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1 Introduction

Clouds are a vital component of the hydrological cycle of the plyzvmet providing the essential source of
freshwater used by humankind. Clouds also exert a dominant influence on the energy budget of the planet
principally through their influence on radiative processes. As such, understanding how well we predict
where and when clouds form and how much water is processed by clouds is vital for advancmg the

prediction of both weather and climate.

Assimilation of cloud and precipitation measurements into models may be viewed as an essential stage in
progress toward both advancing such prediction. This paper introduces some of the basic issues confronting
assimilation of cloud and precipitation data and does so by framing the discussion around the cloud
information expected from the CloudSat experiment.

The paper begins with a brief description of CloudSat identifying the cloud information to be obtained. The
philosophy adopted for development of the algorithms is briefly outlined for two reasons. First the
algorithm approach emphasizes the flexibility of the method for adding further information derived from
other satellite data matched to those data obtained from CloudSat. This is important given the design of the
CloudSat experiment which relies on formation flying with EOS Aqua and thus all measurements provided
by that satellite could be integrated with the CloudSat measurements. The second reason for the discussion
of CloudSat algorithms is that the approach developed parallels the current philosophy developed for

assimilation of data in models and therefore bares directly on the problem of data assimilation.

The paper describes an assimilation experiinent in section 5 wherein cloud radar data are assimilated into a
model of cirrus cloud. This experiment, and results derived from it, provides both a useful framework to
begin to consider broader issues of cloud and precipitation data assimilation and attempts to prov1de a

glimpse at the pos51ble impact cloud radar data offer this assimilation problem.
2 The CloudSat experlment -a brlef overview

CloudSat is a multi- sate]hte mu1t1 -sensor expenment (e g. Stephens et al., 2001) designed to provide key
information about clouds and prec1p1tat10n ‘that cannot be derived from current or planned observing
systems. The CloudSat mission is a partnership between NASA/IPL, the Canadlan Space Agency, Colorado
State University, the US Air Force and the US Department of Energy. CloudSat makes use tight formation
flying with other spacecraft forming an observing system constellation providing near-simultaneous

measurements from the combination of sensors from the constellation. CloudSat will be launched in 2003
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and will fly in formation with EOS-PM (Aqua) as well as with the proposed PICASSO-CENA experiment
carrying an aerosol lidar. The payload of Aqua includes CERES, AIRS, AMSR and MODIS. In this way,
CloudSat will integrate the radar measurements with Aqua sensor measurements providing a rich source of
information for studying clouds and precipitation.

2.1 Mission Science Goals
The science goals of the mission are:

i) Quantitatively evaluate the representation of clouds and cloud processes in global atmospheric
circulation models, leading to improvements in both weather forecasting and climate prediction

i1)  Quantitatively evaluate the relationship between the vertical profiles of cloud liquid water and ice
content and cloud radiative properties, including the radiative heating by clouds.

iii) Evaluate cloud information derived from other research and operational meteorological spacecraft;

iv) Improve our understanding of the indirect effect of aerosols on clouds by investigating the effect of

aerosols on cloud formatlon

22 Payload

The primary CloudSat payload consists of a 94-GHz Cloud Profiling Radar (CPR) which is to provide
calibrated radar reflectivity, (e.g., radar backscatter power) as a function of distance from the spacecraft.
The CPR will provide a nominal minimum detectable reflectivity factor (hereafter MDS) of approximately -
28 dBZ, a 70 dB dynamic range, and a calibration accuracy of 1.5 dB. The radar footprint is 1.4 km, and
will be averaged over 0.3 seconds to produce an effective footprint of 4 km (along-track) by 1.4 km (cross-
track). The normal mode of operation will yield 500-m vertical resolution between the surface and 25 km
with a resolution of cloud boundaries at 250m. ‘ ‘

