WNANYJOWIW 1VDINHDAL

296

Diagnosis of background errors for
radiances and other observable
quantities in a variational data
assimilation scheme, and the
explanation of a case of poor
convergence

E. Andersson, M. Fisher, R. Munro
and A. McNally

Research Department

November 1999

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWF.

European Centre for Medium-Range Weather Forecasts
— Europdisches Zentrum fur mittelfristige Wettervorhersage
w Centre européen pour les prévisions météorologiques a moyen




0

Background errors for radiances and other observable quantities

Abstract

In any statistical data assimilation scheme the ratio between the observation and background
errors fundamentally determines the weight given to the observations. The observation errors
are specified directly in terms of the observable quantities. In variational data assimilation
schemes these can include satellite measured radiances as well as conventional observations.
The background errors, on the other hand, are specified in terms of those quantities that
lead to a compact formulation of the background term (the J; of the variational analysis),
viz. balanced vorticity, unbalanced temperature, divergence and surface pressure, and specific
humidity. It is not obvious how the magnitudes of these background errors can be compared
with the various observation errors. Within the variational analysis the background errors in
terms of observed quantities are implied, i.e. not normally computed explicitly. They depend,
in general, on the J;, formulation and on the observation operators. In the case of radiance
observations this involves the Jacobian of the radiative transfer model which in turn depends
on the atmospheric state.

By applying the observation operators of a variational data assimilation scheme to a set of
random vectors, drawn from a population whose probability density function is given by the
assumed background error covariance matrix, we obtain grid-point fields of background error
standard deviations for any observed quantity. These are valuable for diagnosing the response
of the data assimilation system to observational data, and for tuning the specified observation
and background errors in general. The calculated error standard deviations can be compared
with those obtained from studies of innovation statistics (i.e. observed departures from the
background). The technique has been applied to a range of observable quantities including the
radiance data from both the infrared and microwave instruments of the TIROS operational
vertical sounder (TOVS). We used the results for some of the higher-peaking channels to verify
that the specified background errors in the recently introduced 50-level version of the ECMWF
model are reasonable also in the upper stratosphere, where there are few conventional data. We
also found that the operational background errors for humidity were set unrealistically large in
some dry subtropical areas.

A case of poor convergence of the variational analysis was found to be due to unrealistically
high background errors in terms of one of the humidity sensitive radiance channels (the Me-
teosat water vapour channel, similar to TOVS channel 12). Excessively large ratios between
background and observation errors locally, led to larger than normal eigenvalues of the analysis
Hessian - thus increasing the condition number of the minimization problem, with an associated
decrease in the rate of convergence of the minimization. The mis-specification of background
errors was confined to relatively small areas in the sub-tropics but affected the minimization
globally. '
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1 Introduction

Modern data assimilation schemes combine new information from a wide variety of observations
with prior information in the form of a background atmospheric state (Daley 1991). The
background is in operational practice often a short-range (typically six-hour) forecast from the
previous analysis. The resulting analysis is optimal only if accurate error estimates have been
assigned to the observational data and to the background (Lorenc 1986). The relative weight
given to the observations and to the background (and therefore the amplitude of the analysis
increments) is fundamentally determined by the specified observation and background error
variances.

When tuning a data assimilation system, one of the most important aspects is to specify
realistic error statistics. The study of ‘innovations’ (i.e. observed minus background departures),
is the most frequently adopted technique (Hollingsworth and Lonn-berg 1986; Lonnberg and
Hollingsworth 1986). It provides estimates of the sum of observation error and background
error. The statistics of innovations are usually expressed in terms of the observed quantities,
i.e. temperature, wind and geopotential height in the case of radiosonde data and in terms of
brightness temperatures in the case of satellite measured radiances. Such innovation statistics
for 4D-Var have been studied by Jarvinen (1999).

