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1 Introduction

We propose a new spectral dynamical core for atmospheric models which uses
a double Fourier expansion [1, 2] rather than the standard spherical harmonics.
The obvious advantage to such an approach is that fast Fourier transforms can
be used in both the longitude and latitude directions, rather than the slower
associated Legendre transforms used by the standard approach in the latitude
direction. Unfortunately, the double Fourier expansion permits discontinuities
at the poles and non-isotropic waves which lead to prohibitive time step restric-
tions. We remedy this by performing a least-squares projection of the prognostic
variables onto the spherical harmonics at the end of every time step. Aliasing
in Eulerian models is controlled by choosing a 2/3 truncation for the projec-
tion. This reintroduces associated Legendre transforms into the dynamics, but
reduces the Legendre transform operation count by 42% for Eulerian models
(67% for semi-Lagrangian), and reduces the memory requirement from @ (N?®)
to O (N?) [3] (where N is a measure of the resolution) without requiring the
computation of Legendre functions on-the-fly, which in turn results in additional
savings from improved cache utilization [4].

2 The Double Fourier Model

To demonstrate the method, we will apply the double Fourier expansion to the
Eulerian form of the spherical shallow water equations, in longitude 0 < A < 27
and colatitude 0 < # < m. As with the standard approach, we can minimize
the required number of transposes in a distributed memory implementation by
solving the absolute-vorticity/divergence (n, §) form of the governing equations,
and we use the spherical scalar form of the velocity components U = usin¥,
~ V =wvsinb, to avoid velocity components which are multi-valued at the poles.
The absolute vorticity 7 = (+f, where ( is the relative vorticity ¢ = k-V x (u, v),
where k is the outward normal vector and f is the Coriolis parameter with
f = —2Qcos@, where (1 is the rotational rate of the earth. The third prognostic
variable is the geopotential, ¢ = gh, where g is gravitational acceleration at the
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surface of the earth and h is the height of the atmosphere. This is decomposed
into ¢ = ¢'+¢@, where ¢ is the global mean geopotential and ¢’ is the geopotential
deviation.

It is convenient to define nonlinear terms A = Un, B = Vn, C = U¢/,
D =V¢ and E = (U? + V?)/(2sind). With these definitions, we can write
the governing equations as
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where a is the radius of the earth and V2 is the spherical Laplacian operator
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Note that equations (1)—(3) differ from the standard form in that they are scaled
by sin? §. This prevents sin§ from appearing in the denominator of any terms
" and facilitates the use of standard trigonometric identities when the double
Fourier expansions are utilized.

The velocity components U and V can be obtained from vortlclty and diver-
gence by first computing the stream function 1 and velocity potential x from

sin? V21 = (sin?#, o (4)
sin? 0V2x = 4sin’é, | (5)

‘and then utilizing the diagnostic equations
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To solve equations. (1)- (7), we expand all the scalar functions in a double
Fourier series,

EXE) = D &m(B)e™, *~ (8)
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— ZnN= mncosnd, m even,
@ = { Zflvzz Emnsinnd, m odd, 9)
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where £ is some arbitrary spherical scalar, m is the longitudinal (or zonal)
wave number, n is the latitudinal (or meridional) wave number, and i = +/—1.
As with spherical harmonics, transformation between grid space, §(A;,0;) for
i=1...Non, j =1...Nat, and double Fourier space &, is facilitated by the
introduction of single Fourier space &, (9).

This expansion was first proposed explicitly by Yee [5], based on the ideas
of Orszag [1]. It has been avoided in operational models in the past because it
permits discontinuities at the poles and non-isotropic waves which lead to pro-
hibitive time-step restrictions. By projecting nm n, om,» and $7m.n ODtO the space
of spherical harmonics after each is advanced forward in time, these problems
are avoided and the numerical results are the same as the standard approach to
within roundoff, while still providing a savings in operation count.

The governing equations in this form are now suitable for expansion in terms
of double Fourier series. For example, equations (4) and (5) are in the same
form as in Yee [5]. Further, if we denote the double Fourier coefficients of gi—
by ( gi—) X it is trivial to show that
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Similarly, we can utilize simple trigonometric identities to obtain
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(rs) =14 (B7,24), 0<n <N,
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and
(f sin? g)m,n = $£m,n—2 + Y€mn 2Em,nt2, (12)
where ’
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and £ =0 (1) if m is even (odd). The coefficients for the sin® §V? operator are
obtained in the same manner as in [5].