2.3 Products

The mission’s primary science goal is to furnish data leading to the retrieval of the information summarized
in Table 1. There are two types of products summarized in this table. The first set are referred to as standard
products to be produced by the Data Processmg Center (DPC) of the pro]ect These standard products are
deemed to be necessary for addressmg the science ob_]ectlves of the prOJect The second group of products
listed are experimental products are denved (arguably) from less mature algorithms and contribute in less
critical although still important ways to the science: of the mission. Notable ‘in this: list of products is
information about precipitation and examples of this product using a CloudSat 94 GHz radar precrprtauon
retrieval scheme is described below. The list of expenmental products will continue to expand as other data
are mcluded and new retrieval methods are developed pnor to launch ’
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1 Cloud profile mask Threshold above 28 dBZ | 500m Provides all vertical
geometric properties
2 Cloud Classification | Match to selected WM NA Combines radar and
cloud types : | imaging information
3 Cloud Ice Water For clouds above optical 500m Mergers radar and optical
Content depth 0.1 30-50% depth data.
Also uses 1&2 above
4 Cloud Liquid water For clouds above optical 500m Mergers radar and optical
content depth 0.1 30-50% : depth data. »
Also uses 1&2 above
5 Fluxes and heating TOA/surface fluxes: Derived
rate <10 Wm® instantaneous
Heating rate:
500m 1Kday 'km’

Experimental Product

6 Precipitation Reflectivity Threshold 500m
Occurrence Approach
7 Attenuation mask Based on sigma_0 analyses | TBD Identifies occurrence of
detectable attenuation -
linked to 6 above
8 Rainrate (R) Z-attenuation algorithm Resolved R< 10 mmhr” Will use 6 & 7 above as
Convective rain > 10 well as other information,
mmhr’ notably AMSR radiances.
9 Extinction profile 500m, resolution TBD Based on Z-extinction
relation constrained
MODIS based column-wise
optical depth
10 Cloud layer Optical Cloud layer MODIS+<cloudradar
Depth combined optical depth
algorithm (connected to 9
above) to produce an
optical depth alternative to
the MODO06 products
11 Particle Size For upper cloud layer of As for 10.
profile
12 Cirrus Particle size Applicable only to upper 500m Combines lidar and radar
profile most layer of cirrus ‘

Table 1 A list of the Standard CloudSat data products and a suggested list of experimental products

3 Measurement and Algorithm Approach

The basis for the estimation of cloud physical parameters listed in Table 1 is essentially based on the unique
information that can be derived when active measurements (i.e. the cloud radar) are contrasted with passive
measurements (available from Aqua). The benefits of combining these different measurement types into a
single cloud observing system has been demonstrated over the past 20 years using measurements from both
aircraft and ground based lidar, radar and radiometer systems. Following this approach, CloudSat combines

21



- STEPHENS, G. ET AL: CLOUD ASSIMILATION IN THE ERA OF CLOUDSAT

the radar reflectivity data with optical depth information retrieved from reflected sunlight measurements
(Austin and Stephens, 2000). This combination provides essentially independent information about cloud
liquid water coﬁtcnt and droplét: size as illustrated in Fig. 1 showing theoretically calculated relationships
 between vertically integrated radar reflectivity (IZ), cloud optical depth 1, LWP and effective radius r,
portrayed-in the form of contours of LWP and r, for water droplet clouds. The degree of independence of the
1Z-t informétion'is indicated by the degree to which these contours lie in 6r'thogona1 directions to one

another.
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Fig. 1 A theoretically calculated relationship between integrated radar reflectivity IZ and optical depth T
mapped to effective radius and cloud liquid water path. This mapping underscores the degree to which 1Z and
T contain essentially independent information about these cloud parameters. The cloud of points on this grid
are measurements described in Austin et al. (2001).

3.1 The Algorithtﬁ Aj)proach

Figure 1 illustratés in a simple way the basic principles of a retrieval that exploits the relation between the
cloud radar observations and the optical depth information determined from MODIS radiances matched to
the radar wh1ch is made possible by the formation flying aspects of the mission. The CloudSat algorithms

based on this concept, however, are implemented observing the following requirements:

o Have a sound physical basis. Although this basis is illustrated in Fig. 1, the relationships expressed in
. that figure are formerly stated as

y=fixbie, | | W

where y is the measurement (radar reflectivity and radiance data converted to optical depth), fix,b) is the
forward function (i.e. 2 model) relating the desired information x toy involving parameters b provided
from some other data base. Equation (1) is ‘inverted’ by an estimation procedure (e.g. Austin and

Stephens, 2000) to provide the necessary information about clouds.

e Provide an associated error analyses — the estimation procedure requires specification of the errors
associated with any a priori data base x,, specification of errors arising from the forward model fand
related parameters b, and specification of measurement error €, The diagnosis of retrieval error that is
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an output of the retrieval is also of elementary importance to application of the data in assimilation

studies.