In linear statistical interpolation schemes (Lorenc 1981), the observed and the background in-
formation were presented to the analysis in terms of the same physical quantities as the analysis
variables, e.g. temperature, wind, humidity and surface pressure, or a linear combination of
these. The corresponding error estimates could then easily be compared with those obtained
from the innovation statistics. Variational schemes, however, provide much greater flexibil-
ity in terms of observation usage (Courtier et al. 1998; Rabier et al. 1998; Andersson et al.
1998; Parrish and Derber 1992). Data on any observed quantity for which a meaningful model
equivalent can be computed (e.g. satellite radiances) can in principle be used directly in the
analysis without first being converted (or ‘retrieved’) into analysed quantities (Andersson et
al. 1994; Derber and Wu 1998; McNally et al., 1999). For such data it is difficult to carry out
analysis system tuning based on innovation statlstlcs because of the non-linear relation between
observed Varlables and analysed varlables

In this paper we present a technique by which the specified background error covariance ma-
trix (B) can be transformed to observable quantities. The method, based on the randomization
technique discussed by Fisher and Courtier (1995), gives global grid-point values of background
error standard deviations in terms of observable quantities. The calculation uses the actual ob-
servation operators of the variational analysis. It takes into account the balance constraints
(defining cross-correlations between mass and wind variables) built into the variational back-
ground term (Derber and Bouttier 1999) and is therefore consistent with the actual background
error covariance matrix. We have computed the background error equivalents for the radiance
channels of both the infrared and microwave instruments of the TIROS operational vertical
sounder (TOVS). We have also applied the technique to two-metre temperature, ten-metre
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wind, total column water vapour, geopotential, ozone et-cetera.

The four-dimensional variational data assimilation scheme (4D-Var) of the European Centre
for Medium-Range Weather Forecasts (ECMWF') has been operational since November 1997
(Rabier et al. 1999; Mahfouf and Rabier 1999; Klinker et al. 1999). The work presented in this
paper provides diagnostics which can help in understanding how different data types influence
the analysis, given the specified B-matrix and a particular atmospheric state. The need for
this type of diagnostic of 4D-Var was emphasized recently by four concurrent developments
at ECMWEF: (i) the extension of the forecast model and the data assimilation to the higher
stratosphere (Untch et al. 1999); (ii) the introduction of data from the new generation mi-
crowave instruments (AMSU-A and B) of the NOAA-K polar orbiter (McNally 1999); (44i) the
assimilation of ozone data and the use of the TOVS ozone channel (Hélm et al. 1999) and (iv)
the experimental use of radiance data from the Meteosat water vapour channel (Munro et al.
'1999). For each of these developments the calculations of radiance background errors described
in this paper proved to be very useful, as statistics based on conventional data alone were
insufficient to establish the correct magnitude of the background term. We first present some
general features of the background errors in terms of observable quantities. The main focus of
the paper, however, is on the particular problem of slow convergence in (iv) above. The problem
was diagnosed and resolved, using first an estimate of the leading eigenvectors of the 4D-Var
Hessian to indicate the geographic location of the problem, second, the largest eigenvalue to
indicate the condition number and third, the radiance background error to indicate the reason
for the poor convergence.

The method for transforming background errors to observable quantities is described in Section
2. A selection of results is presented in Section 3 followed in Section 4 by a diagnosis of the con-
vergence problem arising in the initial experiments with Meteosat radiance data. Conclusions
are drawn in Section 5.

2 Method

ECMWEF’s current method for analysis and background error estimation was proposed by Fisher
and Courtier (1995) with further details described by Fisher (1996). In this section we expand
on their suggested randomization method to diagnose the ‘effective’ background error variance
in a variational system.

2.1 Background formulation

The minimization of the variational cost function is performed with.respect to a control variable
X which is related to the model variables x in spectral space via a change of variable
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x =L (x - x) (1)

where L is the change of variable operator such that LLT = B, the vector x;, is the background
atmospheric state and B is the background error covariance matrix (both in spectral representa-
tion). With these definitions the background term is simply J, = 0.5x"x (Courtier et al. 1998;
Derber and Bouttier 1999). The operator L itself represents a sequence of calculations which
together define B. The resulting B is not calculated explicitly - its structure can, however, be
diagnosed indirectly. :

2.2 Randomization method

(,
Fisher and Courtier (1995) suggested that a randomization method can be used to diagnose the
effective variances of the B-matrix in 3D-Var. The method allows the calculation of a low-rank

estimate B, of B, in terms of model variables in grid point space (subscript g). In particular
the variances can be estimated by the diagonal of

