launches and when real
data becomes available. Initial assimilation schemes will tend to be conservative, relying
primarily on methods that are in use for the current generation of instruments. For instance,

a subset of channels will initially be processed rather than using some of the potentially
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more advantageous channel combination methods. Similarly, the initial assumption will be
that the observational error covariances are diagonal until it can be shown that the correct
error covariance can be accurately estimated and that its use will justify the increase in

computational resources that may be required.

For the foreseeable future the greatest computational burden (in terms of time) during the
assimilation of infrared sounder radiances will be the forward modelling of radiances (and
the associated gradients). The greatest gains in the speed of assimilation can therefore be
made here. For example, if radiances (and gradients) for a linear combinations of channels
can be modelled as quickly as for a single channel the efﬁciency of advanced sounder radiance

assimilation will be greatly increased.
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