° Offer diagnostic measures of retrieval quality including some idea of the information content of the

relevant measurements in relation to the given product

An example of this retrieval applied to synthetic radar observations derived from cloud profiles with varying
amounts of precipitation is provided in Fig.2a-d and taken from the work of L’Ecuyer and Stephens (2001).
The retrievals were performed using 94 GHz radar profiles simulated using the GPROF data base as input
(Ohlsen et al., 1996) and do not attempt to add additional information to constrain attenuation by the
precipitation.- Shown in Figs. 2a and b are the rainfall retrievals at 2.5km and at the surface compared to the
actual rainfall information of the GPROF database. Respective measures of the information content of the
radar measurement are provided in Figs. 2c and d. The examples demonstrate a capability for retrieving
surface precipitation for rain-rates below 3mmbr’ without ahy significant ambiguity introduced by
attenuation by rain. This capability is extended to even higher rain rates at levels above the surface. The
capability portrayed in Figs. 2a and b is further emphasized in Figs. 2c and d. Shown are values of the A
parameter (Marks and Rodgers, 1993) indicating the extent that the retrieved information is derived from
the measurements. To guide in the interpretation, values of A that approaches unity imply retrievals that
increasingly depend on the measurement whereas values approaching zero indicate retrievals that
increasingly rely on extraneous information. Research is continuing on possible ways of dealing with the
ambiguity associated attenuation thereby extending the validity of the retrievals to higher rain-rates
(L Ecuyer and Stephens, 2001).
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Fig. 2a-d. Synthetic retrievals of precipitation based on 94 GHz radar reflectivity profiles simulated from the
GPROF data base compared to actual precipitation at the surface and at 2.5 km (a,b) and the corresponding a
priori parameter derived for each retrieval (c,d). Precipitation is in mmhr’.
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3.2  Error and Evaluation

Not only is the development of retrieval methods aimed at producing new information, an activity that will
continue in the coming years, but also evaluation of both the standard and experimental products is to be an
important focus of activity. The purpose of this evaluation activity is to quantify the error characteristics of
the retrieval approach. There are two types of errors, random and bias errors and there are three basic
sources (e. g Austm et al., 2001): '

®  Model error-_errors associated with the model of observation (radiative transfer model, radar
equation, etc), and uncertainties in those parameters not retrieved but which establish the forward
model. This error is typically a substantial part of the error budget of cloud & precipitation
information extracted from retrieval algorithms.

° Measurement error —  measurement error relates to instrument performance cahbratron noise, etc.
For cloud and precrpltatron measurement error (bnghtness temperatures solar & IR rad1ances radar

reﬂectlvrtres) is typlcally the smallest source of retneval uncertamty

® . Data base error — uncertainties in a priori data-bases used to constrain non-unique solutions . (e.g.
multiple rain rates for a given brightness temperature) are an additional source of retrieval error that
is often a significant but generally overlooked.

Four activities represent the approach to evaluate these errors:

® Sensor Calibration: Radar calibration includes a routine and detailed system calibration both in flight
and prior to launch, vicarious calibration associated with surface returns from the ocean, and direct

measurement comparisons with mdependently calibrated airborne radar.

e Ground Truth this provides conﬁrmatlon of the total error estimate which is also: the output of the
retrieval. It tequires mdependent data obtained from (say) cloud physics probes that offer a more
direct (and generally more accurate) measure of the relevant quantrtles bemg evaluated There is
generally no absolute ground truth and 1t is difficult to match these direct measurements with those
derived from remote sensors due to the differences in sample of the two types of data. Quantifying
total error is often times elusive for this reason but ground truth exercises remain important especially
since these activities are the only way to estimate the difficult-to- determme systematic errors in the
retrievals.

o Error Modelling: . this activity attempts to quantify individual error components with the focus on
those that are typically the largest source of retrieval error. For clouds and prec1p1tatron these sources
of error are typically attached to f, and b (the data base). The approach can vary and do not
necessarily require equivalent radar observations as used by the retrieval algorithm. For CloudSat,
these analyses make use of a variety of data sources including currently archived cloud physics data
(e.g. Austin et al., 2000) V
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e Consistency analyses: for this activity, the retrieved information is compared to other information that
is in one way or other correlated with the cloud information in question. This other information may
typically come from a retrieval using independent data from other sensors (MODIS and AMSR
radiances are specific examples). These kinds of comparisons provide a simple and expedient way of

checking large volumes of data to identify possible failures in the retrieval while on orbit.