N ' ;
B, ~ B, = % ;(s-lL&)(s—ngi)T | (2)

where §; is a set of N random vectors in control-variable space, whose elements are independent
and drawn from a population with zero mean and unit Gaussian variance, and S~ represents
the inverse spectral transform. This randomization estimate takes the actual J, formulation
into account. The variances produced by randomization are noisy if IV is small. We have
found that N=>50 gives satisfactory results. With Gaussian statistics and a sample size N the
randomization noise in the estimated standard deviations is 1/v/2N = 10% (Barlow 1989, page
78). (

The described method applies to 3D-Var, as in Eq. (2) no account is taken of the evolution
of background errors in time. In a 4D-Var system it provides a diagnosis of the effective
background errors at the beginning of the assimilation period (which currently is 6 hours).

2.3 Transformation to observable quantities

The randomization method can be extended to compute an approximation to the diagonal of
HBH?T, the background error in terms of observable quantities, where the operator H denotes
the tangent linear observation operators, linearized around the background state, x,. For TOVS
radiances, H includes the tangent linear of the radiative transfer model. Here, as in standard
notation (Ide et al. 1997), H also includes the inverse spectral transform, S~*.
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N
HBHT ~ HBHT = Z HLE;)( Hsz (3)
=1

The calculations in Eq. (3) provide maps of background error variances in each of the TOVS
radiance channels, for example. Using the actual operators H and L of the variational analysis,
the main limitation of Eq. (3) is in the restricted sample size, which inevitably leads to some
noise in the estimated variances. The term HBHT is one of the terms that determine the weight
given to observations in a variational analysis scheme, as shown in the analytical expression for
the 3D-Var solution (e.g. Lorenc 1986):

X, — Xy = BH'(HBH" + R) Yy — Hx) (4)

where X, is the analysis, x;, is the background, y is the vector of observations and R is the
observation error covariance matrix.

3 Estimates of the background error in TOVS channels

In this section we estimate the background error in TOVS sounding channels. The results have
been obtained by applying the observation operators (Courtier et al. 1998) to the background
error covariance matrix of the ECMWF 50-level data assimilation system operational from
March 1999 onwards. The observation operator for satellite radiances is the so called RTTOV-
5 radiative transfer model described by Saunders et al. (1999). The 50-level forecast and data
assimilation system extends to 0.1 hPa (Untch et al. 1999), and so provides a background
estimate for all TOVS channels, including the highest channels. For surface skin temperature,
which is not included in the standard B-matrix, we set a constant error of 5 K over land
and ice, and 1 K over open sea. The results are shown as cross sections and maps of the
square root of diag(HBHT), i.e. the standard deviation of background error in terms of a few
selected observed quantities. The calculations have been performed at spectral resolution T42.
The corresponding grid has 6114 points globally, at approximately 300 km spacing. Higher
resolution would be desirable because of better land/sea definition, for example, but would
currently be too computationally expensive for operational use.

3.1 Backgi‘ound errors for model variables

The current formulation of the 3D/4D-Var B-matrix assumes that the correlations are station-
ary and homogeneous. The error variances, however, vary both in space and in time depending
on the volume and the distribution of data in previous analyses (Fisher 1996). In the absence
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of observations the error grows asymptotically towards the climatological level of atmospheric
variability, as obtained from the ECMWF 15-year reanalysis (ERA-15, Gibson et al. 1997).
Therefore the diagnostic computations of HBHT are relevant for a particular analysis time.
The results presented here refer to 1 May 1999 at 00 uTc. Figures 1 (a) and (b) show zonally
averaged meridional cross sections of temperature (K) and specific humidity (gkg™!) back-
ground errors for that day, computed using Eq. (2). We can see that the temperature errors
in the troposphere increase polewards from a minimum of around 0.6 K on the equator to 1.6
K in high latitudes. The temperature errors increase gradually with height to around 2.5 K
at all latitudes in the upper stratosphere. The assumed temperature errors are probably un-
realistically small near land surfaces. The specific humidity errors (Fig. 1b) are largest around
800 hPa in the tropics where they reach 2.0 gkg™!, and decrease towards the poles and with
altitude. (Note that this latter cross section is restricted to the interval between 1000 and 100
hPa).