All the pieces are now in place to develop an algorithm for advancing the
shallow water equations forward in time using leapfrog time stepping. Let R7,
R® and R? equal the right hand sides of equations (1)—(3), respectively. We
begin at an arbitrary time step level given current grid point values of 7, ¢/, U
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and V, as well as double Fourier coefficients 1y, n, 0m,» and ¢m n €ither from
the previous time step or initialization. The following steps will advance the
solution forward in time by one time step.

1. From 7, ¢/, U and V, compute the nonlinear terms A, B, C, D and E in
grid space.

2. Transform A, B, C, D and E from grid Space to double Fourier space.
This introduces five transposes to a parallel implementation.

3. Compute R7, ,, an n and Rﬁl - using the double Fourier differentiation
‘and Laplace operator rules, and advance Nm,n Om,n and ¢ n forward in
time using leapfrog time steppmg and (12).

4. Project Nm,ny Om,n and qu,n onto the space of spherical harmonics using
an associated Legendre projection.

5. Compute (m,n» by adding 22 to ng,;. Solve (4) and (5) for ¥, and Xmn
using Yee’s method, and compute Up, », and Vi, ,, from (6) and (7) using
the differentiation rules (10) and (11).

6. Transform nm n, ¢;n,n, Um,n and Vp, 5, from double Fourier space back to
grid space. This introduces an additional four transposes to a parallel
implementation, for a total of nine.

This puts the model in an appropriate state for grid-point based physics.

3 The Associated Legendre Projection

The motivation for proposing the double Fourier method is to increase the speed
of the dynamics of atmospheric models. The associated Legendre transform is
the only O (N?®) algorithm in either the standard or proposed methods, and
the proposed method reduces the number of required transforms from nine to
six. Additional savings are possible because the projection can be made more
efficient in ways the individual transforms cannot. Jakob and Alpert [6] devel-
oped an asymptotically © (IV?) projection based on the fast multipole method
which was improved by Yarvin and Rokhlin [7]. Swarztrauber and Spotz [3]
developed a projection based on the weighted orthogonal complement to the
associated Legendre functions, which provides a 50% and 12.5% reduction in
operation count versus standard transforms for untruncated and 2/3 truncated
projections, respectively.

The performance of these projections were compared recently [4], where it
was found that the weighted orthogonal complement (WOC) projection has the
best overall performance. The fast multipole method provides some savings
over the standard method for performing associated Legendre transforms, but
requires too much overhead to run faster than the WOC at resolutions of current
interest. Furthermore, the WOC functions require only O (N?) storage, as

opposed to O (N?), which leads to cache reutilization and additional savings.
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The overall savings of the WOC projection compared to a forward and backward
associated Legendre transform is roughly 80% and 60% for untruncated and 2/3
rule truncations, respectively. Combined with the fact that within a shallow
water model fewer transforms are needed, this translates roughly to spending
13% and 26% the amount of time performing Legendre transforms compared to
the standard approach.

4 Overhead

The savings obtained by using the projection instead of standard transforms are
reduced by the addition of overhead incurred by the double Fourier model. For
example, the Poisson equation reduces to an explicit calculation for a spherical
harmonics expansion. For the double Fourier method, the Poisson solver reduces
to a series of 2N tridiagonal systems of rank N. The same is true of the time
derivative terms, which are scaled by sin® § and result in a tridiagonal system as
in (12). Also, double Fourier series employ a rectangular truncation as compared
to a triangular truncation, effectively doubling any calculation involving spectral
coeflicients, such as derivatives or building the right-hand side terms. Finally,
the 15 sin and cos transforms in # (nine for the transforms to and from grid
space and six for the projection) have to be completely regarded as overhead
when compared to the spherical harmonic method. Thus the double Fourier
method will break even with the spherical harmonics method when the overhead
(proportional to N? and N? log N) equals the savings provided by the projection
algorithm. Our current goal is to achieve break-even timings between T85 and
T170 resolutions. ‘

5 Future Work

The double Fourier method, combined with an associated Legendre projection,
provides an attractive alternative to the standard spherical harmonic approach.
It provides the same accuracy and stability as as the spherical harmonics, while
providing a reduced operation count at moderate resolutions. The discussion
here has been for an Eulerian formulation, but the associated Legendre projec-
tion savings are even greater for a semi-Lagrangian formulation. Furthermore,
research continues on the projection algorithm. The ideas of Dilts [8] may be
used to eliminate six sin@ and cos @ transforms. Perhaps the weighted orthog-
onal complement ideas can be combined with the fast multipole method in a
‘manner which takes advantage of the efficiencies of both. Finally, the triangular
UTYV decomposition is being explored to exploit additional optimizations.
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