Figure 3 highlights this evaluation approach pfoviding an example of ‘ground-truth’ comparisons of cloud
radar LWC retrievals matched to in situ aircraft measurements and an example of consistency of
information in the form of a comparison of cloud radar based LWP information matched and compared to
LWP derived from an up-looking microwave radiometer (Austin et al., 2001). The rms deviation of both
comparisons is about 30%. The actual totaI error is likely to be smaller than this since no attempt has been
made in these comparisons to remove sampling errors that arise from the basic differences in sampling

volume of the sensors used to produce the respective data.
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Fig. 3 An example of a form of ground truth comparison expressed in terms of a difference pdf derived from
retrieved liquid water content using the CloudSat algorithm applied to airborne data (Austin et al, 2001) and in
situ measurements of LWC (upper panel). A similar comparison between retrieved LWP and that derived from
microwave radiometer measurements (lower panel).
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4 Thoughts on Assimilation of Cloud Data

The challenges of assimilating cloud and precipitation data can conveniently be introduced by reference to

the general cost function _
Jx) = (x—x")" B (x-x") + (H(x) y) (O+F)" (H(x) y) | )

where x is the relevant parameter of interest, x" is the background. estimate of this parameter, H(x) is the
forward model that maps x to a measurement y- B,O and F are respective error covariances associated with
the forecast model, the obseryation y and the forward model H respectively. The assimilation problem seeks
an x at the minimum of J(x). Various 'appreaches may be adopted to seek this minimum and those in

practice today in operational mode typically linearize the models implied in (1) in some way.

A number of issues emerge when considering (1) above within the context of cloud and precipitation
assimilation:

What are the relevant measurements y? At what point do these measurements get introduced in the form of
retrieved parameters versus in the form of an actual measurement? Limited cloud and precipitation
assimilation studies that exist tend to treat y as a retrieved parameter, e.g. precipitation rather than an actual

instrument observation. Answers to these questions ‘dictate answers to the following:

What is x? These are parameters derived from the‘ ‘fdfecast model. At what point do we decide to treat x as
conventional parameters (temperature, humidity, wind fields) or as an extended vector including additional
non-conventional cloud parameters? This decision is crucial as it establishes the nature of the error

covariances required to evaluate J(x).

What is H(x)? The answer to this depends on what is considered to be y and subsequently H(x). For one
approach, H(x) includes the model physics that connects conventional parameters x (temperature and
humidity for instance) to the cloud parameters’ y prempltatlon) mtroduced via a retrieval. That is H(x)

represents the cloud model component of the forecast model

What do O,F and B represent? It is crucial that we be clear on the interpretation of these errors and
furthermore have a strategy to estimate their magnitudes. O represents the error in y and depending on the
choice of y this could either be the measurement error per se or the retrieval error. F then could be the error
of the forward model such that F+O is the total retrieval error or F could be the error attached to the cloud
parameterization of the forecast model. B is the background error of the model as it related to x. Therefore
depending on the deﬁnition of x, B could represent the model error attached to conventicnal fields (for
which more is known) or alternatively the model error that includes errors in the cloud parameterization
scheme (for which little is known). '

While answers to these questions remain an open issues of ongoing research, the above discussion points the
importance of knowledge of measurement and retrieval error and the associated error of the model. The
latter unavoidably requires specification of error associated with the cloud parameterization scheme whether

this error is placed in B or resides in F.
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5 Assimilation Cloud Radar Data in a simple model of cirrus

The following describes a series of numerical experiments in which synthetic cloud radar data are
assimilated into a simple model of cirrus clouds. This work is described in more detail in Benedetti et al.
(2001). The purpose of the experiments is to provide a format to consider some of the issues raised above
and to expose other issues relevant to the assimilation of cloud measurements and specifically

measurements provided by a 94 GHz cloud profiling radar.
5.1 A 2-D Lagrangian model of cirrus

The cirrus microphysical model described here is based on the work of Mitchell (1994, 1991, 1988),
Passarelli (1978) and Drake (1972). Mitchell (1994)’s formulation has been extended to obtain two coupled
prognostic equations to predict the time and vertical evolution of two parameters of a gamma size
distribution of fixed width, the characteristic diameter D, and the total number concentration of ice crystals

N.. These parameters are related through an assumed form of the particle size distribution

v-1
—_ _.._1___ .R L ~-DID,
=R r(v)(D,,) D,

from which the following parameters

m = oD ?
v=aD’ ®3)
Z=1(N,,D,)

can be derived where respectively m represents the mass content, v the fall velocity and Z is the radar
reflectivity. The quantities a, b o and P are pre-chosen coefficients taken from Mitchell (1988) and

assumed constant for simplicity.