3.2 Background errors for conventional data

As examples of background errors in terms of quantities measured by conventional data, we
show in Fig. 1 (c) u-component of wind (ms™') and (d) geopotential height (m), respectively.
The wind errors show a distinct maximum at tropospheric jet level of 4 to 5 ms™* and the
level of maximum wind error follows the general slope of the tropopause. Wind errors have
a minimum around 40 hPa and increase quasi-linearly with the logarithm of pressure from
that level upwards. For geopotential height the observation operator is a function of surface
pressure and a vertical integral of temperature and specific humidity (Appendix A of Courtier et
al. 1998). The cross section (Fig. 1d) shows geopotential background errors generally around 10
m in the tropics, increasing to just over 35 m in the upper troposphere in high latitudes. There
is a rapid increase in geopotential background errors with altitude in the upper stratosphere.

Horizontal maps of background error show the influence of the data distribution used in earlier
analyses. Geopotential height at the lowest model level, for example, shows lower error over
Europe and North America than over the oceans (Fig. 2) due predominantly to the high
density of surface pressure observations over land. Noise due to the limited sample size of the
randomization is noticeable especially in the Southern Oceans.

These diagnosed background errors can for conventional data be compared with those obtained
through study of innovations (Jarvinen 1999). The preliminary indications of such comparison
are that the specified background errors in 4D-Var are approximately 30 % too large in most
parts of the troposphere. A future retuning of the specified statistics is expected to reduce this
discrepancy. Work in this area is in progress.
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3.3 Background errors for radiances

Examples of the application of Eq. (3) with H being the radiance operators for the channels
AMSU-A11 and HIRS-6 are shown in Figs. 3 and 4, respectively. AMSU-A11 is a stratospheric
temperature sounding channel and HIRS-6 is sensitive to tropospheric temperature and humid-
ity as well as to surface skin temperature. For a detailed description of the characteristics of
the various TOVS instruments (HIRS, MSU and SSU) see Smith et al. (1979) and for the new
TOVS microwave instruments (AMSU-A and B) see Klaes (1995). AMSU-A11 peaks around
20 hPa where the temperature background errors are 1.0 to 1.2 K in the tropics and around
1.4 K in mid and high latitudes (see Fig. 1). The background errors in terms of the vertically
relatively broad AMSU-A11 brightness temperature (Fig. 3) are 0.3 K in the tropics and 0.5
to 0.8 K in mid and high latitudes. The low AMSU-A11 background errors are an indication
of significant compensation in the vertical of temperature background errors within the layers
spanned by the AMSU-11 weighting function. From Fig. 3 and similar plots for the other
temperature sounding AMSU channels we can conclude that these data will have larger impact
on the analysis at mid and high latitudes than in the tropics.

The background errors in terms of HIRS-6 (Fig. 4) vary over sea from less than 0.3 in the driest -
sub-tropical air to 0.7 at high latitudes, where the temperature variability is larger, and in a
band along the Equator, where the humidity variability is larger. Over land the error is larger
the higher the altitude (the Rockies and the Andes for example) and the drier the atmosphere
(Sahara and Australia, for example) but it may also be high where humidity variations dominate
(e.g. Amazonas). In order to quantify more precisely the relative contribution from each of
the three variables: 1) air temperature, 2) humidity and 3) surface skin temperature, we have
repeated the calculations three times, each time with the background error for two of the
variables set to zero. The result is shown in Fig. 5 for temperature (top), humidity (middle)
and surface skin temperature (lower panel), in terms of relative contributions to the total HIRS-
6 background error, i.e. the sum of the three panels is equal to one everywhere. We can see
that HIRS-6 observations primarily will influence the 3D/4D-Var temperature analysis in the
oceanic areas polewards of 30° N and 30° S and in the driest areas of the subtropics. It will
primarily influence the humidity analysis in the tropics. The influence of the surface is greatest
where the elevation is high and/or the atmospheric humidity is low. The figure illustrates
how 3D/4D-Var partitions the information from HIRS-6 observations between temperature
and humidity analysis increments, given a particular B-matrix and a particular atmospheric
state. ' ‘

The global r.m.s. of background error for HIRS, MSU, SSU, AMSU-A and AMSU-B channels
is summarized in Fig. 6. Surface sensing channels generally show larger background error (e.g.
HIRS-8, AMSU-A1, A2, A3 and A15, and B1) as do most humidity sensing channels (HIRS-10,
11, 12 and AMSU-B2, B3, B4, B5). Pure temperature channels show larger background error
the higher in the stratosphere they peak, as can be clearly seen in the ranges from AMSU-
A7 to Al4, MSU-3, 4, SSU 1, 2, 3 and HIRS-4, 3, 2, 1. Broader weighting functions (e.g.
HIRS-4 and MSU-3) tend to correspond to lower background error, due to compensation of
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temperature background errors in the vertical. The calculated range of background errors
for the stratospheric temperature sensing AMSU channels (A10 to Al4) compares reasonably
well with statistics deduced from study of innovations (Table 1). The innovation statistics
include the observation error and ought to be larger than the diagnosed background errors.
Estimates of the AMSU observation errors (from Saunders et al. 1999) are also given in the
table. Table 1 thus indicates that the current background errors for AMSU-A10 and All may
be overestimated while the results for AMSU-A12, A13 and A14 have given us some confidence
also in the upper-stratospheric part of the operational B-matrix.

Table 1: Comparison between standard deviations of innovation statistics and diagnosed back-
ground errors for stratospheric temperature sensing AMSU channels, for 5 to 10 December
1998. The sample size is 124,888. Observation errors are from Saunders et al. (1999).
AMSU channel number A10  All Al12 Al3 Al4
Peak of weighting function (hPa) 40-70 20-40 8-20 4-8 1-4
Estimated observation errors (K) 0.35 0.35 0.50 0.75 1.10
Diagnosed background errors (K) 0.36 0.42 053 0.72 1.13
St.dev. of innovations (K) 034 042 0.79 1.21 1.57

3.4 Background errors for a humidity sounding channel

The TOVS radiance observation operator is nearly linear with respect to temperature (Saunders
et al. 1999) but is considerably less linear with respect to humidity. As a result, the effective
background errors for the humidity sensitive channels are strongly dependent on the actual
background state. We illustrate this non-linear sensitivity by making linearised calculations of
the changes in HIRS-12 radiance resulting from a given change in the humidity profile, where
the humidity change is made first in a dry atmosphere and then in a wet atmosphere.

We have calculated the weighted sensitivity (07;/0q;)Ag; of the HIRS-12 brightness tempera-,
ture T} to a change in humidity Ag; (at each level j) given by Ag; = 0.1¢sat(7}). The weighted
sensitivity of 7T} in the dry atmosphere is O(1 K) and is shown by the open bars in Fig. 7. By
contrast, in an atmosphere with the same temperature structure (7;) but with a much moister
equatorial humidity profile, the profile of sensitivity is quite different and is much smaller, O(0.2
K), confined to the upper troposphere, as shown by the black bars in Fig. 7. In other words, for
a dry sub-tropical profile the open bars in Fig. 7 show that a 10 % increase in relative humidity
anywhere in mid-troposphere will give a large, O(1 K), change in HIRS-12. By contrast, for a
moist equatorial profile, the black bars in Fig. 7 show that a 10 % increase in relative humidity
anywhere below 300 hPa will give almost no change in HIRS-12. In such a moist atmosphere,
HIRS-12 is sensitive mainly to the humidity above 300 hPa, because humldlty changes at lower
levels are masked by the humidity in the overlying layers.

This non-linear behaviour creates a very complicated field of background error for HIRS-12.
An example is shown in Fig. 8(a) for parts of the South Atlantic. The dry and the moist
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profiles of Fig. 7 are indicated in Fig. 8(a) by 'D’ and "M’| respectively. Lowest background
errors tend to occur where the humidity is high as at point 'M’, and vice versa at point 'D’,
in accordance with the sensitivities shown in Fig. 7. These characteristics of the simulated
HIRS-12 data in combination with crudely specified background errors for specific humidity in
dry regions can in some cases result in very large estimated background errors for HIRS-12.
The maximum in Fig. 8(a) is 17.3 K (over Sahara) and there have been cases in excess of 30 K
(not shown). Statistics of HIRS-12 innovations indicate that such very large background errors
are spurious and should be corrected by improving the specification of humidity background
errors. It is conceivable also that further improvements to the radiative transfer model could
reduce its large sensitivity to small humidity perturbations in dry atmospheres. Further work
on these issues is required.