Two coupled equations follow from a Lagrangian time-dependent model equation that predicts the evolution
of ice particle size spectra in cirrus clouds in terms of the growth by vapor diffusion and aggregation (break-

-up processes are not included).

This equation in flux form is:

on,

dt

+Ven_u=-P-VD+AG- AL @)

where n_ is the mass distribution, P is the loss by precipitation, VD the loss by vapor deposition from one
mass bin to another, AG and AL represent gains and losses of ice mass by the process of aggregation.
Because the ice-water content and reflectivity are directly proportional to the first and second moments of
the mass distribution, it is possible to convert (4) into individual prognostic equations for each of these

moments leading to a pair of differential equations, which may be integrated forward in time. Details of the
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form of the source-sink terms in (4) expresséd in terms of m and Z can be found in Benedetti et al., (2000).
Prognostic equations for N, and D, then follow from the relations introduced above for m and Z.

The model is initialized with arbitrary profiles of diameter and number concentration. The initialization éf
the thermodynamical variables - temperature, specific humidity as well as the dynamical variables - vertical
wind are taken from an ECMWF forecast for a case observed during an aircraft experiment off the island of
Kuaui. The model is then integrated forward in time yielding nevaroﬁles of ice water content, Z, N, and
D,. Figure 4 provides an example of the realism of the simulation of radar reflectivity predicted by this
simple model compared to reflectivity derived from the grid-point ice water content of ECMWF forecast
model. The forecast profiles have been matched in space and time to aircraft measurements as reported
previously by Stephens et al. (2000). The profile of reflectivity derived from cloud resolving model ice
water contents is also presented. All models reproduce credibly the features of the observation in varying

degrees of detail. '
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Fig. 4 Comparison of profiles of cloud reflectivity derived from three very different models of cirrus clouds
compared to actual aircraft radar observations of cirrus. The ECMWF model profile is derive from forecast
model fields for a particular cirrus case studied off Kuaui. The cloud resolving model and the Lagrangian cloud
model were initialized using the background state variables obtained Jfrom the forecast. The profile labeled as
cloud model represents the results of integrating the Lagrangian model forward in time for 30 minutes.
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5.2 Variational technique and the adjoint of the cirrus model

The approach developed to assimilate radar reflectivity observations into the simple model described above
seeks to estimate that set of cloud parameters, in this case profiles of N, and D, , that minimize the cost

function
J(x) = -;— | = x*)T B (x-x®) + (H) - y) O+ F)* (Hex) - y)| St—t,, )t ©)

where H(x) maps the state variables x=( N,, D) into the observational space y=Z of radar reflectivities and
errors in this mapping are assumed to arise only from the radar forward model and from the observations.
The dynamical (cloud) model error is assumed to be zero. The first term of the right hand side of (5)
requires a specification of the background error covariance (B™) and some definition of the background state

x, taken to be the initial profiles of N, and D, (both chosen arbitrarily).
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Fig. 5 Profiles of the sensitivity of Z due to variations of both N, (right) and D, (left) as derived from the
adjoint of the cloud model.

A set of observations is specified at discrete time periods t,, and details of the optimization procedure

adopted to minimize J(x) are described in Benedetti et al. (2001).

The procedure requires the adjoint of the cloud model which was derived using the tangent linear and
adjoint compiler (TAMC) developed by Giering (1999). This adjoint provides a way of quantitatively
assessing the sensitivity of the measurement (Z) to the state variables N, and D, Examples of the
sensitivities derive from the model adjoint are provided in both Fig. 5 and Table 2. Figure 5 presents
profiles of the sensitivity of Z due to variations of both N, and D,. The results demonstrate the expected
result that the sensitivity to D, is six-fold larger than the sensitivity to N,. Table 2 summarizes the sensitivity

of optical depth (another potential form of observation) to variations in various cloud parameters listed.
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0.0126
D 0.0242
Vapor diffusion coeff. 0.001
Fall speed parameter a -6.5e-5
Fall speed parameter b -0.0012

Table 2 Sensitivity of optical depth to a 5% change of stated parameter

The largest sensitivity is that due to variations of N, and D, where again as expected the sensitivity to D, is
twice that due to N, The sensitivities of Z and optical depth to variations of N, and D, differ from one
another re-asserting the assumptions of the CloudSat retrieval that each type of measurement contains

sufficiently different information about these parameters permitting their retrieval.
5.3 Assimilation Results