4 A case of poor 4D-Var convergence

The successful direct assimilation of TOVS radiance data in'4D-Var is currently being extended
to other observations, such as the radiance data from the Meteosat water vapour sensor. There
are presently two Meteosat platforms in geostationary orbit (over 0° West and 63° East, respec-
tively) each providing full disc coverage every 60 minutes. The characteristics of the Meteosat
water vapour channel are very similar to those of HIRS channel 12, i.e. the channel is pre-
dominantly sensitive to upper tropospheric humidity. Ongoing experiments with 4D-Var use
frequent radiance data from Meteosat, with the aim of improving the tropical analysis of wind
(by exploring 4D-Var’s ability to track humidity features, Daley 1995) as well as to improve
the humidity analysis itself. Preliminary results of this work have been documented by Munro
et al. (1999). : :

In our initial experimentation with the Meteosat water vapour channel ‘we found that the
addition of Meteosat radiance data altered the analysis in areas far away from that observed
by the Meteosat satellites. Analysis differences in excess of 1 K appeared in parts of the South
Pacific and in the Arctic, for example. Significant analysis differences, that were not due to
differences in data rejection, were also found in data dense areas such as North America. These
unexpected results turned out to be symptoms of insufficient convergence of the minimization.
The minimization was performed as in the operational 4D-Var (Klinker et al. 1999) i.e. 50
iterations with simplified physics, followed by 20 iterations with full physics (Mahfouf and
Rabier 1999), using the M1QN3 quasi-Newton algorithm (Gilbert and Lemarechal 1989). The
same number of iterations was performed whether Meteosat data were used or not. The spurious
analysis differences were reduced in experiments with increased number of iterations. The
observed behaviour was a clear indication that the conditioning of the 4D-Var problern had
been seriously degraded by the inclusion of Meteosat radiance data.
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4.1 Preconditioning

The current 4D-Var is preconditioned with respect to the Jy, term (Courtier et al. 1998; Derber.
and Bouttier 1999) as suggested by Lorenc (1988). The J, term (the observation term of the
variational cost function) is, however, not preconditioned. Introduction of additional data will
therefore tend to deteriorate the conditioning of 4D-Var (Courtier et al. 1994). The ideal
preconditioning would be to use the Hessian J” of the analysis cost function, as demonstrated
by Thépaut and Moll (1990) in a problem with small dimension. The rate of convergence of
the minimization is largely determined by the condition number C of J”, i.e. by the ratio of
its largest and smallest eigenvalues: C = Aoz (3”)/Amin(J”). The Hessian is the sum of the
Hessian matrices of J, and J,: J” = J§ + J7, where Ji, by virtue of the choice of control
variable, is equal to the identity matrix, J! = I, and J? = LTHTR'HL, where L (the change
of variable operator) has been defined in Eq.(1). Thus,

(
J' =3+ =1+ LTHTR'HL (5)

where J? is a positive semi-definite matrix, whose eigenvalues are consequently all non-negative.
Thus, we have A(J”) = 1 + A(J). Furthermore, if the number of observations is smaller than
the dimension of the control variable, then Apin(J7) = 0 and Apin(J”) = 1, so that in that case
C = Amaz(J"). It is important to note that the conditioning does not depend on the observed
data values but it does depend on the specified observation and background errors, as well as
on the amount and the distribution of data.

In order to clarify formally how the condition number of the variational analysis depends on the
observation and background errors and on the data density we have devised a small theoretical
example. We consider the analysis of two grid points. There are n uncorrelated observations at
each gridpoint, all with the observation error oy, i.e. R~ = I/02. The observation operator H
is then a 2n by 2 rectangular matrix with n rows equal to (1 0) and n rows equal to (0 1) and
the product HTR™'H = nI/g2. The background at each point is assumed to have an error oy
with correlation o between the two points, thus defining B. The operator L can easily be found
as it is the symmetric square root of B. With these definitions we compute the Hessian matrix
using Eq. (5) and we obtain the condition number C as the ratio between its two eigenvalues,

o ool +0a)+og/n
~ op(l—a)+oZ/n

(6)

which, if the grid points are close, i.e. @ ~ 1, becomes

C= Zn(ab/ao)2 +1 . (7)

Equation (7) shows that the conditioning of the variational problem deteriorates with increasing
data density (larger n) and with increasing ratio between background and observation error.
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This is the analogous problem to the ill-conditioning encountered in Optimum Interpolation
(Lorenc 1981).

In the light of this theoretical result we can now return to the investigation of the original
problem. The Meteosat humidity channel observation error was set to 2 K, which was felt to be
a cautious yet reasonable value - certainly not small enough to cause the degraded convergence.
As experiments with reduced data density were only partly successful we turned to a study of
radiance background errors.

The Meteosat water vapour channel is very similar to HIRS-12 and we may use the results
presented for HIRS-12 in the previous section, as a proxy for the Meteosat channel. Figure
8(a) showed that the strong non-linearity in the HIRS-12 sensitivity to humidity perturbations
locally produced very large radiance background errors. With such a large discrepancy between
assumed background errors (> 10 K locally) and observation errors (2 K) the analysis is required
to draw very closely to the Meteosat radiance observations, with possible implications for the
condition number.

4.2 Eigenvectors of the analysis Hessian

The leading eigenvectors and eigenvalues of the 4D-Var Hessian are routinely computed as
part of the esimation of the analysis error (Fisher and Courtier 1995), using the combined
Lanczos and conjugate gradient algorithm. The Hessian is the matrix of second derivatives of
the variational cost function, and it can be shown that the Hessian (at x,) is equal to the inverse
of the analysis error (Rodgers 1976; Gauthier 1992; Rabier and Courtier 1992; Courtier et al.
1994). In our experiments we found that the eigenvalue associated with the leading eigenvector
of the analysis Hessian was much larger in the analysis with Meteosat data than without: 4495
compared to 2229 (Table 2). As the condition number is the ratio between the largest and the
smallest eigenvalues, this result provided confirmation that the inclusion of Meteosat data had
indeed deteriorated the conditioning of the minimization problem. - '

Table 2: Leading eigenvalues of the 4D-Var Hessian
~ Original Modified
: q Bg Error q Bg Error
without Meteosat data 2229 2208
with Meteosat data . 4495 2232

The structure of the leading eigenvectors provided information on the origin of the problem.
Figure 8(c) shows the amplitude in specific humidity at model level 37 (approximately 500 hPa)
of the leading eigenvector of the analysis Hessian with Meteosat data. Its maximum amplitude
is located near the west coast of Africa, and coincides with one of the maxima in the radiance
background error shown in Fig. 8(a). The radiance background errors that locally appeared to
be unrealistically large may therefore be the reason for the poor convergence.
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To test this hypothesis a simple modification to limit the humidity background errors in very
dry areas was developed. The original formulation has been described by Rabier et al. (1998).
A decision was made to arbitrarily limit the background error to a maximum of 125 % of the
background specific humidity above 800 hPa. In so doing the general features of the humidity
background error were unaltered, but the extremely high values of radiance background errors
were reduced, as shown in Fig. 8(b). The local maximum with the value 10.4 K was reduced
to 6.4 K. The success of this minor alteration of the humidity errors is most clearly seen in
the reduction of the leading eigenvalue. It was reduced from 4495 to 2232 in the analysis
with Meteosat data (Table 2). The new lower value is similar to the leading eigenvalue in an
analysis without Meteosat data, which in this case is 2208. We can therefore expect that with
the modified humidity background error, the convergence rate will be unaffected by the addition
of Meteosat data. This has indeed proved to be the case. The spurious analysis differences
that were observed far away from the Meteosat data in the original experiments were removed
in experiments with the modification. Only small- amphtude large-scale analysis differences

remained outside the Meteosat area. (

4.3 Summary

In this section we have demonstrated how the leading eigenvectors of the 4D-Var Hessian
can be used to locate geographically the cause of degraded 4D-Var convergence. Maps of
HBHT, computed with the randomization method described in section 2, revealed an area
of mis-specified background errors, in terms of one satellite-measured radiance channel, which
coincided with the location of the leading eigenvector. The leading eigenvalue of the Hessian
was used to determine the condition number of the 4D-Var minimization problem.