Synthetic radar measurements were created from an assumed initial profile of N, and D,. This resulted in a
single Z profile. Similarly synthetic optical depths were also computed using an appropriate forward model
for this information. The model uses perturbed initial profiles of N, and D, and the optimization is
performed with the synthetic observations assimilated at discrete assimilation time intervals (i.e. the same Z
profile and optical depths were assimilated every 5 minutes of model integration). The perturbed initial
condition was defined as a given fixed percentage of the “true” initial condition. It was found that for
perturbations up to 50% of the true initial condition convergence was obtained and the true initial profiles of
characteristic diameter and number concentration were perfectly recovered (Fig. 6). The number of
iterations required for convergence varied according to the magnitude of the perturbations (i.e the proximity
of the initial model profiles to truth). Experiments were also performed in which uniform random noise was
added to a 15% perturbed initial condition, and the optimization perfectly succeeded, yielding the true initial

condition as output.

Convergence could not be obtained when the position of the cloud layer in the perturbed case was misplaced
with respect to the true initial condition (and hence the observations), even for relatively small percentage

perturbations in N, and D_ and small misplacements.

Figure 7 show results for a 50% perturbation in initial condition, with the cloud also misplaced with respect
to truth by 1 km. The results of the optimization are given in Fig. 7c. No convergence was achieved and the

initial profile could not be recovered.

The example of Fig. 7 represents a very limiting factor for the assimilation of real measurements, since it
seems that the model is not able to adjust the cloud variables in region where no cloud is present to begin
with. This also indicates that it might be better to assimilate other thermodynamic variables, such as
relative or speciﬁc humidity and temperature, rather than cloud variables.
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Fig. 7 as in Fig. 6 Synthetic measurements and the initial perturbed profile. Unlike in Fig. 6, no final solution

was obtained.
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In general the results indicate that assimilation of cloud radar data into a cloud model is in principle
feasible and meaningful, but as with other studies, real difficulty is encountered when the model and
observations are not close to each other with respect to actual placement of the cloud.. Overéoming this
general problem is challenging and solution to it will involve a closer look at the particular variables that

need to be included in the adjustment in the variational optimization.
6 Concluding Comments

CloudSat is a satellite experiment designed to provide, as directly as possible, information relevant for
assessing the way cloud processes are parameterized in global weather prediction and climate models. In
this way, CloudSat will provide a means for the critical evaluation of model prediction of clouds. This
information is to be extracted from vertical profiles of radar reflectivity obtained with the CloudSat 94 GHz
nadir pointing radar. The information includes: profiles of cloud occurrence determined from radar
reflectivity thresholds from which vertical structure information (cloud top, base, thickness, overlap) is
derived. Next are the associated profiles of cloud water and ice contents derived from the profiles of
reflectivity (and other information such as optical depth as provided by sensors flown on other satellites
flown in formation with CloudSat). This information, together with a cloud classification derived from the
radar and imaging data, constitutes the suite of standard data products to be processed by the CloudSat data
processing center located at CIRA in Colorado. These standard products will be made available to the open
community shortly after launch (3-4 months after observation). In addition to the standard products, a suite
of experimental products is being developed and will also become available to the community by consulting
with relevant science team members responsible for that product. A key experimental data product is the
precipitation liquid (and perhaps solid) water content and together with the cloud information, forms a
powerful and unique combination of data to test cloud parameterization.

CloudSat as described above is an experimental mission providing the above-mentioned data for a proposed
two-year period and then only along a narrow swath defined by the non-scanning, nadir pointing radar
producing a footprint slightly larger than 1 km. By nature of these data do not lend themselves to
assimilation in global, operational models. However CloudSat can be expected to progress the problem of

assimilation in a number of important ways:

° CloudSat data provides the most unambiguous and quantitative way of verifying the performance of
prediction models. This evaluation will lead to improvements of parameterization methods on the one

hand and better understanding of model error on the other hand.

e CloudSat data can be expected to stimulate progress on the problem of cloud data assimilation. The

simple example presented in this paper represents a preliminary step in this direction.

There remain a number of formidable steps confronting progress in the assimilation of cloud and
precipitation information. The involvement of CloudSat in research on this topic is important for a variety
of reasons. Progress on assimilation of cloud radar data, even in the more experimental setting of the

research described in this paper, provides a quantitative way of assessing the impact of these observations
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on models and related model improvements perhaps leading to a clearer vision for future clouds and

precipitation observing systems.
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