5 Conclusions

A method has been developed to diagnose the variances of background errors for observable
quantities which are non-linearly related to the analysis variables. The observation operators
(linearized around the background model state) are applied to a set of random vectors drawn
from a population with the probability density function of the background error covariance
matrix. One thereby obtains global maps of the effective background error for all observed
quantities used by the variational analysis scheme - both conventional data and satellite mea-
sured radiances, for example. '

We have demonstrated how the computed radiance background errors helped explain a case
of poor convergence in 4D-Var, where a small alteration to the humidity background errors
resolved the problem. We showed that the modified humidity background errors reduced the
leading eigenvalue of the cost function Hessian and the rate of convergence of the minimization

12 Technical Memorandum No. 296



Background errors for radiances and other observable quantities N

improved. The leading eigenvectors of the Hessian were used to pin-point the geographical
location of the cause of the problem.

The diagnosed background errors have also been used to tune the setting of observation and/or
background errors, by comparison with innovation (observation minus background) statistics.
This has proved to be useful as the ECMWF model domain has recently been extended higher
into the stratosphere and as new satellite measured radiance observations such as those from
the new TOVS microwave instrument AMSU-A have been introduced. The method has also
been used (in Fig 5) to quantify how the information from radiance observations (which may
be sensitive to both temperature and humidity) is partitioned between analysis increments in
temperature, humidity and surface skin temperature, respectively.

The computations of background errors for observed quantities have been carried out opera-
tionally every analysis cycle (i.e. every six hours), since May 1999. The computational cost is
relatively small. The reasons why the computations have to be repeated every cycle are: (i) the
specified background errors depend on the data distribution in previous analyses and (%) non-
linear effects of the observation operators will influence the results, as demonstrated for HIRS
channel 12 in this paper. The radiance background errors are currently used operationally to
define rejection limits in the so-called background check, which checks the measured radiances
against radiances computed from the background atmospheric fields.

The validity of the results presented in this paper is restricted to the beginning of the 4D-
Var assimilation period, and to 3D-Var. However, in future work the evolution in time of the
effective background errors will be studied. The current method will be extended such that
each of the random vectors in Eq. (2) are evolved in time by the tangent linear forecast model.
Preliminary results (Andersson and Fisher 1999) show that flow-dependent background errors
can be generated with such an approach, at a reasonable cost.
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Fig. 2 Lowest model level background error in terms of gegpotential height, 19990501-00 UTC, with a contour interval
of 8 m. Shading starts at 8 m.
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Fig. 3 Background error, 19990501-00 UTC for AMSU channel A11, which is sensitive primarily to stratospheric temperature
between 10 and 40 hPa. The contour interval is 0.1 K, with shading starting at 0.3 K.
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Fig. 4 Background error, 19990501-00 UTC for HIRS channel 6, which is sensitive to tropospheric temperature and
humidity as well as to surface skin temperature. The contour interval is 0.2 K, with shading starting at 0.4 K.
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Fig. 5 Relative contribution to the HIRS channel 6 background error from, respectively, air temperature (top), humidity
(middle) and surface skin temperature (lower panel). The contours are 0.2, 0.4, 0.6 and 0.8, with shading start-
ing at 0.4. The sum of the three charts is by construction equal to one everywhere.
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Fig. 6  Global r.m.s. of background errors in terms of brightness temperature (K), for HIRS channels 1-8 and 10-15,
MSU 2-4, SSU 1-3, AMSU A1-A15 and AMSU B1-B5. Channels HIRS-9, HIRS-16 to 20 and MSU-1 have not
been computed. : :
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Fig. 7 The weighted sensitivity i.e. (partial T_r/partial q_j)*Delta q_j in TOVS channel HIRS-12 brightness temperature
(K), for humidity perturbations Delta q_j=0.1*q_sat(T_j). Open bars correspond to the dry profile, the location
of which is marked 'D' in Fig. 8(a), and filled bars correspond to the moist profile, marked 'M'. The lineariza-
tion temperature profile $T_j$ is the same in both calculations in order to ensure equal profiles of humidity per-
turbations. The vertical scale is logarithmic in pressure. Each bar represents one layer in the 43-layer repre-
sentation used by RTTOV-5.
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